单相桥式整流电路
- 格式:doc
- 大小:316.50 KB
- 文档页数:12
单相半波整流电路和单相桥式整流电路是两种常见的单相交流到直流的整流电路。
1. 单相半波整流电路:
单相半波整流电路是一种简单的整流电路,适用于小功率应用。
它由一个二极管和负载组成,二极管用于将输入的交流电信号转换为单向的脉冲电流。
在每个半个周期中,只有一个半波被整流,另一个半波被阻断。
因此,输出的直流电流是存在间断的脉冲性质。
这种电路的缺点是输出的直流电压有较大的脉动,因为在每个半周期中只有一半时间是有效的。
2. 单相桥式整流电路:
单相桥式整流电路是一种更常用的整流电路,适用于较高功率的应用。
它由四个二极管和负载组成,可以将输入的交流电信号转换为稳定的直流电流。
在每个半个周期中,交流电源的两个极性都能够提供电流给负载。
通过适当的二极管导通和截止控制,可以实现交流信号的无间断整流。
因此,输出的直流电流相对更稳定,脉动较小。
这种电路的优点是输出的直流电压质量较好,适用于对电压稳定性要求较高的应用。
需要注意的是,整流电路中的二极管需要选择适当的额定电压和电流来匹配所需的电流和电压要求。
此外,为了进一步减小输出直流电压的脉动,还可以添加滤波电容器来平滑输出波形。
在实际应用中,还可能涉及到过流保护、温度保护等其他电路设计考虑因素。
以上是对单相半波整流电路和单相桥式整流电路的简要介绍,具体的电路参数设计和分析需要根据具体应用和要求进行进一步的研究和计算。
单相桥式整流原理单相桥式整流是一种常用的电路结构,它可以将交流电流转换为单相直流电流,并具有很高的效率。
本文旨在详细介绍单相桥式整流的原理。
单相桥式整流电路基于桥式结构,包括四个开关,分别为正对开关S1、S2和负对开关S3、S4。
桥式结构的电路配置方式是,正负对开关的一端接上交流电源,另一端接上静止模式,其中正对开关S1和S2会受到交流电源的控制,而负对开关S3和S4控制推拉变换,作为两个交流电源之间壁障,以阻止正负电流通过电路,使其可以接收合道电源,并将其转换为单相直流电源。
单相桥式整流电路的工作原理可以归结为三个步骤:(1)正负对开关在经历推拉状态变化时,两个交流电源之间的桥墩交叉耦合通过正负电流,通过四个开关,建立桥接关系。
与此同时,利用两个交流电源之间的电压差,使大电路中的交流电流转换为直流电流。
(2)由上述四个开关完成交流电源到直流电源的转换,电流从正向运行到负向运行,再从负向运行到正向运行。
(3)最后,电流从正向运行到负向运行,通过两个开关的控制,将单相直流电流输出到负载端。
要正常使用桥式整流电路,必须调整正负对开关的开关角度,使其保持在一定的时间内稳定的状态,以保证整流的有序进行。
此外,在单相桥式整流电路中,由于开关的控制精度和变化速度影响,会出现零序电流。
单相桥式整流电路以其结构简单,工作效率高,控制精度高等特点,已被广泛地应用于家用电器,照明,计算机等电子设备中。
尽管它具有许多优点,但仍存在一些问题。
例如,它有一定效率低下的缺点,也有可能引起热效应。
总之,单相桥式整流作为一种高效率的电路结构,具有高效率,结构简单,控制精度高等优点,已被广泛应用于电子设备中,但需要注意其存在的缺点,以保证它的安全使用。
目录第1章绪论 (1)1.1 什么是整流电路 (1)1.2 整流电路的发展与应用 (1)1.3 本设计的简介 (1)第二章总体设计方案介绍 (2)2.1总的设计方案 (2)2.2 单相桥式全控整流电路主电路设计 (3)2.3保护电路的设计 (5)2.4触发电路的设计 (9)第三章整流电路的参数计算与元件选取 (12)3.1 整流电路参数计算 (12)3.2 元件选取 (13)第四章设计总结 (15)4.1设计总结 (15)第五章心得体会 (16)参考文献 (17)第1章绪论1.1 什么是整流电路整流电路(rectifying circuit)把交流电能转换为直流电能的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。
整流电路通常由主电路、滤波器和变压器组成。
20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。
滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。
变压器设置与否视具体情况而定。
变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离。
可以从各种角度对整流电路进行分类,主要的分类方法有:按组成的期间可分为不可控,半控,全控三种;按电路的结构可分为桥式电路和零式电路;按交流输入相数分为单相电路和多相电路;按变压器二次侧电流的方向是单向还是双向,又可分为单拍电路和双拍电路.1.2 整流电路的发展与应用电力电子器件的发展对电力电子的发展起着决定性的作用,因此不管是整流器还是电力电子技术的发展都是以电力电子器件的发展为纲的,1947年美国贝尔实验室发明了晶体管,引发了电子技术的一次革命;1957年美国通用公司研制了第一个晶闸管,标志着电力电子技术的诞生;70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管(BJT)和电力场效应晶体管(power-MOSFET)为代表的全控型器件迅速发展,把电力电子技术推上一个全新的阶段;80年代后期,以绝缘极双极型晶体管(IGBT)为代表的复合型器件异军突起,成为了现代电力电子技术的主导器件。
单相桥式整流电路计算公式(一)单相桥式整流电路计算公式1. 桥式整流电路简介桥式整流电路是一种常用的单相整流电路,由四个二极管组成,用于将交流电转换为直流电。
通过合理选择电阻和电容参数,可以实现不同的整流效果和输出波形。
2. 桥式整流电路计算公式输出电压平均值的计算公式输出电压平均值(V_avg)是桥式整流电路的重要参数,可以通过以下公式计算:V_avg = (2/π) * V_m其中,V_m为输入电压的峰值。
例如:假设输入电压的峰值为10V,则桥式整流电路的输出电压平均值为:V_avg = (2/π) * 10 ≈输出电流平均值的计算公式输出电流平均值(I_avg)也是桥式整流电路的重要参数,可以通过以下公式计算:I_avg = (2/π) * I_m其中,I_m为输入电流的峰值。
例如:假设输入电流的峰值为2A,则桥式整流电路的输出电流平均值为:I_avg = (2/π) * 2 ≈输出电压纹波系数的计算公式输出电压纹波系数(Ripple Factor)反映了输出电压的稳定程度,可以通过以下公式计算:R = (V_rms/V_avg) * 100%其中,V_rms为输出电压的有效值。
例如:假设输出电压的有效值为5V,输出电压平均值为,则桥式整流电路的输出电压纹波系数为:R = (5/) * 100% ≈ %3. 总结桥式整流电路是一种常用的单相整流电路,通过合理选择电阻和电容参数,可以实现不同的整流效果和输出波形。
通过以上计算公式,我们可以计算出输出电压平均值、输出电流平均值和输出电压纹波系数等重要参数,为电路设计和分析提供便利。
酒泉职业技术学院课程设计2012级电力系统继电保护与自动化专业题目:单相桥式整流电路学号:121782009学生姓名:王文勇班级:12电力班2013年6月28日目录一技术要求二设计任务三方案选择四原理说明五电路参数计算和元件选取六性能指标分析七保护电路工作原理八参考文献单相整流电路一设计任务书1 设计任务(1)进行设计方案的比较,并选定设计方案(2)完成单元电路的设计和主要元器件说明(3)完成主电路的原理分析,各主要元器件的选择(4)驱动电路的设计,保护电路的设计2 设计要求(1)负载为感性负载,L=700mH,R=500欧姆(2)电网供电电压为单相220V(3)电网波动电压为5%~10%(4)输出电压为0~100V`二方案选择单相相控整流电路分为单相半波、单相全波和单相桥式相控电路,它们所连接的负载性质就会有不同的特点,下面分析各种单相相控整流电路在阻性负载、感性负载时的工作情况。
单相半控整流电路的优点:线路简单、调整方便。
弱点是:输出电压脉冲大,负载电流脉冲大,且整流变压器二次绕组中存在直流分量,使铁芯磁化,变压器不能充分利用,而单相全控式整流电路具有输出电流脉冲小,功率因数高,变压器二次电流为两个等大反向的半波,没有直流磁化的问题,变压器利用率高。
单相全控式整流电路其输出平均电压是半波整流电路的2倍,在相同的负载下流过晶闸管的平均电流减小一半,且功率因数提高一半。
三原理说明(一)单相半波整流电路工作原理1 单相半波整流电路阻性负载实验原理路图如下:2 单相半波整流电路工作原理变压器的次级绕组与负载相接,中间串联一个整流二极管,就是半波整流。
利用二极管的单向导电性,只有半个周期内有电流流过负载,另半个周期被二极管所阻,没有电流。
这种电路,变压器中有直流分量流过,降低了变压器的效率;整流电流的脉动成分太大,对滤波电路的要求高。
只适用于小电流整流电路。
电路工作过程是:在u2正半周(ωt=0~π),二极管加正向偏压而导通,有电流iL 通过负载电阻RL。
因为将二极管看作理想器件,所有RL上的电压uL与U2的正半周电压基本相同。
全波整流可以用:一是变压器与半流整流电路相同,但用四个二极管组成桥式电路,将次级线圈的正、负半周都用起来;二是变压器的次级绕组圈数加倍,中间抽头,实际上由两个次级线圈构成。
中间抽头接负载一端,另两个端子各串联一个二极管后接负载的另一端。
它由电源变压器Tr整流二极管D和负载电阻RL组成,变压器的初级接交流电源,次级所感应的交流电压为其中U2m为次级电压的峰值,U2为有效值。
电路的工作过程是:在u2的正半周(ωt=0~π),二极管因加正向偏压而导通,有电流iL流过负载电阻RL。
由于把二极管看作理想器件,故RL上的电压uL与u2正半周电压基本相同。
(二) 1 单相半波整流电路感性负载实验电路图如下2 单相半波整流电路感性负载工作原理(1)当交流电压过零为负的时候,由于负载电感反电势大于电源负电压,加在可控硅的电压仍然是正向电压,所以可控硅维持原电流方向、大小不变的导通;(2)但加在负载两端确实是电源负电压,而不是正向电压,所以破坏了整流的性质和目的,使得负载的正向电压因之而减小;(3)随着交流电源负压增大,增大到大于反电势时,加在可控硅两端的电压为零、电流为零,可控硅截止,此时负载的电压因可控硅截止,电压由负压到零;(4)整流电路的目的就是,要给负载以直流电压,但是由于交流电过零时可控硅不能及时关断,使得负载两端出现负压,就减小了负载两端所需要的直流电压;(5)如果在感性负载的两端加上阻尼二极管(或者叫续流二极管),反电势被短接,这样在交流电过零为负时,可控硅就能及时关断截止,负载两端就不会出现负压;(6)单相半波可控整流电路,输出直流电压Uo=0.45U×(1+cosα)/2;(7)阻感性负载电路,要加续流二极管,否则输出直流电压会下降;二单相桥式整流电路阻性负载工作原理:(1) 单相桥式整流电路阻性负载实验原理路图如下:(2)单相半波整流电路工作原理在分析整流电路工作原理时,整流电路中的二极管是作为开关运用,具有单向导电性。
根据图10.1.2(a)的电路图可知:当正半周时二极管D1、D3导通,在负载电阻上得到正弦波的正半周。
当负半周时二极管D2、D4导通,在负载电阻上得到正弦波的负半周。
在负载电阻上正负半周经过合成,得到的是同一个方向的单向脉动电压。
单相桥式整流电路的波形图见图10.1.2(b)。
(3)参数计算根据图10.1.2(b)可知,输出电压是单相脉动电压。
通常用它的平均值与直流电压等效。
流过负载的脉动电压中包含有直流分量和交流分量,可将脉动电压做傅里叶分析。
此时谐波分量中的二次谐波幅度最大,最低次谐波的幅值与平均值的比值称为脉动系数S。
(4)单相桥式整流电路感性负载工作原理在分析整流电路工作原理时,整流电路中的二极管是作为开关运用,具有单向导电性。
根据图10.1.2(a)的电路图可知:当正半周时二极管D1、D3导通,在负载电阻上得到正弦波的正半周。
当负半周时二极管D2、D4导通,在负载电阻上得到正弦波的负半周。
在负载电阻上正负半周合成,得到的是同一个方向的单向脉动电压。
四电路参数计算和元件选取1、参数计算2、元件选取样图五性能指标分析整流电路的性能常用两个技术指标来衡量:一个是反映转换关系的,用整流输出电压的平均值来表示;另一个是反映输出直流电压平滑程度的,称为纹波系数。
(1)整流输出电压的平均值(即负载电阻上的直流电压V L)V L定义为整流输出电压v L在一个周期内的平均值,即设变压器副边线圈的输出电压为v,整流二极管是理想的。
则根据桥式整流电路的工作波形,在v i的正半周,v L = v2 ,且v L的重复周期为 ,所以上式也可用其它方法得到,如用傅里叶级数对图1中v L的波形进行分解后可得中恒定分为负载电压v L 的平均值。
(2)纹波系数由v L的傅里叶级数表达式可以看出,最低次谐波分量的幅值ω,角频率为电源频率的两倍,即2ω。
其他交流分量的角频率为4ω、6ω…等偶次谐波分量。
这些谐波分量总称为纹波,它叠加于直流分量之上。
常用纹波系数Kγ来表示直流输出电压中相对纹波电压的大小,式中V Lγ为谐波电压总的有效值,它表示为所得出桥式整流电路的纹波系数。
由于v L中存在一定的纹波,故需用滤波电路来滤除纹波电压。
六保护电路工作原理1 保护电路设计2 保护电路工作原理(1)过压保护电路:过电压保护了是免因工人误接高电压电源等原损坏机器而设置的,它预防开机浪涌结合在一起当因误接高压(把220V AC输入接到380V AC电源)或因其他原因高压加入时,高压电流顿时把压敏电阻R3击穿(压敏电阻耐压值是根据电路耐压要求而设定的),形成回路。
高压电流在RT和R3间流过,较大的电流急剧地把消磁电阻(温敏器件)的温度抬高,而使消磁电阻的阻值随之迅速上升(其阻一温特性见图 4.2),相当于把电路断开,阻值无穷大,而且,R1、D1、UA、R2和D2形成回路,当电压达到一定值(设定值)时,高压把压敏电阻R2和D2击穿形成电流,电流使UA发光,使得UB受光照Q1的栅极电位拉低,Q1截止,这样,J2就不能吸合,高压电流就只能通过耐高压的T、R3回路及R1、D1、UA、R2和D2组成的回路,而不会损坏后面的电路,从而保护了电路。
而此保护是可恢复的,降低了成本。
等消磁电阻温度降下,便又可正常工作。
避免了因过压而损坏的维修,提高了工作效率。
如果输入电压正常,电压经R的整流滤波,输入辅助电源,使辅助电源工作,输出24V稳压直流电,24V直流电使场管Q1导通,从而使J2运作,J2A合,短路T,电源电压直接输入整流管,电路正常工作。
(2)过流保护:过流保护是为了避免因元件损坏、干扰、异常而引起过大电流对逆变器产生损坏而设置的。
它通过电流互感器时刻对主回路中的电流进行采样,一但发现是流超过允许值,便通过控制电路中保护控制电路动作,停止主回路的工作过流保护电路原理图电路采用1:300的电流互感器对主回路进行采样(电流互感器是一种电流采样器件,相当于变压器,由I1/I2=n2/n1可知,当主回300A的电流时,保护电路能采样到A的电流信号,该信号对控制电路中的电容充电,并形成压降,一但这压降大于保护控制电路中给定的基准电压保护控制电路动作,进行封波,使整个电路停止工作。
(3)过热保护:过热保护电路的作用是避免机器因散热不良,环境温度过高或元器件工作异常而损坏电路。
通常,把热敏器件(热敏开关)置于散热装置上,一但散热装置温度过高,热敏器件便动作,从而使保护控制电路动作,进行电路保护DC 输入的开关电源的输入过欠压保护原理大致相同。
保护电路的取样电压均来自输入滤波后的电压。
取样电压分为两路,一路经R1、R2、R3、R4分压后输入比较器3脚,如取样电压高于2脚基准电压,比较器1脚输出高电平去控制主控制器使其关断,电源无输出。
另一路经R7、R8、R9、R10分压后输入比较器6脚,如取样电压低于5脚基准电压,比较器7脚输出高电平去控制主控制器使其关断,电源无输出。
七参考文献[1]、王兆安、黄俊主编、电力电子技术、机械工业出版社[2]、曲永印主编、电力电子变流技术、冶金工业出版社[3]、曾方主编、电力电子技术、西安电子科技大学出版社[4]、苏玉刚、陈渝光主编、电力电子技术、重庆大学出版社[5]、杨威、张金栋主编、电力电子技术、重庆大学出版社[6]、林辉、王辉主编、电力电子技术、武汉理工大学出版社。