1、等精度频率测量
- 格式:ppt
- 大小:650.00 KB
- 文档页数:45
等精度测频方法是在直接测频方法的基础上发展起来的。
它的闸门时间不是固定的值,而是被测信号周期的整数倍,即与被测信号同步,因此,避除了对被测信号计数所产生±1个字误差,并且达到了在整个测试频段的等精度测量。
其测频原理如图1所示。
在测量过程中,有两个计数器分别对标准信号和被测信号同时计数。
首先给出闸门开启信号(预置闸门上升沿),此时计数器并不开始计数,而是等到被测信号的上升沿到来时,计数器才真正开始计数。
然后预置闸门关闭信号(下降沿)到时,计数器并不立即停止计数,而是等到被测信号的上升沿到来时才结束计数,完成一次测量过程。
可以看出,实际闸门时间t与预置闸门时间t1并不严格相等,但差值不超过被测信号的一个周期[4]。
图1 等精度测频原理波形图等精度测频的实现方法可简化为图2所示。
CNT1和CNT2是两个可控计数器,标准频率信号从CNT1的时钟输入端CLK输入;经整形后的被测信号从CNT2的时钟输入端CLK输入。
当预置门控信号为高电平时,经整形后的被测信号的上升沿通过D触发器的Q端同时启动CNT1和CNT2。
CNT1、CNT2同时对标准频率信号和经整形后的被测信号进行计数,分别为N S与N X。
当预置门信号为低电平的时候,后而来的被测信号的上升沿将使两个计数器同时关闭,所测得的频率为(F S/N S)*NX。
则等精度测量方法测量精度与预置门宽度的标准频率有关,与被测信号的频率无关。
在预置门时间和常规测频闸门时间相同而被测信号频率不同的情况下,等精度测量法的测量精度不变。
图2 等精度测频实现原理图误差分析设在一次实际闸门时间t中计数器对被测信号的计数值为Nx,对标准信号的计数值为Ns。
标准信号的频率为fs,则被测信号的频率如式(1):fx=(Nx/Ns)·fs (1) 由式1-1可知,若忽略标频fs的误差,则等精度测频可能产生的相对误差如式(2-2):δ=(|fxe-fx|/fxe)×100% (2) 其中fxe为被测信号频率的准确值。
实验一等精度频率计的制作一、任务设计并制作一个等精度频率计。
二、要求和说明1、能够准确地测量1-1MHz方波(高电平接近单片机的VCC,低电平为0)的频率;2、测量的精度为≤±0.01%,测量速度≤1秒;3、适当扩展测试的功能,如脉宽、占空比的测量;3、尽可能地提高测量精度和测量速度;4、外围电路尽可能地简单。
三、方案参考用MCU频率测量方波频率的3种最基本方法为:测频法和测周法、多周期同步测频法。
测频法适合测量频率较高的脉冲,测周法适合测量频率较低的脉冲。
所谓的适合,主要是从测量的精度上考虑,因此测量不同频率范围的脉冲,需要将以上两种方法结合使用。
不管测频法还是测周法,其关键就是如何巧妙的设计和使用定时/计数器。
现在新型的MCU在定时/计数器单元上都增加了输入捕捉功能,学会掌握和正确使用这个输入捕捉功能能够大大提高频率测量的精度。
一般情况下,当测量频率的范围为1-1MHz、精度≤±0.01%时,可以分三段来进行测量。
1-100Hz采用测周法;100-10KHz采用多周期测频法;10KHz-1MHz采用测频法。
计数法:Fx = Nx±1/Tw Fx——信号频率Nx——计数个数Tw——计数时间这种测量方法的测量精度取决于计数时间和被测信号频率,当被测信号周期与计数时间相近时将产生较大误差。
少一个周期少一个周期多一个周期误差分析如下:测频法采用1秒内计数器计数的值来表达所测频率,该方法误差是绝对的,为±1,也就是±1Hz。
相对误差见下表:被测频率绝对误差测量精度1000000Hz ±1Hz ±0.0001%100000Hz ±1Hz ±0.001%10000Hz ±1Hz ±0.01%1000Hz ±1Hz ±0.1%100Hz ±1Hz ±1%1Hz ±1Hz ±100%从上表中可以看出,测频法在测量高频时测量精度好,频率越高精度越好。
第八讲三、设计实例等精度频率、占空比测量仪1.综述传统频率测量方法是对设定的闸门时间内脉冲进行计数,有两个主要因素影响精度,其一是闸门时间的准确度,其二是对低频信号的取整误差,为了消除以上两个因素的影响可选择等精度测频法。
但等精度测频法占用可编程器件资源量大,如选用24位计数器的频率计,仅测频部分就占用了EPM7128芯片的百分之九十以上的资源;若选用100MHz标准时钟,其闸门时间仅能选择在0.168s以下,测频范围在6Hz以上,限制了对低频的测量。
若要扩大低频量程,需要相应增大可编程器件容量,则体积、功耗和价格相应增加。
本文所述等精度频率、占空比测量仪采用将复杂可编程逻辑器件(CPLD)与低功耗单片机相结合,由CPLD完成高频信号计数,单片机完成低频信号计数、频率和占空比计算和显示控制等功能,即简化了仪器的结构,又扩大了低频量程。
如单片机采用长整形变量计数(32位),再加上CPLD中16位计数器,等效为48位计数器构成的等精度测量仪,当选用100MHz标准时钟时,低频范围可达3.55×10-7Hz。
本文所述等精度频率、占空比测量仪结构框图如图8-1所示,CPLD可编程逻辑器件选用的是EPM7064芯片,单片机可根据实际情况选用。
图8-1 等精度频率、占空比测量仪结构框图单片机发出如下所示控制信号:CLEAR:SLCE为高时CPLD芯片内各计数器清零信号;SLCE为低时占空比清零和测量启动信号。
SLCE:功能选择控制信号。
高电平测频;低电平测占空比。
CONTRL:闸门时间信号。
高电平测频;低电平测占空比。
S[2..0]:输出选择控制信号。
000—CPLD 输出标准时钟信号四位计数值最低位;001—CPLD 输出标准时钟信号计数值次低位;010—CPLD 输出标准时钟信号计数值第三位;011—CPLD 输出标准时钟信号计数值第四位;100—CPLD 输出被测信号四位计数值最低位;101—CPLD 输出被测信号计数值次低位;110—CPLD 输出被测信号计数值第三位;111—CPLD 输出被测信号计数值第四位。
等精度测量法原理引言等精度测量法是一种常用的测量方法,广泛应用于各个领域,如工业制造、地理测量、物理实验等等。
本文将从原理、应用、优缺点等方面系统地介绍等精度测量法。
原理等精度测量法是一种基于测量仪器的不确定度的测量方法。
它的原理是在测量仪器有一定的测量精度情况下,通过多次测量和统计分析,来获得更高的测量精度。
测量仪器的不确定度测量仪器的不确定度是指在特定测量条件下,测量结果与被测量值实际值之间的差异范围。
不确定度越小,测量精度越高。
多次测量和统计分析等精度测量法通过进行多次测量来减小测量误差。
每次测量都会有一定的随机误差,但它们的分布往往符合正态分布。
因此,通过对多次测量结果进行统计分析,可以用平均值代表真实值,并通过标准差来评估测量精度。
应用等精度测量法可以应用于各个领域的测量工作中,以下是几个常见的应用案例:工业制造在工业制造过程中,精确的测量是确保产品质量的重要一环。
等精度测量法可以通过在不同的时间、环境条件下对产品进行多次测量来获得更准确的尺寸数据,从而确保产品符合设计要求。
地理测量地理测量是对地球表面和地球现象进行测量的科学。
等精度测量法可以应用于地理测量中的各个环节,如地形测量、地理定位等。
通过多次测量和统计分析,可以获得地理数据的更高精度。
物理实验在物理实验中,精确的测量对于获得准确的实验结果至关重要。
等精度测量法可以有效地减小测量误差,提高实验结果的可靠性和准确性。
优缺点等精度测量法有以下优点和缺点:优点•可以通过多次测量和统计分析,获得更高的测量精度。
•适用于各个领域的测量工作,具有广泛的应用范围。
•可以减小测量误差,提高测量结果的可靠性和准确性。
缺点•需要进行多次测量和统计分析,增加了工作量和时间成本。
•依赖于测量仪器的精度,当测量仪器精度较差时,等精度测量法效果有限。
•对于非正态分布的测量误差,等精度测量法的效果可能不佳。
结论等精度测量法是一种基于测量仪器不确定度的测量方法,通过多次测量和统计分析,可以获得更高的测量精度。
等精度法测频一、 测量原理M 法、T 法的测量精度不仅取决于基准时间和计数器的计数误差,还取决于频率的高低,频率不同则精度不一样,M 法在高频段的准确度相对较高,T 法在低频段的准确度较高.M/T 法(等精度测量法)则在整个测试频段的精度一样,闸门信号是被测信号周期的整数倍,即与被测信号同步,因此大大减少了误差,但由于只与被测信号同步,而不与标准时钟同步,因此还是存在着±1计数误差.其测频原理图如图1所示,误差计算为'00000||||11100%x x x f f M f M M t f σ-∆=⨯=≤= 式中:x f 是被测信号频率真实值,'x f 是被测信号频率测量值,0t 为闸门时间,0f 为标准时钟频率。
由上式可知,误差与闸门时间和标准时钟频率有关,闸门时间越长,标准时钟频率越高,误差越小。
由于用等精度测频法时所采取的标准时钟频率比较高(10MHz 以上),因此±1计数误差相对很小。
二、 基于FPGA 的实现采用FPGA 设计,主要产生如下时序: StartClrTclkLockFclk其中,Start 作为闸门信号,Clr 是清零信号,Tclk 是被测信号,Lock 是锁存信号,Fclk 是标准频率信号。
当检测到Start 为高时,测量开始。
开始后Tclk 的第一个周期将Clr 和Lock 置高,将两个计数器全部清零。
当下一个Tclk 上升沿来临时将Clr 置低,同时开启两个计数器,开始计数。
待检测到Start 为低时,在Tclk 的下一个上升沿停止计数,将结果锁存,得到N t 和N 0,则可换算出被测信号的频率为:00t t N f f N = 测量电路如下:仿真时,clk1周期为20ns,频率为50M;clk2周期为203ns,频率为4.92611M。
当gate取值为50us时仿真结果波形如下,计算得测量的频率为4.92620M,误差为0.00009MHz.当gate取值为100us时仿真结果波形如下,计算得测量频率为4.92606M,误差为0.00005MHz。
等精度数字频率计的设计设计说明内蒙古科技大学本科生毕业设计说明书(毕业论文)题目:等精度数字频率计的设计毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日等精度数字频率计的设计摘要本设计课题为基于FPGA和单片机的等精度数字频率计的设计。
在本设计中,采用先进的自上而下的设计方法,以AT89C52单片机作为系统的主控部件,实现整个电路的信号控制、数据运算处理等功能;一片现场可编程逻辑器件FPGA(Filed Programmable Gate Array)芯片FLEX EPF10K20RC208-4完成各种时序逻辑控制、计数功能。