中科院教育部水土保持与生态环境研究中心
- 格式:docx
- 大小:36.49 KB
- 文档页数:6
‘水土保持研究“投稿须知‘水土保持研究“由中国科学院主管,中国科学院水利部水土保持研究所主办,属地球科学的学术类期刊,创刊于1985年,双月刊,国内外公开发行㊂先后被编入‘中文核心期刊要目总览“, 中国科技论文统计源期刊 (即中国科技核心期刊),‘中国农业核心期刊概览2006“等,获2007年度陕西省科技期刊出版形式规范优秀期刊奖,2012年㊁2014年㊁2018年陕西省科技期刊优秀奖,2016年陕西省科技期刊精品奖㊂本刊主要刊登水土保持和生态环境建设及相关学科㊁边缘学科㊁交叉学科的原创性学术论文,集中展示大型科研项目的研究成果㊂办刊宗旨为立足世界科学发展前沿,展示水土保持和生态环境建设方面的研究成果,兼顾理论探索与应用开发,开展地域与国际间的学术交流,以不断创新为目标㊂1篇幅及投稿方式文章要求精炼,以4~5个印刷页为宜(约8000~10000字)㊂投稿请登录我刊网站h t t p:ʊs t b c y j.p a p e r o n c e.o r g在线投稿㊂请完整填写文章所有作者的姓名㊁姓名拼音㊁工作单位(中英文)㊁通信地址㊁邮箱地址,至少留有第一作者或通信作者的电话㊂标注的通信作者应与文章发表时标注的通信作者一致㊂2文章格式2.1题名和作者题名用词务必简明㊁准确㊁规范,不超过20个汉字,一般不用副标题,中英文题目应一致㊂多位作者(一般不超过6名)应注明通信联系人㊂所有单位要有准确的中英文名称㊁城市名称和邮政编码㊂2.2摘要和关键词摘要须说明论文的目的㊁方法㊁结果(包括主要数据)和结论,着重于创新与发现,以300~400字为宜㊂关键词3~8个,规范㊁准确,中英文摘要及关键词须对应并同序㊂2.3中图分类号和基金项目文章需注明 中图分类号 ,参见‘中国图书馆图书分类法“(第5版),置于关键词下㊂正文首页左下脚须注明论文基金资助项目及其编号㊂2.4正文格式与要求引言:要明确提出科学问题㊁研究工作的目的㊁意义和背景以及本项研究的主要任务㊂材料与方法:供试材料应提供名称㊁数量和制备方法㊂研究方法一般引用文献,如方法有改进则须说明,如果作者自己创新的方法则宜详述㊂结果与分析:提出观察和实验证据,力求简明扼要㊂讨论:提出实验结果所论证的原理㊁相互关系;阐明研究结果与前人的研究是否一致,有无创新,指出本实验的不足之处,以及未能解决的问题㊂2.5参考文献一般不超过15个,未公开发表的文献或资料不得作为参考文献引用,如确需引用,征得作者同意后在本页以脚注方式引用,有关著作权责任作者自负㊂参考文献序号的编排,按其在论文中出现的先后顺序编号,外国作者按姓前名后,且姓为全称并且首字母大写,名缩写但不加缩点,文献作者3人以上,只列出前3人,后用 等 或 e t a l ,文献著录格式如下:(1)专著:著者.书名[M].出版地:出版者,出版年:起止页码.(2)期刊:作者.题名[J].刊名,出版年份,卷号(期号):起止页码.(3)学位论文:作者.题名[D].保存地点:保存单位,年份.(4)论文集:作者.题名[C]ʊ编者.文集名.出版地:出版单位,出版年份:起止页码.(5)电子文献:作者.题名[E B/O L].[引用日期].获取和访问途径.2.6作者简介篇首页下附第一作者简介及通信作者简介,内容包括:姓名(出生年 ),性别,籍贯,学位,职称,研究方向,E-m a i l地址及联系电话㊂3图表要求图㊁表力求精简,同一个数据不能以图㊁表的形式同时出现㊂要求论文插图宽度(包括纵坐标上名称㊁单位)半栏为70~ 80mm,通栏ɤ150mm,图中主要文字字体用8磅宋体,图中注释文字(图例㊁图注等)用7磅宋体;插图高度无专门限制,作者可根据需要适当调整㊂论文中E x c e l,O r i g i n,S i g m a P l o t等软件输出的插图要能在W o r d文件中编辑并带有数据源, A r c G I S等软件输出的图片影像需清晰,反差适中,其中灰度图片,图例应能区分㊂表格尽量采用 三线表 ,表中数据实测为零,计 0 ;未测则计为 ;其它均如实注明㊂4计量单位㊁符号和学名按国家计量局颁布的‘中华人民共和国法定计量单位“使用,如c m,k g,s,m o l/L,P a,J等,图表中复合单位一律使用负指数形式;国外地名以‘世界地名手册“为准,国际组织名称以‘联合国及有关组织机构译名手册“为准;文中首次出现的生物学名称要注明拉丁文学名,统计学常用符号及公式中的变量都要用斜体㊂5稿件处理辑部在稿件登记入库后通过电子邮箱给所有作者发送收稿通知㊂上传的稿件内容最好是W o r d2003格式(d o c格式),所投稿件在收到本刊的正式退稿信前请勿再投其他刊物,如因某些原因需要撤稿改投,请通知编辑部在系统中对稿件作相关处理后再改投,以免造成一稿多投的情况㊂对于刊出稿件,每文可赠送样刊3册㊂编辑部对采用的稿件可作必要的文字加工㊁技术处理和内容删节㊂6文责作者来稿发表后,文章著作权归作者所有,其编辑版权属本刊所有㊂本刊有权将其编辑的刊物制成光盘版或被其正式出版的光盘版收录,对此作者如不同意应在投稿时向本刊声明,否则视为同意㊂来函请寄:陕西省杨凌区中国科学院水利部水土保持研究所‘水土保持研究“编辑部邮编:712100水土保持研究官方投稿网站:h t t p:ʊs t b c y j.p a p e r o n c e.o r g电子信箱:r e s e a r c h@m s.i s w c.a c.c n联系电话:029-********Copyright©博看网 . All Rights Reserved.。
第37卷第3期2023年6月水土保持学报J o u r n a l o f S o i l a n d W a t e rC o n s e r v a t i o nV o l .37N o .3J u n .,2023收稿日期:2022-10-20资助项目:水利部公益性行业专项(201201048,201201047);中国科学院西部行动计划项目(K Z C X 2-X B 3-13);国家自然科学基金项目(41701316) 第一作者:王文龙(1964 ),男,博士,博士生导师,研究员,主要从事土壤侵蚀与水土保持研究㊂E -m a i l :w l w a n g @n w s u a f .e d u .c n 通信作者:王文龙(1964 ),男,博士,博士生导师,研究员,主要从事土壤侵蚀与水土保持研究㊂E -m a i l :w l w a n g@n w s u a f .e d u .c n 生产建设项目工程堆积体土壤侵蚀预测模型构建王文龙1,2,李建明2,3,康宏亮4,郭明明5,李宏伟6(1.西北农林科技大学水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室,陕西杨凌712100;2.中国科学院教育部水土保持与生态环境研究中心,陕西杨凌712100;3.长江水利委员会长江科学院,武汉430010;4.长安大学土地工程学院,西安710054;5.中国科学院东北地理与农业生态研究所,哈尔滨150081;6.陕西省引汉济渭工程建设有限公司,西安710000)摘要:为建立适用于我国不同区域生产建设项目工程堆积体土壤侵蚀预测模型,在通用土壤侵蚀模型(u n i v e r s a l s o i l l o s s e q u a t i o n ,U S L E )框架下,室内概化模拟不同土壤质地㊁坡度坡长㊁砾石质量分数等工况下的工程堆积体,通过大量人工模拟降雨试验,修订模型各因子,构建工程堆积体土壤侵蚀量预测模型,并对其进行验证㊂研究明确工程堆积体标准小区及各因子定义及计算方法,提出采用土石质因子代替传统的土壤可蚀性因子以便更加符合工程堆积体实际,构建以幂函数计算的坡度㊁坡长因子,与砾石质量分数的指数函数计算的土石质因子和降雨侵蚀力因子相乘的工程堆积体侵蚀量预测模型㊂经率定与验证,模型预测效果良好(R 2>0.8),且能适用于不同区域及工况下工程堆积体边坡土壤流失量预测,该模型参数少且易获取并具有物理意义,现场操作性和实用性强㊂研究成果为生产建设项目水土保持工作及水行政主管部门的监督执法提供技术指导及科学依据,具有较大的科学意义与指导生产实践价值㊂关键词:工程堆积体;预测模型;土石质因子;参数修订;生产建设项目中图分类号:S 157.1 文献标识码:A 文章编号:1009-2242(2023)03-0027-08D O I :10.13870/j.c n k i .s t b c x b .2023.03.004S o i l E r o s i o nP r e d i c t i o n M o d e l f o r S p o i lH e a ps i n P r o d u c t i o na n dC o n s t r u c t i o nP r o je c t s WA N G W e n l o n g 1,2,L I J i a n m i n g 2,3,K A N G H o n g l i a n g 4,G U O M i n g m i n g 5,L IH o n gw e i 6(1.S t a t eK e y L a b o r a t o r y o f S o i lE r o s i o na n dD r y l a n dF a r m i n g o n t h eL o e s sP l a t e a u ,I n s t i t u t e o f So i l a n d W a t e rC o n s e r v a t i o n ,N o r t h w e s tA&F U n i v e r s i t y ,Y a n g l i n g ,S h a a n x i 712100;2.S t a t eK e y L a b o r a t o r y o f So i l E r o s i o na n dD r y l a n dF a r m i n g o n t h eL o e s sP l a t e a u ,I n s t i t u t e o f S o i l a n d W a t e rC o n s e r v a t i o n ,C h i n e s eA c a d e m yo f S c i e n c e s a n d M i n i s t r y o f W a t e rR e s o u r c e s ,Y a n g l i n g ,S h a a n x i 712100;3.C h a n g j i a n g R i v e rS c i e n t i f i cR e s e a r c h I n s t i t u t e o f C h a n g j i a n g W a t e rR e s o u r c e sC o mm i s s i o n ,W u h a n 430010;4.S c h o o l o f L a n dE n g i n e e r i n g ,C h a n g a n U n i v e r s i t y ,X i a n 710054;5.N o r t h e a s t I n s t i t u t e o f G e o g r a p h y a n dA g r o e c o l o g y ,C h i n e s eA c a d e m y o f Sc i e n c e s ,H a r b i n 150081;6.H a n j i a n g -t o -W e i h eR i v e rV a l l e y W a t e rD i v e r s i o nP r o je c tC o n s t r u c t i o nC o .L t d .,X i a n 710000)A b s t r a c t :T h e s t u d y a i m s t oe s t a b l i s has o i l l o s s p r e d i c t i o n m o d e l i ns p o i lh e a p sof p r o d u c t i o na n dc o n s t r u c t i o n p r o j e c t s f o r d i f f e r e n t r eg i o n s i no u r c o u n t r y.As e r i e s o f i n d o o r s a r t i f i c i a l s i m u l a t e d r a i n f a l l t e s t sw e r e c a r r i e d o u t o n t h e s p o i l h e a p sw i t hd i f f e r e n t s o i l t e x t u r e ,s l o p e l e n gt ha n d g r a v e l c o n t e n t .T h es o i l l o s s p r e d i c t i o n m o d e l o f s p o i lh e a p sw a se s t a b l i s h e d i nt h e f r a m e w o r ko fU n i v e r s a lS o i lL o s sE qu a t i o n (U S L E ),a n dt h e f a c t o r p a r a m e t e r sw e r e r e v i s e d .T h e s t u d y c l a r i f i e d t h e d e f i n i t i o n o f t h e s t a n d a r d p l o t o f t h e e n g i n e e r i n g s p o i l h e a p s a n dt h e m e t h o d st oc a l c u l a t ee a c hf a c t o ra n d p r o p o s e st o u s et h es o i l -r o c kf a c t o rt or e p l a c et h e t r a d i t i o n a l l y u s e d e r o d i b i l i t y f a c t o r ,a s t ob em o r ec o n s i s t e n tw i t ht h ea c t u a l s i t u a t i o n .T h e r e s u l t ss h o w e d t h a t t h e p o w e r f u n c t i o n i s u s e d t o c a l c u l a t e t h e s p o i l h e a p s s l o p e d e g r e e a n d s l o p e l e n g t h f a c t o r ,a n d t h e s o i l a n d r o c k f a c t o r i s c a l c u l a t e db y t h e e x p o n e n t i a l f u n c t i o nc o m b i n e dw i t h t h e g r a v e lm a s s f r a c t i o n ,w h i c hc a n e f f e c t i v e l yp r e d i c t t h e r a i n f a l l e v e n t s e r o s i o no f t h e s p o i l h e a ps .T h e c a l c u l a t i o nm e t h o do f t h em o d e lw a s t o m u l t i p l y r a i n f a l le r o s i v i t y ,s l o p ed e g r e e ,s l o p e l e n gt ha n ds o i la n dr o c kf a c t o r .T h ec a l i b r a t i o na n dv e r i f i c a t i o n Copyright ©博看网. All Rights Reserved.s h o w e d t h em o d e l p r e d i c t i o ne f f e c t i s g o o d,w h i c hc a nb e a p p l i e d t od i f f e r e n t s o i l t y p e so f e n g i n e e r i n g s p o i l h e a p s.T h e p a r a m e t e r so f e a c hf a c t o ro f t h e m o d e lw e r ee a s y t oo b t a i na n dh a d p h y s i c a lm e a n i n g,a n dt h e f i e l d o p e r a b i l i t y a n d p r a c t i c a b i l i t y w e r e s t r o n g.R e s u l t s p r o v i d e t e c h n i c a l g u i d a n c e a n d s c i e n t i f i c b a s i s f o r t h e s o i l a n dw a t e r c o n s e r v a t i o nw o r ko f p r o d u c t i o na n dc o n s t r u c t i o n p r o j e c t sa n dt h es u p e r v i s i o na n dl a w e n f o r c e m e n to f w a t e r a d m i n i s t r a t i v e d e p a r t m e n t s,a n dh a v e g r e a t s c i e n t i f i c s i g n i f i c a n c e a n d p r o d u c t i o n a p p l i c a t i o n a n d g u i d i n g v a l u e. K e y w o r d s:s p o i l h e a p s;p r e d i c t i v em o d e l;s o i l a n d g r a v e l f a c t o r;f a c t o r r e v i s i o n;p r o d u c t i o n a n d c o n s t r u c t i o n p r o j e c t s由美国农业部主导研发的经验性模型通用土壤流失方程[1](u n i v e r s a l s o i l l o s s e q u a t i o n,U S L E),主要用于农地或草地坡面多年平均土壤流失量的预测预报,于1965年正式对外发表,该机构于1978年开始对该模型进行修订,修订后的模型修正通用土壤流失方程(r e v i s e d u n i v e r s a l s o i l l o s s e q u a t i o n,R U S L E)于1997年得到正式发表,模型在美国乃至世界范围内得到广泛应用㊂U S L E及R U S L E对我国土壤侵蚀预测模型的研究具有积极促进作用㊂国内刘宝元等[2]㊁江忠善等[3]和蔡强国等[4]为代表的不少学者以U S L E为模板,通过参数修正等方法尝试构建地方或区域的土壤侵蚀预测模型㊂另外根据地域差异,先后提出东北漫岗丘陵[5]㊁黄土高原[6]㊁南方红壤区[7]㊁滇东北山区[8]㊁长江三峡库区[9]和华南地区[10]等区域土壤侵蚀预测模型,取得系列成果㊂目前,多数土壤侵蚀预测模型主要针对的是传统农耕地或荒地,对模型是否适用于人为扰动强烈的生产建设项目土壤侵蚀量预测仍未形成共识㊂现阶段,生产建设项目土壤侵蚀已成为新增水土流失的主要来源之一[11]㊂在欧洲等发达国家,较早开始关注由生产建设项目导致的侵蚀问题,重点集中在采矿废弃地的土地复垦及植被修复㊁公路铁路及水利工程等侵蚀边坡防治及恢复等方面[12]㊂我国针对工程建设造成的侵蚀问题引发关注主要从20世纪50年代开始,至80年代得到较大发展,其中,以采矿活动造成的水土流失问题为代表,重点开展矿区废弃地的土地复垦方面研究,至90年代,为有效控制建设项目导致的侵蚀和土地退化问题,专门组织研讨会探索对应防治策略[13]㊂在该阶段,中华人民共和国水土保持法的颁布,为生产建设项目水土保持工作提供法律依据和技术支撑㊂随着生产建设项目土壤侵蚀与水土保持研究的持续深入,如何准确预测生产建设项目造成的水土流失成为关键㊂将U S L E㊁R U S L E 等[14]模型应用于煤矿开发过程中土壤侵蚀量预测方面取得系列成果㊂在我国,针对生产建设项目新增水土流失量的研究主要通过自然观测㊁模拟降雨及冲刷试验等,蔺明华等[15]基于大量的模拟试验和观测结果,提出数学模型法㊁新增土壤侵蚀系数法和水土流失系数法可用于工程建设侵蚀量的预测;苏彩秀等[16]着重指出,相较于U S L E模型,R U S L E模型辅以G I S技术更加适用于工况复杂的工程建设项目侵蚀量预测工作,该方面研究也将是今后研究者重点关注及行业发展趋势;黄翌等[17]以R U S L E结合数字地形分析㊁遥感影像融合等技术,阐明黄土高原山地煤矿开采导致地表平均坡度和坡长在10年内呈减少趋势,进而导致侵蚀量减少㊂目前,工程建设区导致的土壤侵蚀预测模型的构建主要是以U S L E或R U-S L E为理论基础及框架,但由于大部分的研究对象较单一,用于构建模型的基础数据有限,约束模型适用性及推广性㊂综上可见,对于生产建设项目土壤侵蚀规律已引起较多关注,并取得一定进展,对工程堆积体侵蚀机理的认识也在进一步加深㊂目前,对生产建设项目土壤侵蚀预测模型尚未形成统一的标准,且缺乏从大区域尺度的概化模型,导致生产建设项目土壤侵蚀预测无法有效指导生产实践中各项水土保持措施的设计及效益发挥,进一步使得水土保持方案中土壤侵蚀量预测缺乏必要的科学依据,严重滞后于生产实际的需要㊂该研究基于前期大量野外调查,室内概化堆积体,通过对影响生产建设项目工程堆积体土壤侵蚀主要因子分别进行修订,最终提出一个适用于不同土质类型及工况条件下工程堆积体的土壤侵蚀预测模型㊂为生产建设项目水土保持方案编制㊁水行政主管部门监督执法提供科学依据,进一步完善我国土壤侵蚀模型研究的涵盖范围,具有重要的科学意义与生产应用价值㊂1材料与方法1.1模型概化及因子定义1.1.1基本形式 U S L E模型表达为:A=R㊃K㊃L S㊃C㊃P(1)式中:A为任一坡耕地在特定的降雨㊁作物管理制度及所采用的水土保持措施下,单位面积年平均土壤流失量[t/(h m2㊃a)];R为降雨侵蚀力因子[(M J㊃m m)/ (h m2㊃h㊃a)],是单位降雨侵蚀指标,如果融雪径流显著,需要增加融雪因子;K为土壤可蚀性因子[(t㊃h m2㊃h)/(h m2㊃M J㊃mm)],标准小区上单位82水土保持学报第37卷Copyright©博看网. All Rights Reserved.降雨侵蚀指标的土壤流失量;L为坡长因子(无量纲),等于其他条件相同时实际坡长与22.13m相比土壤流失量比值;S为坡度因子(无量纲),等于其他条件相同时,实际坡度与9%坡度相比土壤流失量比值;C为作物覆盖和管理因子(无量纲),等于其他条件相同时,特定植被和经营管理地块上的土壤流失与标准小区土壤流失量之比;P为水保措施因子(无量纲),等于其他条件相同时,实行等高耕作,等高带状种植或修地埂㊁梯田等水土保持措施后的土壤流失与标准小区上土壤流失量之比㊂在综合已有研究[18]基础上,以U S L E为蓝本,建立生产建设项目工程堆积体土壤侵蚀预测模型㊂由于工程堆积体在堆弃短期内没有作物覆盖和管理,缺少水土保持措施,因此,模型中的C与P均取值为1;另一方面,由于工程堆积体由人工堆填形成,物质组成复杂,与传统的坡面有较大区别,其中砾石掺杂是主要方面, U S L E中可蚀性指土壤的可蚀性,对生产建设项目并不适用㊂因此,将表征堆积物质对侵蚀的敏感程度称为土石质因子(T)㊂最终确定生产建设项目工程堆积体土壤侵蚀预测模型基本形式,计算公式为:A=R㊃T㊃L S(2)式中:A为土壤流失量(t/h m2);R为降雨侵蚀力因子[(M J㊃m m)/(h m2㊃h)];T为土石质因子[(t㊃h m2㊃h)/(h m2㊃M J㊃m m)];L S为坡长坡度因子(无量纲)㊂1.1.2工程堆积体标准小区及因子定义 U S L E的建立是基于农耕地标准小区而定,坡度为9%,坡长(均指投影坡长,特别提及的斜坡长指实际坡度下量测得到的坡面长度)为22.13m,由于我国地域辽阔,不同地区间地形地貌差异大,与U S L E有较大差异㊂基于前期对我国6大水蚀类型区共计368座工程堆积体各项参数的实地调查[19],经统计分析,堆积体大部分是土石混合介质,其坡度的平均值为33.5ʎ,斜坡长平均值为4.99m㊂由于统计得到的坡度均值甚至超过自然休止角,对堆积体稳定性产生影响;同时,考虑室内试验装置的可操作性及安全性,结合野外工程堆积体实际情况,确定工程堆积体标准小区的坡度为25ʎ,坡长为4.53m(25ʎ条件下斜坡长为5m)㊂基于前期研究,重新明确生产建设项目工程堆积体标准小区和各因子定义㊂(1)生产建设项目工程堆积体标准小区㊂坡度为25ʎ,坡长为4.53m,在人力及机械等外力作用下形成的裸露松散土石混合介质坡面㊂(2)坡度因子(S)㊂借鉴U S L E中坡度因子的计算方法,坡度因子指在工程堆积体标准小区条件下[即降雨侵蚀力因子(R)㊁土石质因子(T)和坡长因子(L)相同],实际坡度条件下产生的流失量与坡度为25ʎ的工程堆积体产生的侵蚀量之比㊂(3)坡长因子(L)㊂借鉴U S L E中坡长因子的计算方法,坡长因子指在工程堆积体标准小区条件下[即降雨侵蚀力因子(R)㊁土石质因子(T)和坡度因子(S)相同],实际坡长条件下产生的流失量与坡长为4.53m的工程堆积体产生的侵蚀量之比㊂(4)土石质因子(T)㊂为在标准小区试验条件下(坡度为25ʎ,坡长为4.53m),单位降雨侵蚀力产生的堆积体侵蚀量,通过计算侵蚀量(A)与侵蚀影响因子乘积(R L S)之比得到㊂通过计算不同砾石质量分数(砾石质量与土石混合介质总质量之比)下的T可以得到T与砾石质量分数的定量关系㊂(5)降雨侵蚀力因子(R)㊂R定义与U S L E保持一致,指由降雨导致的侵蚀下垫面发生侵蚀的潜力,该因子主要与降雨时长㊁降雨强度及降雨量相关[18]㊂1.2试验设计与标准化处理1.2.1试验设计模拟降雨试验设计4个坡度(15ʎ, 25ʎ,30ʎ和35ʎ),斜坡长设置为3,5,6.5,12m(在25ʎ条件下的投影坡长分别为2.72,4.53,5.89,10.88m)㊂基于野外大量的调查[11]统计表明,堆积体坡面以土石混合介质为主,且砾石质量分数集中在0~40%的占比超过90%,砾石粒径分布范围集中在10~36m m,单个砾石的粒径只有在D>10m m才呈现出明显的重力分选现象,且堆积体土石混合介质中的砾石并非是单一粒径组成,而是由多粒径组合而成㊂因此,试验砾石为机械碎石分选获取,以砾石能被搬运作为依据,确定粒径D<50mm作为试验砾石,并将堆积体中的粒径划分为D<14mm,14mm<D<25mm,25mm< D<50m m3级,不同粒径的质量百分比为3ʒ5ʒ2,混合后的砾石与土壤充分混合形成堆积体土石混合介质㊂试验用土采用砂土㊁壤土㊁黏土3种类型,与配置好的砾石按照不同质量配比配置㊂试验在中国科学院水利部水土保持研究所模拟降雨大厅完成,该实验室降雨装置的雨滴降落高度为16m,能够有效模拟自然降雨的终点速度,降雨装置的降雨强度可调节范围为30~350mm/h,均匀度>90%㊂试验钢槽为自行研发并生产的可移动液压式变坡钢槽,尺寸包括为5.0mˑ1.0mˑ0.5m, 6.5mˑ1.5mˑ0.5m和12.0mˑ3.0mˑ0.5m,试验槽坡度调整范围为0~36ʎ[11]㊂试验所用砂土取自陕西榆林靖边县,具有土壤颗粒质地轻㊁粉砂粒含量多等特点;壤土在试验地(陕西杨凌)获取,土壤质地黏重;黏土取自江西省南昌市新建县,归属于红壤类别㊂堆积体是将经过筛分后的土壤与不同粒径混合砾石在装槽前均匀混合,土壤与砾石按照不同质量配比配置,分别设置0(纯土体),10%,92第3期王文龙等:生产建设项目工程堆积体土壤侵蚀预测模型构建Copyright©博看网. All Rights Reserved.20%,30%㊂仅壤土做大砾石质量分数下(40%,50%)的降雨试验㊂为使不同土壤质地工程堆积体具有可比性,先对试验土壤进行6m m粒径筛分,使其处于相同水平,处理好的土壤与砾石通过人工多次搅拌均匀用于装填㊂装填深度为40c m,为模拟自然堆积体自然排水,底部首先装填10c m细砂㊂装填土石混合介质共计30c m,分3层,每层10c m,各层按照设计容重进行压实并打毛,最表层不压实仅进行刮平,模拟堆积体表层松散特性㊂试验槽装填完成后放置24h令其自然沉降,各层之间充分融合,随后用于模拟试验㊂各工况下分别进行不同降雨强度的模拟试验,降雨强度分别设置为60,90,120,150mm/h㊂模拟降雨产流历时均设置为45m i n㊂1.2.2数据标准化处理接取不同降雨强度及不同工况下工程堆积体产沙,测定次降雨产沙量㊂为使各组试验数据能够有效进行叠加及对比分析,各场次降雨试验计算的侵蚀量均换算为单位投影面积上的侵蚀量㊂2结果与分析已有研究[20]表明,U S L E适用于多年平均土壤流失量的预测,对单次降雨的侵蚀预测不适用㊂为此,采用多场次的结果叠加后再计算㊂将4种不同降雨强度条件下产生的土壤流失量之和用于建立模型,并进一步对模型中各因子分别进行修订㊂2.1坡长因子(L)修订根据定义,生产建设项目工程堆积体坡长因子修订采用2.72,4.53,5.89,10.88m4种坡长试验数据,壤土试验槽宽度为1.5m㊂其中2.72,5.89,10.88m均采用壤土试验数据,而坡长4.53m(标准小区坡长)采用砂土㊁壤土和黏土3种平均值作为计算值,砂土和黏土试验槽宽度为1.0m㊂降雨强度包括60,90,120,150mm/h4种类型㊂为避免重复考虑砾石影响,进行坡长和坡度因子修订时砾石质量分数为0㊂计算不同坡长下(2.72,4.53,5.89,10.88m)4次降雨的总侵蚀量与相同条件下标准小区坡长(4.53m)的总侵蚀量之比,即可得到坡长因子(L)值㊂由表1可知,4种坡长因子(L)值分别为0.63,1.00,1.11,1.38㊂拟合坡长因子(L)与实际坡长与标准小区坡长比值(λ/4.53)即为坡长因子(L)计算式㊂该研究提出的坡长因子L计算采用幂函数,得出幂函数指数为0.552㊂L=0.909(λ/4.53)0.552,R2=0.928,p=0.037(3)已有研究[21]表明,影响坡面侵蚀的地形中坡长是主要因子之一,该因子对坡面侵蚀及输沙发生发展过程具有显著影响,作用原理体现在改变侵蚀下垫面的径流特性(包括流速㊁流量)进而改变径流挟沙力,最终改变土壤侵蚀强度㊂针对其计算方法, F o s t e r等[22]研究提出,可以将不同坡长进行分段处理,各坡段的坡长因子均是其上游不同分段的因子累计;汤国安等[23]研究进一步明确侵蚀模型中的坡长因子定义,是地面上一点沿水流方向到其流向起点的最大地面距离在水平面的投影长度;胡刚等[24]研究黑土区地形因子算法表明,坡长指数采用与坡度相关的变值更加合理㊂以往研究[18]主要是针对缓坡坡耕地㊁撂荒地等,针对生产建设项目坡长因子的修订目前研究较少㊂表1工程堆积体坡长因子修订计算资料降雨强度/(mm㊃h-1)坡长/m单位面积侵蚀量/(k g㊃m-2)相同坡长侵蚀量之和/(k g㊃m-2)坡长因子(L) 602.720.9323.290.63902.721.691202.727.921502.7212.75604.530.67904.531.861204.534.791504.5314.03604.530.51904.5312.4036.921.001204.5320.381504.5337.63604.530.55904.532.331204.535.961504.539.64605.890.9240.871.11905.893.081205.8918.001505.8918.876010.883.0051.081.389010.884.5312010.8819.4115010.8824.152.2坡度因子(S)修订根据定义,坡度因子修订采用15ʎ,25ʎ,30ʎ,35ʎ的4个坡度试验数据,均采用壤土堆积体试验数据,试验槽宽度均为1.0m㊂降雨强度包括60,90,120, 150mm/h4种㊂计算不同坡度下(15ʎ,25ʎ,30ʎ,35ʎ)4次降雨的总侵蚀量与相同条件下标准小区(25ʎ)的总侵蚀量之比,即为模型中坡度因子(S)值㊂由表2可知,4种坡度因子(S)分别为0.63,1.00,0.92,1.51㊂坡度因子值的计算是拟合坡度因子(S)与实际坡度与标准小区坡度比值(θ/25ʎ)得到㊂该研究提出的坡度因子03水土保持学报第37卷Copyright©博看网. All Rights Reserved.(S )计算采用幂函数,其指数为0.883㊂S =0.966(θ/25ʎ)0.883,R 2=0.823,p =0.093(4)表2 工程堆积体坡度因子修订计算资料降雨强度/(mm ㊃h -1)坡度/(ʎ)单位面积侵蚀量/(k g ㊃m -2)相同坡长侵蚀量之和/(k g ㊃m -2)坡度因子(S )60150.329.440.6390150.37120152.16150156.5960250.4314.941.0090251.60120254.64150258.2760300.3713.680.9290300.47120303.01150309.8360350.6322.631.5190350.67120357.901503513.43坡度是影响坡面侵蚀地形因子的另一个主要特征,国内外学者们针对土壤侵蚀模型坡度因子也展开相关的研究㊂20世纪40年代,Z i n g g[25]通过对土壤侵蚀速率和地形因子的研究,用实证分析方法建立其相互间定量关系㊂在R U S L E 中坡度因子计算采用坡度的正弦值[26]㊂江忠善等[27]基于坡面水蚀模型研究成果提出,我国坡度因子指数值变化为1.2~1.6,主要集中在1.30~1.45㊂吴普特等[28]研究提出,坡面侵蚀量与坡度因子之间存在临界值,而非简单的线性关系,但由于研究目标及方法等不同导致临界坡度的数值有差异㊂2.3 土石质因子(T )修订生产建设项目工程堆积体相较于传统的坡面侵蚀在侵蚀下垫面物质组成上存在较大差异,不仅是包括传统土壤,更多的是混合不同含量以及粒径的砾石㊂由于土壤质地理化性质不同,尤其在砾石混合后,土壤与砾石之间的相互作用发生改变㊂该研究将工程堆积体中的土壤质地概化为砂土㊁壤土和黏土3种类型㊂修订土石质因子(T )时,坡度和坡长因子均在标准小区条件下开展(坡度25ʎ,坡长4.53m ),降雨强度采用60,90,120,150mm /h4种,砾石质量分数为0,10%,20%,30%4种㊂根据定义,工程堆积体土石质因子(T )为标准小区上单位降雨侵蚀力堆积体产生的侵蚀量㊂因此,利用土壤侵蚀量(A )与侵蚀影响因子的乘积(B =R L S )间的正比关系来推求,为符合U S L E 的适用条件,将多场降雨数据作为计算资料㊂研究将A 与B的拟合关系式斜率作为土石质因子(T )值㊂在计算土石质因子(T )值时,需要确定降雨侵蚀力(R )和坡度坡长因子(L S )㊂(1)降雨侵蚀力(R )㊂采用已有研究[18]计算方法计算,具体为公式(5)~公式(7)㊂R =E I 30(5)E =ðe p(6)e =0.119+0.0873l g I (I ɤ76mm /h )0.283 (I >76mm /h){(7)式中:R 为降雨侵蚀力[(M J ㊃mm )/(h m 2㊃h )];E 为降雨动能(M J /h m 2);I 30为一次降雨30m i n 最大降雨强度(mm /h );e 为单场降雨某一时段的降雨动能[M J /(h m 2㊃m m )];P 为对应时段的降雨量(m m );I 为对应时段的降雨强度(mm /h)㊂(2)地形因子(L S )计算㊂根据公式(3)和公式(4)计算可得25ʎ的坡度因子S =0.966,坡长4.53m 的坡长因子L =0.909,最终可计算得L S =0.878㊂2.3.1 砂土土石质因子(T ) 在生产建设项目工程堆积体标准小区条件下,获取砂土工程堆积体在砾石质量分数0~30%下的侵蚀量(A )与侵蚀影响因子(B ),进而计算土石质因子(T ),结果见表3㊂拟合砂土工程堆积体4种不同砾石质量分数条件下侵蚀量(A )与侵蚀影响因子(B =R L S)之间的关系,即为砂土土石质因子(T )值,结果见图1㊂由图1可知,砂土工程堆积体在砾石质量分数为0(纯土体),10%,20%,30%时的土石质因子(T )分别为0.0728,0.0520,0.0353,0.0300[(t ㊃h m 2㊃h )/(h m 2㊃M J ㊃mm )]㊂含砾石堆积体的土石质因子均小于纯土堆积体,且随着砾石质量分数增大土石质因子(T )减小,递减幅度为28.57%~58.79%㊂为计算任意砾石质量分数的砂土堆积体土石质因子(T )值,建立土石质因子(T )与砾石质量分数(D i )之间关系㊂T =0.071e -3.047D i,R 2=0.976,p =0.012(8)式中:砾石质量分数(D i )取小数,取值范围为0ɤD i <1.0,当D i =1.0时代表下垫面全为石子,不会被侵蚀,在该研究中不考虑该极端情况㊂2.3.2 壤土土石质因子(T ) 在生产建设项目工程堆积体标准小区条件下,获取壤土工程堆积体在砾石质量分数0~30%下的侵蚀量(A )与侵蚀影响因子(B ),结果见表4㊂计算壤土在4种砾石质量分数条件下的侵蚀量(A )与侵蚀影响因子(B =R L S )之间关系,即为不同砾石质量分数下壤土土石质因子(T ),结果见图2㊂13第3期 王文龙等:生产建设项目工程堆积体土壤侵蚀预测模型构建Copyright ©博看网. All Rights Reserved.表3砂土堆积体土石质因子(T)计算砾石质量分数/%降雨强度/(mm㊃h-1)降雨侵蚀力(R)/(107㊃M J㊃mm㊃h m-2㊃h-1)地形因子(L S)侵蚀量(A)/(106㊃t㊃h m-2)侵蚀影响因子(R L S)/(107㊃M J㊃mm㊃h m-2㊃h-1)土石质因子(T)/(t㊃h m2㊃h㊃h m-2㊃M J-1㊃mm-1)0600.920.8780.050.800.0063 90 2.170.878 1.24 1.910.0650 120 3.490.878 2.04 3.060.0665 150 5.460.878 3.76 4.790.07851060 1.220.8780.39 1.070.0362 90 2.460.8780.48 2.160.0223 120 3.980.878 1.56 3.490.0447 150 5.120.878 2.89 4.500.06422060 1.000.8780.300.880.0334 90 2.510.8780.42 2.200.0193 120 3.270.878 1.35 2.870.0470 150 5.080.878 1.54 4.460.034530600.900.8780.240.800.0306 90 1.880.8780.64 1.650.0384 120 3.270.8780.74 2.870.0256 150 5.310.878 1.43 4.670.0306图1砂土不同砾石质量分数侵蚀量(A)与侵蚀影响因子(B=R L S)拟合关系由图2可知,壤土工程堆积体在砾石质量分数为0(纯土体),10%,20%和30%时的土石质因子(T)分别为0.0259,0.0166,0.0141,0.0091[(t㊃h m2㊃h)/ (h m2㊃M J㊃m m)]㊂与砂土堆积体分析结果一致,含砾石堆积体的土石质因子均小于纯土堆积体,随着砾石质量分数增大土石质因子(T)减少35.91%~64.86%㊂建立不同砾石质量分数下的壤土堆积体土石质因子(T)值与砾石质量分数(D i)之间的定量关系,可以计算得到任意砾石质量分数下的土石质因子(T)值㊂T=0.025e-3.301D i,R2=0.972,p=0.014(9) 2.3.3黏土土石质因子(T)相对于砂土和壤土,黏土具有颗粒粗㊁黏性强且易黏结等特性,使得径流在坡面入渗减少,加速径流产生并导致侵蚀发生提前㊂在生产建设项目工程堆积体标准小区条件下,获取黏土工程堆积体在砾石质量分数0~30%下的侵蚀量与侵蚀影响因子(表5)㊂表4壤土堆积体土石质因子(T)计算砾石质量分数/%降雨强度/(mm㊃h-1)降雨侵蚀力(R)/(107㊃M J㊃mm㊃h m-2㊃h-1)地形因子(L S)侵蚀量(A)/(106㊃t㊃h m-2)侵蚀影响因子(R L S)/(107㊃M J㊃mm㊃h m-2㊃h-1)土石质因子(T)/(t㊃h m2㊃h㊃h m-2㊃M J-1㊃mm-1)0600.840.8780.070.740.0091 90 1.860.8780.19 1.630.0114 120 3.230.8780.48 2.830.0169 150 4.960.878 1.40 4.360.032210600.850.8780.050.740.0070 90 1.800.8780.17 1.580.0108 120 3.220.8780.45 2.830.0159 150 4.940.8780.78 4.340.018020600.810.8780.040.710.0057 90 1.850.8780.11 1.620.0065 120 3.210.8780.39 2.820.0139 150 4.970.8780.67 4.360.015430600.830.8780.040.730.0053 90 1.880.8780.06 1.650.0038 120 3.240.8780.24 2.850.0084 150 5.010.8780.45 4.400.010223水土保持学报第37卷Copyright©博看网. All Rights Reserved.图2 壤土不同砾石质量分数侵蚀量(A )与侵蚀影响 因子(B =R L S)拟合关系 拟合黏土工程堆积体4种不同砾石质量分数条件下侵蚀量(A )与侵蚀影响因子(B =R L S )之间关系,即为黏土土石质因子(T )值(图3)㊂由图3可知,黏土工程堆积体在砾石质量分数为0(纯土体),10%,20%,30%时的土石质因子(T )分别为0.0201,0.0172,0.0129,0.0096[(t ㊃h m2㊃h )/(h m 2㊃M J ㊃mm )]㊂黏土堆积体随砾石质量分数增大,土石质因子(T )减少14.43%~52.24%㊂为计算得到任意砾石质量分数下的黏土土石质因子(T )值,构建土石质因子(T )与砾石质量分数(D i )的定量关系㊂T =0.021e -2.505D i,R 2=0.982,p =0.009(10)表5黏土堆积体土石质因子(T )计算砾石质量分数/%降雨强度/(mm ㊃h -1)降雨侵蚀力(R )/(107㊃M J ㊃mm ㊃h m -2㊃h -1)地形因子(L S )侵蚀量(A )/(105㊃t ㊃h m -2)侵蚀影响因子(R L S )/(107㊃M J ㊃mm ㊃h m -2㊃h -1)土石质因子(T )/(t ㊃h m 2㊃h ㊃h m -2㊃M J -1㊃mm -1)600.950.8780.550.840.0066901.970.8782.33 1.730.01351203.320.878 5.96 2.910.0205150 5.130.8789.644.500.021410600.090.8780.800.080.0103901.950.878 1.54 1.710.0090120 3.280.878 5.072.890.0176150 5.120.8788.29 4.500.018420600.910.8780.800.800.0100901.870.8782.01 1.650.01221203.330.878 3.24 2.920.0111150 5.180.878 6.304.550.013930600.900.8780.690.790.0087901.920.8782.20 1.690.01301203.290.878 3.22 2.890.01111505.010.878 3.744.400.0085图3 黏土不同砾石质量分数侵蚀量(A )与侵蚀影响 因子(B =R L S )关系2.4 模型框架通过上述分析,确定生产建设项目工程堆积体土壤侵蚀量预测模型,见公式(11)㊂A =0.283P I 30㊃(a e -b D i )㊃0.909(λ/4.53)0.552㊃0.966(θ/25)0.883(I >76mm /h )(0.119+0.0873l g I )P I 30㊃(a e -b D i )㊃0.909(λ/4.53)0.552㊃0.966(θ/25)0.883(I ɤ76mm /h ){(11)式中:砂土的a =0.071,b =3.047;壤土的a =0.025,b =3.301;黏土的a =0.021,b =2.505;D i 为砾石质量分数(%),0ɤD i <1.0;θ为实际坡度(ʎ);λ为实际坡长(m ),计算时需要换算为投影坡长㊂2.5 模型验证该试验在建立模型过程中壤土采用的降雨试验是完全组合,同时,砂土和黏土完成坡度㊁坡长㊁砾石质量分数的正交试验㊂剔除用于模型建立的试验数据,将砂土㊁壤土和黏土的其他降雨场次获得的实际侵蚀量数据与模型拟合的预测值进行对比,其中,砂土和黏土堆积体分别采用16组降雨数据,壤土堆积体砾石质量分数在0~30%的72场降雨数据,以及壤土堆积体在砾石质量分数40%~50%的8场降雨数据㊂4种条件下,拟合侵蚀量实测值与预测值㊂拟合结果(图4)表明,模型对砂土和黏土堆积体侵蚀量预测值均高于实测值,而对壤土堆积体预测值低于实测值㊂对砂土㊁黏土㊁壤土㊁壤土砾石质量分数40%,33第3期 王文龙等:生产建设项目工程堆积体土壤侵蚀预测模型构建Copyright ©博看网. All Rights Reserved.。
水土保持与生态环境研究中心博士研究生培养方案为适应创新型国家建设和社会发展对高层次人才的新要求,保证研究生培养质量,遵照《中国科学院研究生院关于修订研究生培养方案的指导意见》,结合本中心实际制定本方案.一、培养目标1、掌握马克思主义基本理论、树立科学的世界观,坚持党的基本路线,热爱祖国;遵纪守法,品行端正;诚实守信,学风严谨,团结协作,具有良好的科研道德和敬业精神。
2、博士研究生在土壤学、生态学专业领域内掌握坚实宽广的基础理论和系统深入的专门知识;具有独立从事科学研究工作的能力,在科学或专门技术上做出创造性的成果.3、博士研究生能够熟练掌握一门外国语(一般为英语),能熟练阅读本专业外文资料,能用外语撰写学术论文,并具有良好的外语听说能力以及进行国际学术交流能力.4、具有健康的体质与良好的心理素质。
二、学科专业及研究方向三、培养类型及学习年限1、培养类型我中心博士研究生按照招考方式可分为公开招考和硕博连读2种类型。
2、学习年限硕博连读研究生,在第四学期参加转博考核,通过后进入博士学习、培养阶段.硕博连读研究生基本学习年限一般为5年,最长修读年限(含休学)不得超过8年。
公开招考博士研究生基本学习年限一般为3年,最长修读年限(含休学)不得超过6年。
四、培养方式博士研究生培养以科学研究工作为主,结合科研工作进行课程学习,包括跨学科课程的学习,以提高理论水平和实验研究能力.重点是培养博士研究生独立从事科学研究工作的能力和创新研究能力。
博士研究生的培养工作采取导师负责或导师小组集体培养相结合的办法。
导师或导师小组负责指导研究生科研工作,关心研究生政治思想品德,并在严谨治学、科研道德和团结写作等方面对研究生严格要求,配合、协助研究生教育管理部门做好研究生的各项管理工作。
在博士研究生入学后三个月内,导师应根据博士研究生的培养目标和要求,结合其本人特点和科研论文工作需要,指导博士研究生制定培养计划.培养计划是导师指导和培养博士研究生的依据,也是对博士研究生毕业及授予学位进行审查的依据。
中共陕西省委、陕西省人民政府关于命名表彰2008年度陕西省有突出贡献专家的决定文章属性•【制定机关】陕西省人民政府•【公布日期】•【字号】陕字[2009]23号•【施行日期】•【效力等级】地方规范性文件,党内其他文件•【时效性】现行有效•【主题分类】劳动法其他规定正文中共陕西省委、陕西省人民政府关于命名表彰2008年度陕西省有突出贡献专家的决定(陕字[2009]23号)近年来,我省各级党委政府高度重视人才工作,大力实施人才强国战略,努力改善人才成长发展环境,涌现出一批科学求实,锐意创新,服务一线,为我省经济社会发展做出突出贡献的优秀人才,为认真贯彻“尊重劳动,尊重知识,尊重人才,尊重创造”的方针,加大对人才的有效激励,省委、省政府决定:授予郭烈锦等109位同志2008年度陕西省有突出贡献专家称号,并予以表彰奖励。
希望受表彰的同志珍惜荣誉,谦虚谨慎,再接再厉,充分发挥创新创业创优的表率作用,为实现建设西部强省目标再创佳绩、再立新功。
各级党委、政府要深入贯彻落实科学发展观,切实把人才资源作为推进科学发展的第一资源,转变发展理念,大力推进科教兴陕和人才强省战略的实施。
要统筹抓好以高层次人才和高技能人才为重点的各类人才队伍建设,继续大力改善人才成长发展环境,认真做好人才的培养、吸引和使用工作,动员和组织各类人才服务经济社会发展,为全面建设小康社会提供有力的人才和智力支撑。
2008年度陕西省有突出贡献专家名单(共109人)郭烈锦西安交通大学教授马建长安大学教授黄翔西安工程大学教授李爱华第二炮兵工程学院教授李浩西北大学教授文虎西安科技大学教授黄强西安理工大学教授张宁生西安石油大学教授张朝晖杨凌职业技术学院教授宋笔锋西北工业大学教授任天民渭南市澄城实验中学中学高级教师黄瑾榆林市神木县第七中学中学高级教师仰孝升山阳中学中学高级教师王建学渭南高新中学中学高级教师安保仁西安市高级中学中学高级教师陈芳(女)安康市旬阳县城关中学中学高级教师张毛帝延安中学中学高级教师段平均咸阳市教研室中学高级教师李彦文(女)汉中市北大街小学中学高级教师汪双杰中交第一公路勘察设计研究院有限公司正高级高级工程师巨建辉西北有色金属研究院正高级高级工程师郑化安西北化工研究院高级工程师王建国西安重型机械研究所研究员杨拉道西安重型机械研究所研究员赵元超中国建筑西北设计研究院有限公司正高级高级建筑师刘安麟陕西省农业遥感信息中心正高级高级工程师吴晓民陕西省动物研究所研究员梁银丽(女)中科院教育部水土保持与生态环境研究中心研究员程积民中科院教育部水土保持与生态环境研究中心研究员蔡分良陕西省地质调查院正高级高级工程师支录奎宝鸡市公安局交警支队正高级高级工程师刘向宏西部超导材料科技有限公司正高级高级工程师赵军彩虹集团公司正高级高级工程师许志安中联西北工程设计研究院正高级高级工程师沈浩陕西延长石油(集团)有限责任公司高级工程师方红卫陕西汽车集团有限责任公司高级经济师张小可陕西旅游集团公司高级经济师李延波西京电气总公司正高级高级工程师韦武强陕西龙门钢铁(集团)有限责任公司高级工程师王增强西安煤矿机械有限公司高级工程师李桂明西安铁路局正高级高级工程师白俊光中水顾问集团西北勘测设计研究院正高级高级工程师王仙琴(女)金堆城钼业集团有限公司正高级高级工程师张卫平陕西省公路局正高级高级工程师张宝会陕西长岭科技有限责任公司高级工程师陈邦设陕西北人印刷机械有限责任公司高级工程师钱嘉斌陕西渭河煤化工集团有限责任公司正高级高级工程师周琳中铁电气化局集团宝鸡器材有限公司高级工程师范立民陕西省煤炭地质测量技术中心正高级高级工程师王煜咸阳市勘察测绘院正高级高级工程师王争鸣中铁第一勘察设计院集团有限公司正高级高级工程师王少辉中冶陕压重工设备有限公司高级技师叱培洲西北电建一公司高级技师杨秀明咸阳市杨仨疼痛医院中医按摩主治医师王凤翔陕西省水电开发管理中心高级工程师路宝忠陕西汉中朱鹮国家级自然保护区管理局正高级高级工程师樊民周陕西省植物保护工作总站研究员霍国琴(女)商洛市农业科学研究所研究员李恩才宝鸡市植保植检站研究员黎道云安康市蚕桑技术推广站高级农艺师李华海安康市平利县茶叶管理局高级农艺师张明海榆林市动物疾病预防控制中心高级畜牧师李生财榆林市榆阳区农机化技术推广服务站高级工程师庆麦玉陕西省畜牧技术推广总站研究员王荣成陕西省农业技术推广总站高级农艺师刘士义榆林市陕北白绒山羊(场)繁育中心高级畜牧师党兵陕西省治沙研究所副研究员张建军榆林市蚕桑站农艺师田建华陕西省杂交油菜研究中心副研究员田张厚渭南市富平县农技中心老庙农技站高级农艺师刘俊生陕西省生物防治实验站高级农艺师安金海延安市洛川县苹果产业管理局高级农艺师张安国榆林市畜牧兽医研究与技术推广所研究员汪登社商洛市飞播站正高级高级工程师张越林陕西省人民医院主任医师赵西侠(女)陕西省肿瘤医院主任医师蒋传中陕西天士力植物药业有限公司副主任药师刘智斌陕西中医学院附属医院教授孙秀珍(女)西安交通大学医学院第二附属医院教授辛智科陕西省中医药研究院主任医师张恩娣(女)陕西省妇幼保健院主任医师倪黎明(女)陕西省妇幼保健院主任医师朱安厚商洛市疾病预防控制中心副主任医师张玲霞(女)西安市中心医院主任医师解晓明西安市第四医院副主任医师刘亚杰兵器工业卫生研究所主任医师周胜利中国兵器工业集团第213研究所研究员张洪太中国空间技术研究院西安分院研究员常小庆中国航天推进技术研究院研究员宋科璞中航一集团第618研究所研究员刘选民中国飞行试验研究院研究员韩克岑中航一集团第一飞机设计研究院研究员杨志良西安昆仑工业(集团)有限公司正高级高级工程师周振国西安飞机工业(集团)有限责任公司正高级高级工程师杨赪石中国船舶重工第705研究所研究员马春茂中国兵器工业集团第202研究所正高级高级工程师张琨陕西省雕塑院一级美术师崔炳元陕西省乐团一级作曲雷珍民陕西国画院高级工程师焦南峰陕西省考古研究院研究员徐来见陕西人民广播电台高级编辑李丽玮(女)太白文艺出版社编审陶冶陕西人民出版社文化艺术报社主任记者张若愚陕西日报社高级记者岳东峰中共陕西省委党校教授芮青(女)陕西省射击射箭运动管理中心高级教练王真西安话剧院一级编剧武永义陕西省财政科学研究所研究员王毅铜川日报社主任记者。
山西师范大学自然地理实习报告院系:专业及班级:学号:姓名:指导教师:前言自然地理学是实践性很强的学科,野外教学实习对本专业本科学生来说是一次启蒙教育,是以认识为重点的自然地理基本概念、基本知识、基本技能训练的实践过程。
通过对基本自然地理(地质、地貌、土壤、植物、水文等)现象的野外实地考察和现场实践获得感性知识,并巩固和加深对所学理论理解,获得理论与实际相结合的能力的必要手段。
此次考察目的旨在通过短期的野外实践让我们对自然地理学研究的主要内容和特点有一个比较全面的、概括性的了解,进一步巩固和掌握课堂的知识。
并让我们发现新问题,激发新的研究兴趣和科学探险精神。
一、实习目的1.通过实习,使我们了解主要地貌类型,基本特征及其分布规律,并分析其成因。
了解地质、水文、气候、土壤与植被对地貌发育,地貌灾害与防治的影响。
2. 通过实习,学会用自然地理学理论知识解释地质变迁过程和现象。
学习掌握地貌野外考察全过程的程序和方法,包括资料收集、野外观测、标本与样品的采集等。
3.通过实习,将理论知识与实践相结合,培养实践能力。
了解掌握有关一起和工具(罗盘,GPS等)的使用原理和方法。
二、实习路线、节点及内容安排1.实习路线及地点:临汾——西安(翠华山)——杨凌(中科院水保所、西北农林科技大学博览园)——兰州(甘肃省博物馆、中科院寒旱所、刘家峡)——西宁(青海湖)——张掖(张掖丹霞地质公园)——中卫(腾格里沙漠)——银川(宁夏地质博物馆)——太原——临汾2.内容安排:(1)西安实习:a.翠华山国家地质公园,崩塌地貌、秦岭北坡地质构造、堰塞湖、岩溶洞;b.杨凌科技城,中科院水保所人工模拟降雨,杨凌科技博览园;(2)中卫实习:a.腾格里沙漠;b.沙丘地貌形成发育过程;c.绿洲的形成及其变化原因探析;(3)张掖实习:a.丹霞地貌的成因及形成过程;(4)西宁实习:a.青海湖的形成演变、流域特征及资源概况;b.青藏高原地质、地貌、气候特征;(5)兰州实习:a.刘家峡水库构造及水库功能、黄河上游河床特征、盐锅峡黄河湿地;b.九州台中第四纪黄土剖面、河谷型城市发展现状、绿化三、实习过程第一站:西安西安市是中华人民共和国陕西省省会,兼具现代感和历史感,因为作为华夏文明的发源地,世界四大文明古都(西安、罗马、开罗、雅典)之一,西安历史悠久,文化积淀非常厚重。
《水土保持研究》投稿须知
佚名
【期刊名称】《水土保持研究》
【年(卷),期】2024(31)4
【摘要】1研究目标与范围《水土保持研究》是由中国科学院主管,中国科学院水利部水土保持研究所主办的地球科学类的学术期刊。
本刊研究范围主要包括:土壤侵蚀、旱涝、滑坡、泥石流、风蚀等水土流失灾害的现状与发展动态;水土流失规律研究、监测预报技术研发成就与监测预报结果;水土流失治理措施与效益分析;水土流失地区生态环境建设与社会经济可持续发展研究;计算机、遥感工程、生物工程等边缘学科新技术、新理论、新方法在水土保持科研及其实践中的应用;国外水土流失现状及水土保持研究新动态等。
本刊办刊目标主要为:紧密跟踪水土保持学科的发展动向,及时报道本学科前沿领域科学理论、技术创新及其实践应用研究最新成果,积极引导和推动水土保持学科和水土保持实践的发展与繁荣。
【总页数】1页(PF0003)
【正文语种】中文
【中图分类】S15
【相关文献】
1.《水土保持研究》投稿须知
2.《水土保持研究》投稿须知
3.《水土保持研究》投稿须知
4.《水土保持研究》投稿须知
5.《水土保持研究》投稿须知
因版权原因,仅展示原文概要,查看原文内容请购买。
第29卷第4期2022年8月水土保持研究R e s e a r c ho f S o i l a n d W a t e rC o n s e r v a t i o nV o l .29,N o .4A u g.,2022收稿日期:2021-06-18 修回日期:2021-07-08资助项目:国家自然科学基金(41877083,41440012,41230852) 第一作者:许小明(1990 ),男,山西广灵人,博士研究生,研究方向为植被恢复的水土保持效益评价㊂E -m a i l :1559668557@q q.c o m 通信作者:张晓萍(1971 ),女,河南温县人,研究员,博士生导师,主要从事植被恢复的水土保持效益评价研究㊂E -m a i l :z h a n g x p@m s .i s w c .a c .c n 黄土高原地区林地枯枝落叶层水土保持效应研究进展许小明1,易海杰2,何亮1,吕渡2,贺洁1,邹亚东1,王浩嘉1,薛帆1,田起隆2,王妙倩1,张晓萍1,2(1.西北农林科技大学水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室,陕西杨凌712100;2.中国科学院水利部水土保持研究所,陕西杨凌712100)摘 要:枯枝落叶层是林地垂直结构中参与水文循环过程的重要作用层,在涵养水源和保持水土中发挥着重要作用㊂黄土高原经过20年植被快速恢复,枯落物覆盖使近地表植被特征和生态过程变化明显,这必将影响地表土壤水分入渗㊁产汇流等水文和土壤侵蚀过程㊂为全面掌握黄土高原地区林地枯枝落叶层的水土保持效应研究动态,系统回顾了林地枯枝落叶层在凋落动态㊁蓄积量变化㊁截留降雨㊁阻延地表径流㊁提高土壤抗蚀抗冲能力和增加土壤入渗等方面的研究历史㊂分析了目前林地枯枝落叶层研究中存在的若干问题,提出未来黄土高原地区应加强野外坡面枯落物原位长期监测和降雨试验研究,开展多地貌㊁多尺度研究,关注天然林和人工林枯枝落叶层水土保持功能的对比研究,以及水文物理过程模型建立和参数确定,并重视林地枯枝落叶层的保护和监管㊂关键词:林地;枯枝落叶层;水土保持效应;黄土高原中图分类号:S 714 文献标识码:A 文章编号:1005-3409(2022)04-0415-07R e s e a r c hA d v a n c e s o n W a t e r a n dS o i l C o n s e r v a t i o nE f f e c t s o fF o r e s tL i t t e rL a ye r o n t h eL o e s sP l a t e a u X U X i a o m i n g 1,Y IH a i j i e 2,H EL i a n g 1,L ÜD u 2,H EJ i e 1,Z O U Y a d o n g 1,WA N G H a o j i a 1,X U EF a n 1,T I A N Q i l o n g 2,WA N G M i a o q i a n 1,Z H A N G X i a o p i n g1,2(1.S t a t eK e y L a b o r a t o r y o f S o i lE r o s i o na n dD r y l a n dF a r m i n g on t h eL o e s sP l a t e a u ,I n s t i t u t e o f S o i l a n d W a t e rC o n s e r v a t i o n ,N o r t h w e s tA&F U n i v e r s i t y ,Y a n g l i n g ,S h a a n x i 712100,C h i n a ;2.I n s t i t u t e o f S o i l a n d W a t e rC o n s e r v a t i o n ,C A S &MW R ,Y a n g l i n g ,S h a a n x i 712100,C h i n a )A b s t r a c t :L i t t e r i sa n i m p o r t a n t l a y e r i n v o l v e d i nt h eh y d r o l o g i c a l c yc l e p r o c e s s i nt h ev e r t i c a l s t r u c t u r eo f f o r e s t l a nd s ,a n d p l a y s a n i n d i s pe n s a b l e r o l e i nw a t e r r e t e n t i o na n d s o i l c o n s e r v a t i o n .Af t e r 20y e a r s o f r a p i d v eg e t a t i o nr e s t o r a t i o no nth eC hi n e s eL o e s sP l a t e a u ,l i t t e rc o v e r a g ei nf o r e s t l a n d sh a sc a u s e ds i gn i f i c a n t c h a n g e s i nv e g e t a t i o n c h a r a c t e r i s t i c s a n de c o l o g i c a l p r o c e s s e s o n t h en e a r s u r f a c e ,w h i c hw i l l c e r t a i n l y a f f e c t t h eh y d r o l o g i c a l a n d s o i l e r o s i o n p r o c e s s e s s u c h a s s o i l i n f i l t r a t i o n ,s u r f a c e r u n o f f a n d c o n f l u e n c e .I no r d e r t o c o m p r e h e n s i v e l yg r a s p t h e d y n a m i c s o f s o i l a n dw a t e r c o n s e r v a t i o n e f f e c t s o f l i t t e r l a ye r i nf o r e s t l a n d s o n t h e L o e s sP l a t e a u ,w e s y s t e m a t i c a l l y r e v i e w e d t h e r e s e a r c h p r og r e s s o f l i t t e r l a ye r i nf o r e s t l a n d s i n t e r m s o f t h e l i t t e r d y n a m i c s ,a c c u m u l a t i o n c h a ng e s ,r a i n f a l l i n t e r c e p t i o n ,s u r f a c e r u n o f f i n t e r c e p t i o n ,s o i l e r o s i o n r e s i s t -a n c e a n d s o i l i n f i l t r a t i o n .S o m e e x i s t i n gp r o b l e m s i n th e c u r r e n t s t u di e so n l i t t e r l a ye r i nf o r e s t l a n d so nt h e L o e s sP l a t e a uw e r e a n a l y z e do b j e c t i v e l y .I n t h e f u t u r e ,t h e l o ng -t e r mi n -s i t u m o n i t o r i n g a n d r a i n f a l l e x pe r i -m e n t s o nf i e l ds l o p e ss h o u l db es t r e ng th e n e d ,a n d m u l ti -l a n d f o r m a sw e l la s m u l t i -s c a l ed yn a m i cs t u d i e s s h o u l db e c a r r i e do u t .I na d d i t i o n ,w ea r es u p p o s e d t o p a y a t t e n t i o nt o t h ec o m p a r a t i v es t u d i e so nt h ee c o -h y d r o l o g i c a l f u n c t i o n so f l i t t e rl a y e r i nn a t u r a l f o r e s t sa n da r t i f i c i a l f o r e s t s ,a n de s t a b l i s hh y d r o -p h ys i c a l p r o c e s sm o d e l s a n dd e t e r m i n e t h e r e l e v a n t k e yp a r a m e t e r s ,a sw e l l a s e n h a n c e t h e p r o t e c t i o n a n d s u pe r v i s i o n of l i t t e r l a ye r i nf o r e s t l a n d s .K e y w o r d s:f o r e s t l a n d s;l i t t e r l a y e r;s o i l a n dw a t e r c o n s e r v a t i o ne f f e c t s;L o e s sP l a t e a u全球范围内,黄土高原以水土流失最为严重而闻名于世[1]㊂据陕县水文站观测资料显示,1919 1959年黄土高原地区多年平均输沙量为16亿t[2-3]㊂为控制严重水土流失造成的原位效应和异位效应,自20世纪70年代末期,国家和地方各级政府陆续实施了流域综合管理(1970s 1980s)和退耕还林(草)(1999年至今)等一系列重大水土保持措施㊂据统计,黄土高原地区水土流失面积由1980年代早期的4.3ˑ105k m2下降到2018年的2.14ˑ105k m2[1,3]㊂多年平均输沙量由过去的1.6ˑ109t减少至2000 2018年的2.44ˑ108t[2,4-5]㊂植被恢复是遏制黄土高原地区土壤侵蚀和控制黄河输沙的最重要的因子且其作用具有长效性[6],这已被1999年至今黄土高原地区锐减且近些年保持低位稳定的年输沙量所证明[2,7-8]㊂过去有关植被水土保持功能的研究,主要关注林冠层降雨截留㊁削弱雨滴动能[9-11]和根系土壤层在增加降雨入渗㊁固土防蚀能力和减少径流输移等[12-15]方面的作用㊂然而针对黄土高原林地枯枝落叶层的水土保持效应研究比较薄弱㊂枯枝落叶层,即死地被物层,是森林垂直结构中最重要的层次,是参与森林水文循环过程中的重要作用层,在涵养水源和保持水土中发挥着重要作用[16-18]㊂国内学者就黄土高原地区典型天然林地和人工林地(乔木㊁灌木)枯枝落叶层凋落速率㊁分解速率㊁蓄积量变化㊁水分含量㊁截留降水㊁持水能力㊁降低雨滴溅蚀㊁抑制土壤蒸发㊁阻延地表径流㊁土壤表层理化性质改善㊁养分归还和提高生物活动强度等方面开展了一些有意义的研究[10,18-22],有助于明晰林下枯落物的分布特征和减轻土壤侵蚀的重要作用㊂较为系统性地归纳和分析黄土高原地区林地枯枝落叶层水土保持综合效应,可以及时报导最新研究成果,促进对黄土高原半干旱㊁半湿润地区主要林地枯落物分布规律的深入认识,并深刻理解其持水能力㊁拦蓄径流和调控土壤侵蚀的生态功能㊂本文从6个方面梳理当前黄土高原地区林地枯枝落叶层水土保持功能的研究现状,并对其进行综合评价,提出需要进一步研究的科学问题,以期为黄土高原地区林地枯枝落叶层水土保持功能的深入研究㊁植被恢复措施优化和森林抚育管理提供科学支撑㊂1林地枯枝落叶层水土保持效应研究现状森林是陆地防止水土流失的积极因素,枯枝落叶层(O层)是森林生态系统特有的层次,是近地表水文效应的主要作用层,对保护森林土壤资源,减轻土壤侵蚀具有非常重要的作用,根据分解程度,划分为3个层次,即未分解层㊁半分解层和粗腐殖质化层[6,18,23]㊂国内外科研工作者很早认识并重视到枯枝落叶层在涵蓄降水㊁拦蓄泥沙方面的水文功能,并陆续开展了一系列野外定位研究和室内试验,取得了许多重要成果[18,24-38]㊂由图1可知,以往有关黄土高原地区乔木㊁灌木群落枯枝落叶层的野外调查样地(黑色点位)主要分布在区域中南部㊂土石山区㊁丘陵沟壑区和高塬沟壑区虽均有分布,但以土石山区研究最多,主要涵盖六盘山㊁子午岭㊁黄龙山和秦岭地区,而水土流失严重的丘陵沟壑区和高塬沟壑区的研究相对较少㊂以往研究主要采用野外坡面样地调查㊁定位监测㊁野外自然和人工模拟降雨㊁室内人工模拟降雨和浸泡等方法来研究天然林和人工林主要恢复植被类型[山杨(P o p u l u sd a v i d i a n a D o d e)㊁油松(P i n u s t a b u l i f o r m i s C a r r.)㊁刺槐(R o b i n i a p s e u d o a c a c i a L.)㊁栎树(Q u e r c u s L.)和沙棘(H i p p o p h a er h a m n o i d e s L i n n.)等]枯枝落叶层的水土保持效应(表1)㊂图1黄土高原不同地貌类型区林地枯枝落叶层主要调查样地的空间分布1.1枯枝落叶层凋落及蓄积量动态变化枯枝落叶层是森林生态系统物质能量循环中的一个重要垂直结构层次,具有重要的生态水文功能,研究枯落物的凋落动态对掌握枯枝落叶层积累特征,识别枯落物初级生产力具有重要意义㊂常见的枯落物凋落动态研究方法主要有野外样地凋落物收集器法和蓄积量定期实测法[22]㊂气候植被带和植被类型等是导致林地枯枝落叶凋落起始时间和凋落过程产生差异的重要影响因子㊂黄土高原地区不同气候带或同一气候带内典型植被类型枯枝落叶在年㊁季节㊁月和半月尺度的凋落速率已被研究[22,43]㊂北部森林草原带和南部森林带落叶乔木㊁灌木植被分别在9月中下旬和10月上中旬叶片开始凋落㊂受不同树种生态学特性影响,其凋落过程存在差异㊂研究表明,黄614水土保持研究第29卷土高原地区落叶阔叶林和灌木林地,如山杨㊁栎树㊁刺槐㊁桦树(B e t u l a p l a t y p h y l l a)和沙棘等枯枝落叶以9月和10月最为集中,该阶段凋落量约占全年凋落总量的75%以上[19]㊂而针叶林如油松,其凋落过程主要发生在10月 次年4月,呈现明显的节律性[53]㊂凋落物主要成分均为落叶,约占总凋落量的60%~90%[43],又以半分解层为主[54-55]㊂森林枯枝落叶层蓄积量随凋落量和分解量的变化而一直处于动态变化中㊂以乔木群落为例,吴钦孝等[54]认为陕北丘陵沟壑区人工山杨林和油松林枯落物分别以1月份和4月份蓄积最大,而10月和7 8月蓄积量分别达到全年最低值㊂在中龄林的林分结构下,山杨林和油松林枯落物蓄积量均无明显增减㊂蓄积量受植被类型㊁密度㊁林龄㊁地形因子㊁气候(温度和降水)和人为活动等因子的影响㊂黄土高原地区枯落物蓄积量表现为乔木群落>灌木群落>草本群落[39];针叶林枯落物蓄积量>落叶阔叶林[48]㊂六盘山地区华北落叶松(L a r i x p r i n c i p i s-r u p p r e c h t i i M a y r.)枯落物厚度和蓄积量随密度增大存在一定上限,密度在1600株/h m2时厚度和蓄积量最大[55]㊂不同坡向㊁坡度㊁坡位等地形因子的对比分析表明阴坡枯落物蓄积量较阳坡枯落物蓄积量明显增加,陡坡不利于枯落物蓄存,枯落物蓄积量表现出下坡位>中坡位>上坡位㊂黄土高原从南到北,随降水量的递减,枯落物蓄积量表征为减少的趋势㊂人为放牧㊁火灾和采伐林木等也会减少枯落物的蓄积量㊂表1黄土高原地区林地枯枝落叶层主要研究成果地貌类型调查地点植被类型测定指标研究方法参考文献丘陵沟壑区陕西安塞站及纸坊沟流域陕西宜君县 内蒙古鄂尔多斯陕西安塞站刺槐㊁油松㊁沙棘和狼牙刺刺槐㊁杨树㊁柠条和黄蔷薇沙棘凋落动态和持水性质凋落物蓄积量空间变化蓄积量和持水特征野外样地调查㊁定位监测和浸泡法野外样地调查浸泡法[22][39][40]土石山区六盘山香水河小流域黄龙山铁龙湾林场子午岭连家砭林场秦岭山地桦树㊁辽东栎和华北落叶松山杨㊁油松和沙棘柴松㊁油松㊁山杨㊁辽东栎㊁桦树㊁沙棘㊁白刺花㊁虎榛子和胡枝子锐齿栎㊁油松和华山松凋落物持水特征和截持降雨过程凋落和分解速率㊁蓄积量㊁截留降雨㊁拦蓄效应㊁击溅侵蚀㊁提高土壤抗冲性和增加土壤入渗等凋落物厚度㊁蓄积量㊁分解状况㊁持水特征和拦蓄效应凋落速率和蓄积量㊁地表蒸发量㊁持水特征和养分含量野外定位监测㊁人工模拟降雨试验和浸泡法野外定位监测㊁溅蚀板法㊁水槽法㊁人工模拟降雨试验野外样地调查㊁定位监测和浸泡法野外定位监测㊁浸泡法和化学分析[10],[18],[20],[21],[40],[41][19],[42],[43],[44],[45],[46][47],[48][29]高塬沟壑区山西吉县蔡家川流域山西吉县红旗林场山西吉县蔡家川流域甘肃泾川县官山林场刺槐㊁油松㊁沙棘和虎榛子油松㊁刺槐和山杨刺槐㊁油松和刺槐ˑ油松混交林刺槐截持降雨能力凋落物糙率系数n值蓄积量和持水特征蓄积量和持水特征野外定位监测试验槽法野外样地调查和浸泡法野外样地调查和浸泡法[49][50][51][52]1.2枯枝落叶层截留降雨能力森林垂直结构分层中,除林冠层以外,枯枝落叶层具有截留林内降水,减少林地净雨量,延缓地表产汇流过程,补充土壤水分的作用[25,44],其截留机理一直被关注[56]㊂依据枯落物的截留速率,将其划分为截留阶段㊁渗透阶段和饱和阶段[18,20,57]㊂截留量大小不仅与不同植被类型枯落物蓄积量存在直接关系,还与其自身特性(分解速率和持水能力)有关[58]㊂随林地郁闭度增加,枯落物厚度和蓄积量一般越大,截留降水能力越强㊂当枯落物厚度超过标准厚度(0.8~ 1.2c m),在场次降雨过程中,枯落物厚度的差异不会造成其截留降水量的显著差异[57]㊂持水能力越大的枯落物层,分解速率越高,截留能力越强[59]㊂此外,枯落物干湿程度㊁降雨特征(降雨量㊁降水时长和雨强等)和植被类型等均会影响其截留量[18]㊂马雪华[59]研究认为,在降水初期,枯落物较为干燥,其截留量随降水量增大而增大,而截留率表征为相反的变化特征;截留量存在最大阈值,不会随降水过程的持续继续增加[18,49]㊂黄土高原典型土石山区 六盘山主要森林类型枯枝落叶层对大气降水截留的研究结果[18]表明,针叶林林内年截留量和截留率明显高于阔叶林,截留量总体与枯落物蓄积量呈正比例关系㊂此外,枯落物截留降雨能力具有明显的季节和月尺度变化㊂以油松林为例,季节尺度上,截留量表现出夏季>秋季>春季>冬季;月尺度上,6 9月截留量超过全年总截留量的50%[18]㊂1.3枯枝落叶层阻延地表径流能力地表径流流速及流量是土壤侵蚀的主要动力,枯落物覆盖能够直接增大近地表粗糙度,致使地表径流阻力系数增加,径流流动时间延缓,坡面径流流速降低,有利于增加林地土壤入渗,减小径流冲刷土壤,抑制洪峰形成或推迟洪峰过程㊁削减洪峰流量[16,18,41,50,58]㊂枯落物714第4期许小明等:黄土高原地区林地枯枝落叶层水土保持效应研究进展层在很大程度上就是黄土高原国土整治28字方略 全部降水就地入渗拦蓄 中 拦蓄 作用的具体物质和功能化结构的重要部分[60]㊂研究表明子午岭地区不同植被类型枯落物拦蓄量的大小表征为森林>灌丛[47]㊂黄土高原25ʎ坡面覆盖1c m厚度的枯枝落叶,其径流速度为裸坡的1/10~ 1/15[61]㊂坡长(60m)相同时,天然次生林㊁人工林和裸露荒坡的汇流时间分别为30~40m i n,10~20m i n和5.9 m i n,林地汇流时间明显长于裸露荒坡,枯枝落叶层对径流的阻延作用非常显著[62]㊂坡度和径流深(或降雨强度)与枯枝落叶层阻延地表径流速度呈反比,枯枝落叶层厚度则与其呈正比[18,41,57]㊂不同植被类型对比发现,宁南六盘山区华北落叶松枯枝落叶层有效拦蓄深(1.63mm)为辽东栎(Q u e r c u sw u t a i s h a n i c M a r y.)ˑ少脉椴(T i l i a p a u c i c o s t a t a M a x i m.)混交林(0.56mm)的2.9倍,这主要源于华北落叶松枯落物蓄积量较大[63],这已被在子午岭地区的研究结果[48]所证明㊂1.4枯枝落叶层持水能力栽植密度㊁枯落物类型㊁蓄积量㊁组分㊁分解程度的不同,会造成截持降水能力的差异[64]㊂目前,多数研究采用风干枯落物浸泡法来实测枯落物的最大持水量㊁最大持水率和持水过程[20-21]㊂研究结果表明枯落物在浸水前期(2h以内),吸水速度快,尤其在0.5h以内;随浸泡时间延长吸水能力逐渐下降,24h基本达到饱和;枯落物持水量与浸泡时间表征为对数函数关系[65]㊂人工降雨法实测的枯落物持水量也经历了从快速增加到缓慢增加直至趋于稳定的过程[57]㊂不同栽植密度的华北落叶松人工林枯落物最大持水率总体随栽植密度增大而增大,但存在一定的上限,密度在1600株/h m2持水率达到最大值[55]㊂黄土高原地区主要林分类型枯枝落叶层吸水量呈现出华北落叶松>青杨(P o p u l u s c a t h a y a n a R e h d.)>油松>樟子松(P i n u s s y l v e s t r i s v a r.m o n g o l i c aL i t v.),这主要与不同林分叶片生物学特性和结构有关[18]㊂枯落物持水量多少受蓄积量影响,据研究,宁南山区主要乔木和灌木群落枯枝落叶层最大持水率介于177%~387%,乔木群落枯落物蓄积量和最大持水量均大于灌木群落[21]㊂相同林龄条件下,针叶林由于分解速率慢,蓄积量大,其最大持水量>针阔混交林>阔叶林㊂从枯枝落叶层各组分来看,半分解层蓄积量㊁最大持水量和最大持水率均高于未分解层[18]㊂1.5枯枝落叶层抗蚀抗冲能力林地枯枝落叶层覆盖地表对减轻或消减土壤溅蚀具有决定作用㊂黄土高原地区林地土壤溅蚀量通常发生在7 8月,约占全年总溅蚀量的60%以上㊂在土壤类型和坡度相同情景下,枯枝落叶层厚度㊁最大30m i n雨强和林内降雨量是影响林内土壤溅蚀量的主要影响因素[66]㊂吴钦孝等[18]研究结果表明,随油松林和山杨林枯落物厚度增加,林地表土溅蚀量迅速减少,当枯落物厚度达到2c m以上,溅蚀量基本趋近于0㊂和山杨林相比,油松林随枯落物厚度的增加溅蚀量减少较慢,可能由于油松松针较山杨树叶地表覆盖度低㊁分解速率慢和叶片形态小等因素导致㊂林地枯枝落叶层有利于削减坡面径流流速和动能,提高土壤抗冲能力,研究发现林地枯落物随厚度增加抗冲能力明显增强,当枯枝落叶层厚度达到2c m厚度时,即使在暴雨条件下,坡面土壤侵蚀总体得到控制[44,46]㊂汪有科等[45]研究表明黄土高原地区主要植被类型枯枝落叶层抗冲能力表征为油松>山杨>沙棘>刺槐㊂在覆盖1c m厚度枯落物的油松㊁山杨㊁沙棘和刺槐林地上,冲刷1g土壤所需消耗的能量比坡耕地分别增大27.3,24.0,6.5,3.5倍㊂1.6枯枝落叶层增加土壤入渗能力枯枝落叶层能够有效增加土壤入渗,减少地表径流,发挥森林涵养水源的重要作用[67-68]㊂其一,枯枝落叶层覆盖地表,减轻了降雨溅蚀力,保护表土结构和土壤孔隙,阻滞径流[69],利于降雨入渗,增加土壤含水量;其二,枯枝落叶层参与土壤团粒结构形成,改善了表土结构和土壤物理性状,尤其是对0 10c m土层的改善作用最为明显,提高了土壤表层的腐殖质层厚度[44,64]㊂林地表层土壤疏松,有机质含量高,土壤容重小,根系发育,总孔隙度和毛管孔隙度增加,透水性好,促进降雨就地迅速入渗,滞后雨季降水汇流过程,是改变黄土高原地区以超渗产流为主要侵蚀动力土壤侵蚀模式的关键地表结构组成[18,53]㊂郭忠升等[69]对宁南六盘山区主要林分土壤入渗特征的研究表明,林区样地土壤稳渗速率主要介于7.14~22.32m m/m i n,不同土地利用类型土壤平均稳渗速率表征为天然林>人工林>灌木林>草地>农地,其中未采伐林地>采伐林地,与刘向东等[10]在六盘山区森林表层土壤的入渗规律基本一致㊂陈云明等[40]对黄土丘陵沟壑区人工沙棘林地和荒坡土壤入渗能力的对比研究表明,人工沙棘林地在整个测定时段内土壤入渗速率均高于荒坡,尤其以入渗前期差异最大㊂2研究中存在的问题目前,围绕黄土高原主要地貌类型区林地枯枝落叶层的生态水文功能开展的系列研究,对于深刻理解林地枯落物这一特殊层次在拦蓄地表径流,增加土壤入渗,814水土保持研究第29卷发挥水土保持作用等方面具有重要的理论和实践指导意义,有利于重视和保护枯落物层,提高林地经营管理水平,促进当地生态环境保护和高质量发展㊂通过梳理文献,发现以往枯落物的研究过程中,仍然存在一些尚需研究的问题㊂例如,一些研究在估算森林恢复过程中的水土保持效益时,更多地关注和考虑了林冠层盖度,对森林垂直结构分层中非常重要的近地表枯枝落叶层重视程度不够㊂部分土壤侵蚀预报模型缺乏从林地枯枝落叶层盖度㊁厚度及其生态水文功能的角度来评估其水土保持功能㊂目前,黄土高原地区不同气候植被带枯枝落叶层水土保持功能的对比研究有所不足㊂枯枝落叶凋落速率观测方面,对植被快速恢复和生态环境持续改善的丘陵沟壑区和高塬沟壑区长期定位连续观测明显不够㊂枯落物持水能力方面,主要基于充分供水条件下即采用室内浸泡法来研究其最大持水量㊁吸水速率和模拟持水过程,计算出的结果和野外大雨量级(20~30m m/24h)降雨条件下枯落物的最大持水能力基本一致[58]㊂缺乏对不同气候带典型树种在年内自然场次降雨事件和人工降雨变雨强情景下,野外坡面原位枯枝落叶层持水能力的对比分析㊂同时,对不同演替阶段主要树种枯枝落叶层保水保土效益的对比研究不足,缺乏植被演替过程上的分析㊂天然林和人工林枯枝落叶层生态水文功能的对比研究需要进一步加强,以明晰天然林和人工林枯落物水土保持功能的差异㊂另外,有关枯枝落叶层水文功能建立的大多为经验统计模型,物理过程模型存在空白[70]㊂3进一步研究的科学问题黄土高原地区近20a来,随着植被迅速恢复和生态环境持续改善,河川径流和输沙量锐减[7,71]㊂裸露荒坡林草植被建设,尤其是乔灌林地枯枝落叶这一明显而又关键的层次对减轻坡面土壤侵蚀,增加降雨就地入渗具有十分重要的意义[6,18,57]㊂枯枝落叶层水文过程是森林水文过程中不可忽视的一环,理解林地坡面土壤入渗 产汇流过程,明确枯枝落叶层在林地恢复中的水土保持意义对提高林地质量,促进黄土高原生态保护高质量发展具有重大意义㊂基于目前枯枝落叶层生态水文功能研究中存在的一些问题,未来可以考虑从以下几个角度,瞄准科学问题开展进一步的研究㊂3.1开展长时间㊁多气候梯度㊁多地貌和多尺度研究黄土高原从东南到西北跨越温带落叶阔叶林带㊁森林草原带㊁典型草原带和荒漠草原带4个陆地自然带,调查不同气候植被带主要植被类型枯落物厚度㊁盖度和蓄积量长时间序列动态变化特征,未来着眼于不同地貌类型区㊁不同气候梯度带枯落物生态水文功能的对比研究,开展微地貌㊁多尺度(坡面尺度 小流域尺度 大流域尺度 区域尺度)的枯落物水文过程研究㊂土石山区作为重要的河源区,开展秦岭㊁子午岭㊁吕梁山和太行山等水源涵养区枯枝落叶层保持水土的研究工作有助于深刻理解林地枯落物在山区薄层土壤分布带的生态水文意义㊂3.2增强野外坡面长期观测和原位降雨试验研究在黄土高原典型地貌类型区,依据气候植被带从南到北的梯度变化,分别选取区域有代表性的乔灌木林分坡面样地,定位观测枯枝落叶在年㊁季和月尺度上的凋落动态和蓄积量的时空变化特征并予以对比分析㊂考虑到枯枝落叶层在野外的自然结构状态不被破坏,基于此,分别开展自然场次降雨事件和人工模拟变雨强情景下不同林分枯落物类型㊁不同厚度枯落物在截留降雨㊁拦蓄地表径流和抗冲抗蚀能力的对比研究,以揭示和理解林地枯落物在保持水土中的特殊意义㊂加强枯枝落叶层在极端降雨条件下减少坡面地表径流的贡献率分析,有助于理解枯枝落叶层在森林水文过程中的重要作用㊂3.3加强天然林和人工林枯枝落叶层的对比研究黄土高原地区天然林基本上为天然次生林,主要分布在子午岭㊁秦岭㊁黄龙山和六盘山等土石山区,而人工林主要指在历史时期为减少水土流失通过人工措施形成的森林㊂自1999年国家退耕还林政策实施以来新增加的林地以人工林为主,其中丘陵沟壑区和高塬沟壑区分布最多㊂在相似气候条件和地形因子条件下,开展天然次生林和人工林相同林分类型随林龄㊁林分密度变化下枯枝落叶层蓄积量㊁厚度㊁盖度特征及其生态水文功能的对比研究,对于厘清天然次生林和人工林枯落物在水土保持效益中的差异,指导人工林营林规划方案设计和造林地管理具有突出的实际指导意义㊂3.4物理模型建立和参数确定枯枝落叶层作为近地表特殊的水土保持作用层,在林地水土保持效益中,发挥主导作用㊂枯枝落叶层作为联结土壤-植被-大气连续体中非常重要的薄层介质,尤其是枯枝落叶-腐殖质层这一复合层次在减轻土壤侵蚀㊁改善土壤质量和增加土壤入渗方面的综合效益日益受到更多的关注㊂开展黄土高原不同地貌类型区典型植被类型枯枝落叶层水文动态特征,建立具有物理意义的林地枯枝落叶层水土保持评价模型,对影响模型评估结果的主要参数,如枯落物种类㊁厚度㊁盖度㊁堆积状态㊁分解状态和叶片特征等进行确定和修正㊂914第4期许小明等:黄土高原地区林地枯枝落叶层水土保持效应研究进展。
中国科学院分院机构(全部)北京分院(京区党委)中国科学院数学与系统科学研究院*中国科学院数学研究所*中国科学院应用数学研究所*中国科学院系统科学研究所*中国科学院计算数学与科学工程计算研究所中国科学院物理研究所中国科学院理论物理研究所中国科学院高能物理研究所中国科学院力学研究所中国科学院声学研究所中国科学院理化技术研究所中国科学院化学研究所中国科学院生态环境研究中心中国科学院过程工程研究所中国科学院地理科学与资源研究所中国科学院国家天文台*中国科学院云南天文台*中国科学院乌鲁木齐天文工作站*中国科学院长春人造卫星观测站*中国科学院南京天文光学技术研究所中国科学院遥感应用研究所中国科学院地质与地球物理研究所中国科学院古脊椎动物与古人类研究所中国科学院大气物理研究所中国科学院植物研究所中国科学院动物研究所中国科学院心理研究所中国科学院微生物研究所中国科学院生物物理研究所中国科学院遗传与发育生物学研究所中国科学院计算技术研究所中国科学院软件研究所中国科学院半导体研究所中国科学院微电子研究所中国科学院电子学研究所中国科学院自动化研究所中国科学院电工研究所中国科学院工程热物理研究所中国科学院空间科学与应用研究中心中国科学院自然科学史研究所中国科学院科技政策与管理科学研究所中国科学院光电研究院北京基因组研究所中国科学院青藏高原研究所国家纳米科学中心*中国科学院遗传与发育生物学研究所农业资源研究中心(原中国科学院石家庄农业资源研究所)中国科学院山西煤炭化学研究所中国科学院沈阳分院中国科学院大连化学物理研究所中国科学院金属研究所中国科学院沈阳应用生态研究所中国科学院沈阳自动化研究所中国科学院海洋研究所中国科学院长春分院中国科学院长春光学精密机械与物理研究所中国科学院长春应用化学研究所中国科学院东北地理与农业生态研究所*中国科学院东北地理与农业生态研究所农业技术中心(原中国科学院黑龙江农业现代化研究所)中国科学院上海分院中国科学院上海微系统与信息技术研究所中国科学院上海技术物理研究所中国科学院上海光学精密机械研究所中国科学院上海硅酸盐研究所中国科学院上海有机化学研究所中国科学院上海应用物理研究所(原子核研究所)中国科学院上海天文台中国科学院上海生命科学院*生物化学与细胞生物学研究所*神经科学研究所*药物研究所*植物生理生态研究所*国家基因研究中心*健康科学研究中心*中国科学院上海生命科学信息中心*营养科学研究所*中国科学院上海生物工程研究中心中国科学院福建物质结构研究所中国科学院宁波材料技术与工程研究所(筹)中国科学院南京分院中国科学院紫金山天文台中国科学院南京地质古生物研究所中国科学院南京土壤研究所中国科学院南京地理与湖泊研究所中国科学院苏州纳米技术与纳米仿生研究所(筹)中国科学院合肥物质科学研究院*中国科学院安徽光学精密机械研究所*中国科学院等离子体物理研究所*固体物理研究所*中国科学院合肥智能机械研究所中国科学院武汉分院中国科学院武汉岩土力学研究所中国科学院武汉物理与数学研究所1中国科学院武汉病毒研究所中国科学院测量与地球物理研究所中国科学院水生生物研究所中国科学院武汉植物园( 原武汉植物研究所)中国科学院广州分院中国科学院南海海洋研究所中国科学院华南植物园(原华南植物研究所)中国科学院广州能源研究所中国科学院广州地球化学研究所*中国科学院广州地球化学研究所长沙矿产资源勘查中心(原中国科学院长沙大地构造研究所)中国科学院亚热带农业生态研究所(长沙农业现代化研究所)中国科学院深圳先进技术研究院中国科学院成都分院中国科学院成都生物研究所中国科学院成都山地灾害与环境研究所中国科学院光电技术研究所中国科学院昆明分院中国科学院昆明动物研究所中国科学院昆明植物研究所中国科学院西双版纳热带植物园中国科学院贵阳地球化学研究所中国科学院西安分院中国科学院西安光学精密机械研究所中国科学院地球环境研究所中国科学院兰州分院中国科学院近代物理研究所中国科学院兰州化学物理研究所中国科学院寒区旱区环境与工程研究所中国科学院兰州地质研究所中国科学院青海盐湖研究所中国科学院西北高原生物研究所中国科学院新疆分院中国科学院新疆理化技术研究所中国科学院新疆生态与地理研究所学校及公共支撑单位中国科学院研究生院中国科学技术大学中国科学院遥感卫星地面站中国科学院计算机网络信息中心中国科学院国家授时中心中国科学院国家科学图书馆总馆(原中国科学院文献情报中心)中国科学院武汉文献情报中心(中国科学院武汉图书馆)中国科学院成都文献情报中心(中国科学院成都图书馆)中国科学院资源环境科学信息中心(中国科学院兰州图书馆)中国科学院科学时报社中国科学杂志社全国科学技术名词审定委员会拟转制的院直属事业单位中国科学院行政管理局中国科学院科学出版社中国科学院庐山疗养院中国科学院青岛疗养院共建单位中国石油天然气总公司中国科学院渗流流体力学研究所中国核工业集团公司中国原子能科学研究院江苏省中国科学院植物研究所江西省中国科学院庐山植物园水利部中国科学院水工程生态研究所广西壮族自治区中国科学院植物研究所中国科学院教育部水土保持与生态环境研究中心中国科学院陕西省秦岭植物园直接投资的控股企业中国科学院国有资产经营有限责任公司中科实业集团(控股)公司联想控股有限公司东方科学仪器进出口集团有限公司中国科技产业投资管理有限公司华建电子有限责任公司国科光电科技有限责任公司北京中科院软件中心有限公司中科建筑设计研究院有限责任公司北京中科资源有限公司北京中科印刷有限公司中科院科技服务有限公司中国科学院沈阳计算技术研究所有限公司中国科学院沈阳科学仪器研制中心有限公司南京中科天文仪器有限公司中科院广州化学有限公司中科院广州电子技术有限公司中国科学院成都有机化学有限公司中科院成都信息技术有限公司成都中科唯实仪器有限责任公司2。
中科院教育部水土保持与生态环境研究中心研究生奖助学金管理办法按照中国科学院大学(以下简称“国科大”)的研究生奖助学金管理指导意见,结合我中心实际,制定我中心研究生奖助学金管理办法。
一、研究生奖助学金的发放对象,应是国科大按照国家计划招收录取的学历教育研究生(以下简称“研究生”),并按博士研究生(简称“博士生”)和硕士研究生(简称“硕士生”)分别设立。
硕博连读生,按学籍注册类别对待。
二、研究生奖助学金的设置,包括国家助学金、国家奖学金、中科院奖学金、国科大学业奖学金、研究所奖学金、助研岗位津贴、所长奖学金共七个类别。
三、“国家助学金”,按照国家财政拨款统一标准实行。
现行资助标准为,博士生1000元/月, 硕士生500元/月。
具体由国科大根据财政部教育部文件精神制定《研究生国家助学金管理细则》,由我中心依据学籍管理负责实时核定并上报,由国科大逐月发放。
四、“国家奖学金”,按照当年国家财政拨款额度及要求实施。
现行标准为:博士生3万元、硕士生2万元,每年评选一次并覆盖约2-3%研究生。
具体由国科大根据教育部财政部文件精神要求,制定《研究生国家奖学金评审实施办法》。
我中心依据国科大下达指标,组织初审,由国科大核准后一次性发放给获奖研究生。
五、“中科院奖学金”,是指中国科学院设立的各类优秀奖学金。
按照院设立及冠名联合设立的相关意愿和要求,由中科院教育主管部门、国科大及中科院研究生教育基金会统筹安排,按年度通知进行申报,研究生自愿申请,由我中心研究生奖助学金评审委员会负责初评,并报相关部门。
六、“国科大学业奖学金”,由国科大统筹国家财政拨款和学费收入设立,面向按统一规定缴纳学费的全日制研究生。
我中心奖励标准设立三个等级。
博士生一等16000元/年、二等13000元/年、三等10000元/年;硕士生一等9500元/年、二等8000元/年、三等6500元/年。
一、二、三等评审比例分别按符合条件参选学生的20%、60%、20%核定。
科技部基础研究司关于对国家野外科学观测研究站建设运行情况开展梳理总结工作的通知文章属性•【制定机关】科学技术部•【公布日期】2018.11.12•【文号】国科基函〔2018〕45号•【施行日期】2018.11.12•【效力等级】部门规范性文件•【时效性】现行有效•【主题分类】基础研究与科研基地正文科技部基础研究司关于对国家野外科学观测研究站建设运行情况开展梳理总结工作的通知国科基函〔2018〕45号内蒙古自治区、湖北省、湖南省、西藏自治区、甘肃省科技厅,教育部、工业和信息化部、水利部、农业农村部、自然资源部、国家国防科技工业局、国家林业和草原局、中国科学院、中国气象局、中国地震局科技主管司局,国资委综合局:为推动国家野外科学观测研究站(简称“国家野外站”)建设发展,增强国家野外站作为国家科技创新基地的基础支撑和条件保障能力,根据《国家野外科学观测研究站管理办法》(国科发基〔2018〕71号)的相关要求,科技部拟对现有105个国家野外站(见附件2)的建设运行情况进行梳理总结。
现将有关事项通知如下:一、本次梳理总结工作将委托科技部科技评估中心承担。
二、请相关主管部门组织依托单位和国家野外站做好梳理总结准备工作。
三、请各国家野外站填写《国家野外科学观测研究站自评估报告(提纲)》(见附件1),经依托单位和主管部门审核并加盖公章后,于2018年12月15日前(以寄出邮戳日期为准)将自评价报告纸质版一式两份及电子版光盘(内含PDF 和WORD两种格式)报送至科技部科技评估中心。
联系人:张仪帆************金国胜************邮寄地址:北京市海淀区皂君庙乙7号邮政编码:100081附件:1. 国家野外科学观测研究站运行管理总结报告(提纲)2. 国家野外科学观测研究站目录科技部基础研究司2018年11月12日附件1国家野外科学观测研究站运行管理总结报告(提纲)一、基本信息国家野外站的名称、领域、依托单位、主管部门、地理位置、国家野外站负责人和学术委员会负责人(姓名和联系方式)等。
中科院教育部水土保持与生态环境研究中心
研究生奖助学金管理办法
按照中国科学院大学(以下简称“国科大”)的研究生奖助学金管理指导意见,结合我中心实际,制定我中心研究生奖助学金管理办法。
一、研究生奖助学金的发放对象,应是国科大按照国家计划招收录取的学历教育研究生(以下简称“研究生”),并按博士研究生(简称“博士生”界口硕士研究生(简称“硕士生”)分别设立。
硕博连读生,按学籍注册类别对待。
二、研究生奖助学金的设置,包括国家助学金、国家奖学金、中科院奖学金、国科大学业奖学金、研究所奖学金、助研岗位津贴、所长奖学金共七个类别。
三、“国家助学金”,按照国家财政拨款统一标准实行。
现行资助标准为,博士生1000元/月,硕士生500元/月。
具体由国科大根据财政部教育部文件精神制定《研究生国家助学金管理细则》,由我中心依据学籍管理负责实时核定并上报,由国科大逐月发放。
四、“国家奖学金”,按照当年国家财政拨款额度及要求实施。
现行标准为:博士生3万元、硕士生2万元,每年评选一次并覆盖约2-3%研究生。
具体由国科大根据教育部财政部文件精神要求,制定《研究生国家奖学金评审实施办法》。
我中心依据国科大下达指
标,组织初审,由国科大核准后一次性发放给获奖研究生。
五、“中科院奖学金”,是指中国科学院设立的各类优秀奖学金。
按照院设立及冠名联合设立的相关意愿和要求,由
中科院教育主管部门、国科大及中科院研究生教育基金会统筹安排,按年度通知进行申报,研究生自愿申请,由我中心研究生奖助学金评审委员会负责初评,并报相关部门。
六、“国科大学业奖学金”,由国科大统筹国家财政拨款和学费收入设立,面向按统一规定缴纳学费的全日制研究
生。
我中心奖励标准设立三个等级。
博士生一等16000元/年、二等13000元/年、三等10000元/年;硕士生一等9500 元/年、二等8000元/年、三等6500元/年。
一、二、三等评审比例分别按符合条件参选学生的20%、60%、20%核定。
具体按《中国科学院教育部水土保持与生态环境研究中心研究生学业奖学金评定细则》实施。
每年9-10月开展评选工
作,并于10月底前将评选结果报国科大;国科大11月一次
性直接发放给获奖研究生。
七、“研究所奖学金”。
经费由我中心筹措,具体标准为
博士生700元/月、硕士生600元/月。
由我中心依据学籍管
理信息实时核定,按月发放。
根据国科大规定,参加集中教
学期间的一年级硕士生,国家助学金和研究所奖学金总数执行统一标准900元/月。
八、“助研岗位津贴”。
由导师研究课题经费中列支,从2
年级开始享受,由研究生部核定,按月发放。
标准为博士生1200元/月、硕士生600元/月。
助研岗位津贴与导师为研究生设立的科研岗位和任务相挂钩,发放额度由导师根据学生承担任务和完成情况确定,可适当上调,但最高不超过50%。
九、“所长奖学金”。
所长奖学金面向毕业生,设特别奖
和优秀奖。
每年博士毕业生和硕士毕业生各设特别奖1名,
优秀奖2名。
奖金标准为:特别奖,博士生10000元,硕士生5000元;优秀奖,博士生5000元,硕士生3000元。
具体按《中科院教育部水土保持与生态环境研究中心所长奖学金评审办法》实施。
十、2014年9月及之后入学的研究生,应在入学时按规定缴纳学费,并享受相应奖助学金。
如确因家庭经济困难而不能在规定期限缴纳学费的,可以先办理入学手续,再按照规定程序提出缓缴或减免学费的申请。
由国科大审核确定学费是否减免。
H^一、研究生在休学、出国期间(含国家留学基金资助、研究所资助和导师课题资助),暂停国家助学金、国家奖学金、国科大学业奖学金的发放,待其回国后恢复发放。
十二、对于因违纪违规违法行为而受到处分的研究生,在规定期限内取消各类奖学金的参评资格;已经获得的各类奖学金,在处分下达之日起停发。