鲁教版九年级数学下册 圆的对称性教案
- 格式:doc
- 大小:278.12 KB
- 文档页数:4
5.2圆的对称性(2)一、学习目标1、经历探索圆的轴对称性及有关性质的过程2、掌握垂径定理3、会运用垂径定理解决有关问题重点:垂径定理及应用 难点:垂径定理的应用 二、知识准备:1、如果一个图形沿着一条直线折叠,直线的两旁的部分能够互相重合,那么这个图形叫做__________________,这条直线叫做_______________。
2、圆是中心对称图形,_________是它的对称中心;圆具有_________性。
三、学习内容:提出问题:“圆”是不是轴对称图形?它的对称轴是什么?操作:①在圆形纸片上任画一条直径;②沿直径将圆形纸片折叠,你发现了什么? 结论:圆是轴对称图形,经过圆心的任意一条直线都是它的对称轴。
练习: 1、判断下列图形是否具有对称性?如果是中心对称图形,指出它的对称中心;如果是轴对称图形,指出它的对称轴。
2探索活动:1、如图,CD 是⊙O 的弦,画直径AB ⊥CD ,垂足为P ,将圆形纸片沿AB 对折,你发现了什么?2、你能给出几何证明吗?(写出已知、求证并证明)3、得出垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的弧。
4、注意:①条件中的“弦”可以是直径;②结论中的“平分弧”指平分弦所对的劣弧、优弧。
5、给出几何语言例 1 如图,以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于点C 、D ,AC 与BD 相等吗?为什么?例 2 如图,已知:在⊙O 中,弦AB 的长为8,圆心O 到AB 的距离为3⑴求的半径; ⑵若点P 是AB 上的一动点,试求OP 的范围。
四、知识梳理:1、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
2、垂径定理的推论,如:平分弦(非直径)的直径垂直于这条弦,且平分弦所对的弧等。
五、达标检测:B1、 如图,∠C=90°,⊙C 与AB 相交于点D ,AC=5,CB=12,则AD=_____2、已知,如图 ,⊙O 的直径AB 与弦CD 相交于点E,AE=1,BE=5, AEC =45°,求CD 的长。
圆的对称性【课时安排】2课时【第一课时】【教学目标】一、教学知识点。
(一)圆的轴对称性、旋转不变性。
(二)圆心角、弧、弦之间相等关系定理。
二、能力训练要求。
(一)通过观察、比较、操作、推理、归纳等活动,发展空间观念、推理能力以及概括问题的能力。
(二)利用圆的旋转不变性,研究圆心角、弧、弦之间相等关系定理。
三、情感与价值观要求。
培养学生积极探索数学问题的态度及方法。
【教学重点】圆心角、弧、弦之间关系定理。
【教学难点】“圆心角、弧、弦之间关系定理”中的“在同圆或等圆”条件的理解及定理的证明。
【教学方法】指导探索法。
【教学过程】一、创设问题情境,引入新课。
[师]前面我们已探讨过轴对称图形,哪位同学能叙述一下轴对称图形的定义?[生]如果一个图形沿着某一条直线折叠后。
直线两旁的部分能够互相重合,那么这个图形叫轴对称图形,这条直线叫对称轴。
[师]我们是用什么方法研究了轴对称图形?[生]折叠。
[师]今天我们继续用前面的方法来研究圆的对称性。
二、讲授新课。
[师]同学们想一想:圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?[生]圆是轴对称图形,过圆心的直线是它的对称轴,有无数条对称轴。
[师]是吗?你是用什么方法解决上述问题的?大家互相讨论一下。
[生]我们可以利用折叠的方法,解决上述问题。
把一个圆对折以后,圆的两半部分重合,折痕是一条过圆心的直线,由于过圆心可以作无数条直线,这样便可知圆有无数条对称轴。
[师]很好。
教师板书:圆是轴对称图形,对称轴是任意一条过圆心的直线。
下面我们来认识一下弧、弦、直径这些与圆有关的概念。
1.圆弧:圆上任意两点间的部分叫做圆弧,简称弧(arc)。
2.弦:连接圆上任意两点的线段叫做弦(chord)。
3.直径:经过圆心的弦叫直径(diameter)。
如图。
以A、B为端点的弧记作AB,读作“圆弧AB”或“弧AB”;线段AB是⊙O的一条弦,弧CD是⊙O的一条直径。
注意:弧包括优弧(major arc)和劣弧(minor arc),大于半圆的弧称为优弧,小于半圆的弧称为劣弧。
鲁教版数学九年级下册5.2《圆的对称性》教学设计2一. 教材分析《圆的对称性》是鲁教版数学九年级下册第五章第二节的内容。
本节课主要学习圆的对称性质,包括圆是轴对称图形,圆的对称轴是直径,圆有无数条对称轴,圆的对称性质等。
这部分内容是圆的基本性质之一,对于学生理解圆的概念,掌握圆的性质,以及后续学习圆的其它性质有着重要的意义。
二. 学情分析九年级的学生已经学习了轴对称图形和中心对称图形的基础知识,对对称性有一定的理解。
但在实际应用中,对圆的对称性的认识和运用还需要进一步的加强。
此外,学生对于抽象的数学概念的理解和运用还需要提高,因此需要通过实例和实际操作来帮助学生理解和掌握圆的对称性质。
三. 教学目标1.知识与技能:理解圆的对称性质,能够运用圆的对称性质解决实际问题。
2.过程与方法:通过观察、操作、推理等活动,培养学生的抽象思维能力和逻辑推理能力。
3.情感态度与价值观:培养学生对数学的兴趣,提高学生学习数学的积极性。
四. 教学重难点1.重点:圆的对称性质的理解和运用。
2.难点:圆的对称性质的证明和运用。
五. 教学方法1.情境教学法:通过实例和实际操作,引导学生观察和思考,激发学生的学习兴趣。
2.问题驱动法:通过提问和解答,引导学生主动探究和解决问题。
3.合作学习法:通过小组讨论和合作,培养学生的团队协作能力和沟通能力。
六. 教学准备1.教具准备:圆规、直尺、剪刀、彩笔等。
2.教学课件:制作相关的教学课件,用于辅助教学。
七. 教学过程1.导入(5分钟)通过一个实例,如剪出一个圆,然后将其对折,让学生观察对折后的图形,引导学生思考圆的对称性质。
2.呈现(10分钟)展示圆的对称性质的定义和性质,如圆是轴对称图形,圆的对称轴是直径,圆有无数条对称轴等。
同时,通过图示和实例,解释和证明圆的对称性质。
3.操练(10分钟)让学生分组进行实际操作,如用圆规和直尺画出圆的对称轴,或者剪出一个圆,然后尝试将其对折,观察对折后的图形。
《圆的对称性》教案教学目标1.知识与技能(1)理解圆的轴对称性和中心对称性,会画出圆的对称轴,会找圆的对称中心;(2)掌握圆心角、弧和弦之间的关系,并会用它们之间的关系解题.2.过程与方法(1)通过对圆的对称性的理解,培养学生的观察、分析、发现问题和概括问题的能力,促进学生创造性思维水平的发展和提高;(2)通过对圆心角、弧和弦之间的关系的探究,掌握解题的方法和技巧.3.情感、态度与价值观经过观察、总结和应用等数学活动,感受数学活动充满了探索性与创造性,体验发现的乐趣.教学重难点重点:对圆心角、弧和弦之间的关系的理解.难点:能灵活运用圆的对称性解决有关实际问题,会用圆心角、弧和弦之间的关系解题.教学过程一、创设情境,导入新课问:前面我们已探讨过轴对称图形,哪位同学能叙述一下轴对称图形的定义?(如果一个图形沿着某一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴).问:我们是用什么方法来研究轴对称图形?生:折叠.今天我们继续来探究圆的对称性.问题1:前面我们已经认识了圆,你还记得确定圆的两个元素吗?生:圆心和半径.问题2:你还记得学习圆中的哪些概念吗?忆一忆:1.圆:平面上到____________等于______的所有点组成的图形叫做圆,其中______为圆心,定长为________.2.弧:圆上_____叫做圆弧,简称弧,圆的任意一条____的两个端点分圆成两条弧,每一条弧都叫做圆的半径.__________称为优弧,_____________称为劣弧.3.___________叫做等圆,_________叫做等弧.4.圆心角:顶点在_____的角叫做圆心角.二、探究交流,获取新知知识点一:圆的对称性1.圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?2.大家交流一下:你是用什么方法来解决这个问题的呢?动手操作:请同学们用自己准备好的圆形纸张折叠:看折痕经不经过圆心?学生讨论得出结论:我们通过折叠的方法得到圆是轴对称图形,经过圆心的一条直线是圆的对称轴,圆的对称轴有无数条.知识点二:圆的中心对称性.问:一个圆绕着它的圆心旋转任意一个角度,还能与原来的图形重合吗?让学生得出结论:一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合,我们把圆的这个特性称之为圆的旋转不变性.圆是中心对称图形,对称中心为圆心.做一做:在等圆⊙O 和⊙O ' 中,分别作相等的圆心角∠AOB 和A O B '''∠(如图3-8),将两圆重叠,并固定圆心,然后把其中的一个圆旋转一个角度,得OA 与OA '重合.你能发现哪些等量关系吗?说一说你的理由.小红认为»¼''=AB A B ,''=AB A B ,她是这样想的: ∵半径OA 重合,'''∠∠=AOB A O B ,∴半径OB 与OB '重合,∵点A 与点A '重合,点B 与点B '重合,∴»AB 与¼A B ''重合,弦AB 与弦A B ''重合, ∴»AB =¼A B '',AB =A B ''. 生:小红的想法正确吗?同学们交流自己想法,然后得出结论,教师点拨.结论:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.知识点三:圆心角、弧、弦之间的关系.问:在同圆或等圆中,如果两个圆心角所对的弧相等,那么它们所对的弦相等吗?这两个圆心角相等吗?你是怎么想的?学生之间交流,谈谈各自想法,教师点拨.结论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.三、例题讲解例:如图3-9,AB ,DE 是⊙O 的直径,C 是⊙O 上的一点,且»»=AD CE ,BE 与CE 的大小有什么关系?为什么?解:BE =CE ,理由是:∵∠AOD =∠BOE ,∴»»=AD BE , 又∵»»22=+AD CEa b∴»»=BE CE,∴BE=CE.议一议在得出本结论的过程中,你用到了哪些方法?与同伴进行交流.四、随堂练习1.日常生活中的许多图案或现象都与圆的对称性有关,试举几例.2.利用一个圆及其若干条弦分别设计出符合下列条件的图案:(1)是轴对称图形但不是中心对称图形;(2)是中心对称图形但不是轴对称图形;(3)既是轴对称图形又是中心对称图形.3.已知,A,B是⊙O上的两点,∠AOB=120°,C是»AB的中点,试确定四边形OACB 的形状,并说明理由.五、知识拓展如图,在△ABC中,∠C=90°,∠B=25°,以点C为圆心,AC为半径的圆交AB于点D,求»AD所对的圆心角的度数.六、自我小结,获取感悟1.对自己说,你在本节课中学习了哪些知识点?有何收获?2.对同学说,你有哪些学习感悟和温馨提示?3.对老师说,你还有哪些困惑?七、布置作业7273-P习题1-3题.。
鲁教版数学九年级下册5.2《圆的对称性》说课稿1一. 教材分析鲁教版数学九年级下册5.2《圆的对称性》是本册教材中的一个重要内容。
本节课主要让学生了解圆的对称性,掌握圆是轴对称图形,以及圆有无数条对称轴的特点。
通过学习,让学生体会圆的对称性在实际生活中的应用,培养学生的数学应用意识。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对轴对称图形和中心对称图形有了初步的认识。
但是,对于圆的对称性的理解还需要进一步的引导和培养。
因此,在教学过程中,教师需要关注学生的认知水平,通过生动形象的例子和实际问题,激发学生的学习兴趣,引导学生主动探究圆的对称性。
三. 说教学目标1.知识与技能:让学生了解圆的对称性,掌握圆是轴对称图形,以及圆有无数条对称轴的特点。
2.过程与方法:通过观察、分析和推理,培养学生探究圆的对称性的能力。
3.情感态度与价值观:培养学生对数学的兴趣,体会数学在生活中的应用。
四. 说教学重难点1.教学重点:圆的对称性,圆是轴对称图形,圆有无数条对称轴。
2.教学难点:理解圆的对称性在实际生活中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作法等,引导学生主动探究圆的对称性。
2.教学手段:利用多媒体课件、实物模型等,直观展示圆的对称性,增强学生的直观感受。
六. 说教学过程1.导入新课:通过一个实际问题,如圆桌上的蛋糕如何平均分配,引出圆的对称性。
2.探究圆的对称性:引导学生观察和分析圆的性质,推理出圆是轴对称图形,圆有无数条对称轴。
3.案例分析:通过一些生活中的实例,如圆形的桌面、硬币等,让学生体会圆的对称性在实际生活中的应用。
4.小组讨论:让学生分组讨论,分享自己对圆的对称性的理解和应用。
5.总结提升:教师引导学生总结本节课的主要内容和知识点。
6.课堂练习:布置一些有关圆的对称性的练习题,巩固所学知识。
七. 说板书设计板书设计如下:1.圆是轴对称图形2.圆有无数条对称轴3.圆的对称性在实际生活中的应用八. 说教学评价通过课堂表现、课堂练习和课后作业等方式,评价学生对圆的对称性的掌握程度。
鲁教版数学九年级下册第五章《圆》教学设计一. 教材分析鲁教版数学九年级下册第五章《圆》是整个初中数学的重要内容,主要介绍了圆的定义、性质、圆的度量、弧度制、圆的方程等基本知识。
本章内容在学生的数学知识体系中占有重要地位,为学生进一步学习高中数学和从事相关领域的工作奠定了基础。
二. 学情分析九年级的学生已经具备了一定的几何基础,对图形的认知和推理能力有一定的提高。
但是,对于圆的相关概念和性质,学生可能还存在一定的困惑,特别是圆的方程和弧度制的理解。
因此,在教学过程中,需要关注学生的认知水平,引导学生逐步理解和掌握圆的相关知识。
三. 教学目标1.了解圆的定义和性质,掌握圆的标准方程和一般方程。
2.理解弧度制的概念,熟练进行角度与弧度的互换。
3.能够运用圆的知识解决实际问题,提高学生的数学应用能力。
4.培养学生的逻辑思维能力和团队协作能力。
四. 教学重难点1.圆的定义和性质2.圆的标准方程和一般方程的推导3.弧度制的理解和应用4.圆的方程在实际问题中的应用五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究和解决问题。
2.利用多媒体和实物模型,直观展示圆的性质和方程。
3.采用合作学习的方式,培养学生的团队协作能力。
4.注重学生的个体差异,给予学生个性化的指导。
六. 教学准备1.多媒体教学设备2.圆的相关模型和教具3.教学课件和教案4.练习题和测试题七. 教学过程1.导入(5分钟)利用多媒体展示生活中的圆形物体,引导学生关注圆的形状和特点。
提问:你们对这些圆形物体有什么认识?什么是圆?2.呈现(10分钟)介绍圆的定义和性质,引导学生通过观察和思考,总结圆的特点。
展示圆的标准方程和一般方程,解释弧度制的概念。
3.操练(10分钟)让学生分组讨论,运用圆的知识解决实际问题。
例如,计算圆的周长和面积,将角度转换为弧度等。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)呈现一些有关圆的练习题,让学生独立完成。
课题:3.2圆的的对称性教学目标:1.经历探索圆的轴对称性和中心对称性及其相关性质的过程;2.利用圆的旋转不变性研究圆心角、弧、弦之间相等关系的性质;3.经历探索圆旋转不变性,进一步体会和理解研究几何图形的各种方法.教学重点与难点:重点难点:利用圆的旋转不变性研究圆心角、弧、弦之间相等关系的定理.课前准备:圆形纸片,多媒体课件.教学过程:一、问题情境,导入新课活动内容:(多媒体出示)上一节我们学习了圆的相关概念,从这节课开始,我们学习圆的相关性质,以及由圆的各种性质而得出的定理和推论.问题1:请同学们拿出准备好的圆形纸片,你知道圆有哪些基本性质吗?问题2:圆是轴对称图形吗?如果是,它的对称轴是什么?你是怎么得到的?问题3:圆是中心对称图形吗?如果是,它的对称中心是什么?你是怎么得到的?处理方式:问题1可以放开让学生自由回答,如:圆上任意一点到圆心的距离等于半径,圆内任意一点到圆心的距离小于半径等;若学生提到或未提到对称性,教师都可直接展示问题2和问题3,学生自己动手操作,并举手回答.问题2第一问可直接得出,第二问若学生回答对称轴是直径,教师需要及时点拨纠正,第三问可以通过折叠的方法得出,然后教师追问,“你能得到几条对称轴?”问题3第一问和第二问可直接得出,第三问可将圆心固定,将圆旋转180°,还能和原来的图形重合,此时教师可追问:“一个圆绕着它的圆心旋转任意一个角度,还能与原来的图形重合吗?”最后,师生共同总结圆的对称性:轴对称性:圆是轴对称图形,其对称轴是任意一条过圆心的直线.(板书)旋转不变性:一个圆绕着它的圆心旋转任意一个角度,都能与圆来的图形重合.特别的,当旋转180°时,中心对称性:圆是中心对称图形,对称中心为圆心.(板书)设计意图:圆的对称性对于九年级来说较为简单,所以同时给出问题,让学生自己探索,利用纸片直观的感受圆的基本性质,教师需要及时纠正并总结,并适时的进行追问,从而得到结论,为后续的学习打下基础.二、探究学习,感悟新知活动内容1:今天我们先来研究一下圆的旋转不变性,看看由它能够得到什么.先来看仔细观看(多媒体演示).第一步:在等圆⊙O和⊙O′中,分别作相等的圆心角∠AOB和∠A′O′B′(图1),第二步:将两圆重叠,并固定圆心(图2),然后把其中一个圆旋转一个角度,使得OA 与O′A′重合(图3).图1图2 图3问题1:通过操作,对比图1和图3,你能发现哪些等量关系?说一说你的理由.问题2:由此你能得到什么结论?处理方式:教师利用多媒体演示操作过程后,让学生对比操作的初始图与最终图,让学生发现对应关系,从而利用叠合法得到等量关系.学生会发现很多等量关系,如:∠AOB=∠A′O′B′(已知),OA=OB=O′A′=O′B′(半径),∠OAB=∠OBA=∠O′A′B′=∠O′B′A′,,AB=A′B′.问题1在学生独立思考后提问回答,其他同学补充,最后板书答案(也可直接阅读课本):∵半径OA与O′A′重合,∠AOB=∠A′O′B′,∴半径OB与O′B′重合.∵点A与点A′重合,点B与点B′重合,∴与重合,弦AB与弦A′B′重合.即,AB=A′B′.(这种利用重合来证明的方法叫做叠合法)问题2引导学生观察条件和结论,总结出定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.(板书)得出结论时,注意引导学生注意同圆或等圆条件,或提出若非同圆或等圆,结论是否成立.设计意图:本环节是通过实验探索通过圆的旋转不变性来发现圆的另一个特性,此环节鼓励学生用多种手段和方法探索图形的性质,从而对于本节课所学的定理有一个本质性的认识,从而更好的掌握.活动内容2:思考上述命题的逆命题是否成立,发散思维拓展新定理.问题1:在同圆或等圆中,如果两个圆心角所对的弧相等,这两个圆心角相等吗?那么它们所的对的弦相等吗?你是怎么想的?问题2:在同圆或等圆中,如果两条弦相等,你能得出什么结论?处理方式:先出示问题1,让学生进行充分的思考后再进行合作交流,对于前两问学生很容易就可以得出;对于第三问,教师需要适时点拨学生可仿照前面的证明方法进行推理:∵半径OA与O′A′重合,,∴点B与点B′重合.半径OB与O′B′重合.∴∠AOB与∠A′O′B′重合,弦AB与弦A′B′重合.∴∠AOB=∠A′O′B′,AB=A′B′.解决完毕问题1后,追问:追问1:由此你能得到什么结论?学生可以总结逆命题1:在同圆或等圆中,相等的弧所对的圆心角相等,所对的弦相等.(板书)追问2:如果不加“在同圆或等圆中”,该定理是否也成立呢?引导学生回忆等弧的概念,从而发现等弧就已经涵盖了同圆或等圆这个条件了,所以不加也可.擦掉“在同圆或等圆中”得到:相等的弧所对的圆心角相等,所对的弦相等.然后再出示问题2,学生根据已有的学习经验可以得出结论:在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧相等.学生回答完问题2后,追问:追问1:一条弦所对的弧有几条?学生会发现,一条弦所对的弧有两条,从而发现原命题不够准确.追问2:上面的命题怎样叙述能够更准确?师生共同总结逆命题2:在同圆或等圆中,相等的弦所对的圆心角相等,所对的优弧相等、劣弧相等.(板书)活动内容3:归纳总结定理观察以上所得出的三条结论,你能将其总结为一条定理吗?处理方式:学生先试着总结,如果不够准确可自己看教材并理解.教师利用板书,将三条定理归纳为一条定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.(板书)设计意图:本环节是本节课的关键环节,由老师进行精讲点拨,引导学生对原命题进行变化,从而得到两种逆命题,并对每一种变化进行适当补充.如等弧无需加同圆或等圆的前提条件,再如弦所对的弧有两种情况等.在逆命题都完成的情况下,及时进行总结,让学生随时回顾反思,从让学生讲三条定理综合起来,得到新的结论.三、例题解析,应用新知活动内容1:下面我们综合利用刚刚学到的知识解决一下下面一道例题.例如图4,AB,DE是⊙O的直径,C是⊙O上的一点,且.BE与CE的大小有什么关系?为什么?处理方式:学生自主完成,一名同学板书,教师巡视并适时指导,规范步骤.解:BE=CE.理由是:∵∠AOD=∠BOE,∴.又∵,∴.∴BE=CE.活动内容2:例题变式变式:在例题的条件下,若C 为的中点,你还能得到哪些等量关系?试确定四边形OACE的形状,并说明理由.处理方式:第一问学生自由回答,只要理由充分即可.第二问可以让学生根据第一问的结果,并在充分的思考后进行交流,然后尝试写出证明过程,教师可利用口述或投影的方式,图4让学生展示答案.设计意图:本环节主要通过例题,强化学生对于定理的理解和应用,期间主要规范学生的书写步骤.变式练习主要结合课后随堂练习第3题,将其融入例题中,让学生对于定理的应用有更高的提升.四、回顾反思,达标检测活动内容1:回顾反思问题1:本节课你都学到了哪些知识?需要注意什么?问题2:在得出本节结论的过程中,你用到了哪些方法?与同伴进行交流.处理方式:先出现问题1,让学生自己回顾本节课所学的定理,以及需要注意的问题后,举手回答,其他同学补充;再出现问题2,引导学生有意识地归纳、总结所使用的研究图形的方法,本节课使用的方法有多重,如叠合法、轴对称、旋转、推理证明等,先给学生时间思考交流后总结方法.活动内容2:达标检测必做题:1.(2014·贵港)如图,AB 是⊙O 的直径,,∠COD =34°,则∠AEO 的度数是( )A.51°B.56°C.68°D.78°图5 图6 图72. 如图6,A ,B ,C ,D 是⊙O 上的四点,AB =DC ,△ABC 与△DCB 全等?为什么?选做题:3.如图7,在⊙O 中,AB ,CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为E ,F .(1)如果AOB COD ∠=∠,那么OE 与OF 的大小有什么关系?为什么?(2)如果OE =OF ,那么AB 与CD 的大小有什么关系?与的大小有什么关系?为什么?AOB COD ∠∠与呢?处理方式:根据教学时的剩余时间,以及学生的掌握情况,可以适当取舍题目,让学生自主完成.设计意图:本环节设计了三道题目,分别是两道必做题和选做题,其中第1题是弧与圆心角的对应关系,第2题是弧与弦的对应关系,第3题为三者的对应关系并加入弦心距的证明,意在加强对本节课定理的应用.板书设计:。
圆的对称性【学习目标】1.经历探索圆的对称性及圆心角、弧、弦之间关系的过程,理解圆的对称性及圆心角、弧、弦之间的相等关系;2.了解1°的弧的意义,理解圆心角的度数与所对弧度数相等的关系;3.能够熟练运用圆的对称性及相关性质定理进行简单的计算和证明;4.通过小组合作学习中,培养学生的合作交流意识与习惯。
【学习重点】1.圆心角、弧、弦之间关系定理。
2.了解1°的弧的意义,理解圆心角的度数与所对弧度数相等的关系。
【学习难点】1.“圆心角、弧、弦之间关系定理”中的“在同圆或等圆”条件的理解及定理的证明。
2.了解1°的弧的意义,灵活运用圆的对称性及相关性质定理。
【学时安排】2学时【第一学时】【学习过程】一、举例例1:判断正误。
直径是圆的对称轴。
例2:已知A、B是⊙O上的两点,∠AOB=120°,C是弧AB的中点,试确定四边形OACB 的形状,并说明理由。
例3:如图,AB、CD、EF都是⊙O的直径,且∠1=∠2=∠3,弦AC、EB、DF是否相等?为什么?例4:如图,弦DC、FE的延长线交于⊙O外一点P,直线PAB经过圆心O,请你根据现有圆形,添加一个适当的条件:_____________,使∠1=∠2。
二、课内练习1.判断题。
(1)相等的圆心角所对弦相等。
()(2)相等的弦所对的弧相等。
()2.填空题。
⊙O中,弦AB的长恰等于半径,则弦AB所对圆心角是________度。
3.选择题。
如图,O为两个同圆的圆心,大圆的弦AB交小圆于C、D两点,OE⊥AB,垂足为E,若AC=2.5cm,ED=1.5cm,OA=5cm,则AB长度是___________。
A.6cm B.8cm C.7cm D.7.5cm4.选择填空题。
如图2,过⊙O内一点P引两条弦AB、CD,使AB=CD,求证:OP平分∠BPD。
A.OM⊥PB B.OM⊥AB C.ON⊥CD D.ON⊥PD三、自我评价1.本节课有困惑的题目是:2.本节课的学习收获是:【第二学时】【学习过程】一、复习旧知1.叙述圆心角的意义,叙述圆的轴对称性与中心对称性。
《圆的对称性》教案
教学目标
1.知识与技能
(1)理解圆的轴对称性和中心对称性,会画出圆的对称轴,会找圆的对称中心;
(2)掌握圆心角、弧和弦之间的关系,并会用它们之间的关系解题.
2.过程与方法
(1)通过对圆的对称性的理解,培养学生的观察、分析、发现问题和概括问题的能力,促进学生创造性思维水平的发展和提高;
(2)通过对圆心角、弧和弦之间的关系的探究,掌握解题的方法和技巧.
3.情感、态度与价值观
经过观察、总结和应用等数学活动,感受数学活动充满了探索性与创造性,体验发现的乐趣.
教学重难点
重点:对圆心角、弧和弦之间的关系的理解.
难点:能灵活运用圆的对称性解决有关实际问题,会用圆心角、弧和弦之间的关系解题.教学过程
一、创设情境,导入新课
问:前面我们已探讨过轴对称图形,哪位同学能叙述一下轴对称图形的定义?
(如果一个图形沿着某一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴).
问:我们是用什么方法来研究轴对称图形?
生:折叠.
今天我们继续来探究圆的对称性.
问题1:前面我们已经认识了圆,你还记得确定圆的两个元素吗?
生:圆心和半径.
问题2:你学习过圆中的哪些概念吗?
填一填:
1.圆:平面上到____________等于______的所有点组成的图形叫做圆,其中______为圆心,定长为________.
3.___________叫做等圆,_________叫做等弧.
问题3:你还知道圆的哪些概念吗?
1.弧:圆上任意两点之间的部分叫做圆弧,简称弧;
2.弦:圆的任意两个端点的线段叫做弦,经过圆心的弦叫做直径.
3.在同圆或等圆中,能够重合的两条弧叫做等弧.圆的任意一条直径的两个端点分别为两条等弧,每一条弧都叫做半圆.
二、探究交流,获取新知
知识点一:圆的对称性
1.圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到
多少条对称轴?
2.大家交流一下:你是用什么方法来解决这个问题的呢?
动手操作:请同学们用自己准备好的圆形纸张折叠:看折痕经不经过圆心?
学生讨论得出结论:我们通过折叠的方法得到圆是轴对称图形,经过圆心的一条直线是圆的对称轴,圆的对称轴有无数条.
知识点二:圆的中心对称性.
问:一个圆绕着它的圆心旋转任意一个角度,还能与原来的图形重合吗?
让学生得出结论:一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合,我们把圆的这个特性称之为圆的旋转不变性.圆是中心对称图形,对称中心为圆心.
做一做:
在等圆⊙O 和⊙O ' 中,分别作相等的圆心角∠AOB 和A O B '''∠(如图3-8),将两圆重叠,并固定圆心,然后把其中的一个圆旋转一个角度,得OA 与OA '重合.你能发现哪些等量关系吗?说一说你的理由.
小红认为»¼AB A B ''=,''=AB A B ,她是这样想的:
∵半径OA 重合,'''∠∠=AOB A O B ,
∴半径OB 与OB '重合,
∵点A 与点A '重合,点B 与点B '重合,
∴»AB 与¼A B ''重合,弦AB 与弦A B ''重合,
∴»AB =¼A B '',AB =A B ''.
生:小红的想法正确吗?同学们交流自己想法,然后得出结论,教师点拨. 结论:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.
知识点三:圆心角、弧、弦之间的关系.
问:在同圆或等圆中,如果两个圆心角所对的弧相等,那么它们所对的弦相等吗?这两个圆心角相等吗?你是怎么想的?
学生之间交流,谈谈各自想法,教师点拨.
结论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.
三、例题讲解
例1:如图,在⊙O 中,AB ,CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别是点E ,F .
(1)如果∠AOB =∠COD ,那么OE 与OF 的大小有什么关系?为什么?
(2)如果OE =OF ,那么弧AB 与弧CD 的大小有什么关系?为什么?
例2 如图,在⊙O中,已知弦AB所对的劣弧为圆的1
3
,⊙O的半径为R,求弦AB的长.
例3如图,已知AB,CD为⊙O的两条直径,弦CE∥AB,∠BOD=110°,求弧CE的度数.
议一议
四、随堂练习
1.日常生活中的许多图案或现象都与圆的对称性有关,试举几例.
2.利用一个圆及其若干条弦分别设计出符合下列条件的图案:
(1)是轴对称图形但不是中心对称图形;
(2)是中心对称图形但不是轴对称图形;
(3)既是轴对称图形又是中心对称图形.
3.已知,A,B是⊙O上的两点,∠AOB=120°,C是AB的中点,试确定四边形OACB 的形状,并说明理由.
五、知识拓展
如图,在△ABC中,∠C=90°,∠B=25°,以点C为圆心,AC为半径的圆交AB于点D,求弧AD所对的圆心角的度数.
六、自我小结,获取感悟
1.对自己说,你在本节课中学习了哪些知识点?有何收获?
2.对同学说,你有哪些学习感悟和温馨提示?
3.对老师说,你还有哪些困惑?。