测定液体摩尔汽化热
- 格式:xls
- 大小:12.00 KB
- 文档页数:16
液体比汽化热测定实验报告 doc实验目的:1. 学习和掌握液体比汽化热的测定方法。
2. 掌握测量出液体的蒸发热和汽化热的技巧,了解实验数据的处理方法。
实验原理:液体比汽化热是指液体蒸发1g所需要的能量与液体汽化1g所需要的能量之比。
设液体的蒸发热为λ1(单位 J/g),汽化热为λ2(单位 J/g),则液体比汽化热为λ2/λ1。
本实验通过测定液体的蒸发热和汽化热,计算出液体的比汽化热。
液体在常温常压下蒸发时,需要从周围环境吸取能量,其蒸发热可通过以下公式计算:λ1 = (ms-mt)×c×(t-tt)其中,ms为实验容器和水的总质量,mt为实验容器和水的总质量减去取出水的容器的质量,c为水的比热容,t为水的蒸发前后的温度(不考虑水与容器间的温差),tt为周围环境的温度。
液体在恒定温度下汽化时,汽化热可计算为:λ2 = Q/m其中,Q为液体汽化时所消耗的热量,m为汽化的质量。
实验器材:1. 电热板2. 蒸发皿3. 夹子4. 电子天平5. 热敏电阻温度计6. 燃油挥发量测试仪实验步骤:1. 首先将蒸发皿放在电子天平上,称取约10g液体,记录下液体的质量m1。
2. 将液体倒入蒸发皿中,然后将蒸发皿放在预热好的电热板上加热,直至液体完全蒸发,记录下加热时间t1。
3. 将加热完毕的蒸发皿在热敏电阻温度计上测量蒸发前后的温度,记录下实验数据。
4. 重复以上步骤,取另外一份相同的液体进行实验。
5. 取第三份液体,并放入燃油挥发量测试仪中,测量它的汽化量和蒸发量。
记录下实验数据。
通过上述实验搜集到了三份实验数据,进行数据处理如下:1. 液体1的蒸发热计算:ms = 85.20g,mt = 74.24g,c = 4.18J/(g·K)t = 21.7℃,tt = 25.5℃Q = 34133.40J,m = 9.79g汽化量为7.80mL,蒸发量为1.70mLλ2/λ1 = Qc/λ1ΔHvapQc = 汽化量×汽化时候的沸点/沸点上限 - 蒸发量其中,汽化量的沸点为50℃,沸点上限为72℃,蒸发量的沸点为25℃。
实验十三液体比汽化热的测定液体比汽化热是液体的一个重要热学参数,在制冷效率、节能研究及工业生产中有重要的作用。
物质由液态向气态转化的过程称为汽化,液体的汽化有蒸发和沸腾两种不同的形式。
蒸发是发生在液体表面的汽化过程,在任何温度下都能进行,而沸腾是液体表面和内部同时发生的剧烈汽化现象。
在一定的外界压强下,沸腾只能在某一特定温度(沸点)发生,此时液体汽化突然加剧,在液体内部形成大量气泡并上升,逸出液面破裂。
不管是哪种汽化过程,它的物理过程都是液体中一些热运动动能较大的分子飞离表面成为气体分子,而随着这些热运动动能较大分子的逸出,液体的温度将要下降,若要保持液体温度不变,在汽化过程中就需要外界不断供给热量。
通常定义单位质量的液体在温度保持不变的情况下转化为气体时所吸收的热量称为该液体的比汽化热。
液体的比汽化热不但和液体的种类有关,而且和汽化时的温度有关。
因为温度升高,液相中分子和气相中分子的能量差别将逐渐减小,因而温度升高液体的比汽化热减小。
物质由气态转化为液态的过程称为凝结,凝结时将释放出在同一条件下汽化所吸收的相同热量,因而可以通过测量凝结时放出的热量来测量液体汽化时的比汽化热。
【实验目的】1.了解用线性温度传感器测量液体比汽化热;2.本实验用量热器和集成温度传感器测量液体的比汽化热,学习液体比汽化热的一种电测量方法。
【实验仪器】液体比汽化热测量仪、加热炉、烧杯、量热器、电源线、加热炉连接线、AD传感器、数字温度计、电子天平、支架。
590A.烧瓶盖;B.烧瓶;C.通汽玻璃管;D.托盘;E.电炉;F.绝热板;G.橡皮管;H.量热器外壳;I.绝热材料; J.量热器内杯; K.铝搅拌器; L.AD590; M.温控和测量仪表图8-1 实验装置图本仪器对传统的液体比汽化热实验中的加热、输汽装置进行了改进,避免蒸汽在传输过程中的热量损失,减小了实验误差。
对加热电炉增加温控控制电路,便于控制水过激沸腾,并保证水蒸汽输入量热器的速率达到实验要求。
实验二液体饱和蒸汽压的测定摘要:本实验采取动态法,通过测定在不同外部压力下水的沸点来确定不同温度条件下水的饱和蒸汽压同温度的关系。
根据实验结果对克拉贝龙—克劳修斯方程进行了验证,并由此方程计算出纯水的平均摩尔汽化热。
关键词:沸点饱和蒸汽压摩尔汽化热克拉贝龙—克劳修斯方程Experiment No.2: The Determination of SaturatedVapor Pressure of the LiquidAbstract: In this experiment, we determined the boiling point of pure water under different exterior pressures in order to make sure the relationship of saturated vapor pressures and temperature, by using ‘Dynamic Method’. According to the result, we validate Clapeyron-Clausuis Equation, and then calculated the molar heat of vaporization of pure water.Key words: Saturated vapor pressure Molar heat of vaporization Clausius-Clapeyron Equation Boiling point1. 前言在封闭体系中,当液相的蒸发速度与相应气相的凝聚速度相等时,体系达到动态平衡,此时的蒸气压为该温度下的饱和蒸气压,液体的饱和蒸气压等于外压时的温度为液体的沸点,因此沸点是随外压变化的,当外压为101325Pa时,称之为正常沸点。
每蒸发1mol液体所需的热量称该温度下的摩尔汽化热。
实验五液体饱和蒸汽压的测定一、实验目的与要求:对液体饱和蒸汽系作实验上的研究。
根据建立起的经验方程式,求算液体的平均摩尔汽化热。
饱和蒸汽压与温度的关系二、预习要求:1. 明确蒸气压、正常沸点、沸腾温度的含义;了解动态法测定蒸气压的基本原理。
2. 了解真空泵、气压计的使用及注意事项。
3. 了解如何检漏及实验操作时抽气、放气的控制。
三、实验原理:在封闭体系中,液体很快和它的蒸汽达到平衡。
这时的蒸汽的压力称为液体的饱和蒸汽压。
蒸发一摩尔液体需要吸收的热量,即为该温度下液体的摩尔汽化热。
它们的关系可用克拉贝龙~克劳修斯方程表示:dlnp/dTt=Δvap H m/RT2 (1)ΔHm:摩尔汽化热(J·mol-1)R:气体常数(8.314J·mol-1·K-1)若温度改变的区间不大,ΔH可视为为常数(实际上ΔH与温度有关)。
积分上式得:lnp=A’-ΔH m/RT (2)或logP=A-B/T (3)常数A=A’/2.303 ,B=Δvap H m/2.303RT 。
(3)式表明logP与1/T有线性关系。
作图可得一直线,斜率为-B。
因此可得实验温度范围内液体的平均摩尔汽化热ΔH m。
ΔH m=2.303RB (4)当外压为101.325kPa(760mmHg)时,液体的蒸汽压与外压相等时的温度称为液体的正常沸点。
在图上,也可以求出液体的正常沸点。
液体饱和蒸汽压的测量方法主要有三种:1. 静态法:在某一固定温度下直接测量饱和蒸汽的压力。
2. 动态法:在不同外部压力下测定液体的沸点。
3. 饱和气流法:在液体表面上通过干燥的气流,调节气流速度,使之能被液体的蒸汽所饱和,然后进行气体分析,计算液体的蒸汽压。
本实验利用第二种方法。
此法基于在沸点时液体的饱和蒸汽压与外压达到平衡。
只要测得在不同外压下的沸点,也就测得在这一温度下的饱和蒸汽压。
四、仪器和药品:液体饱和蒸汽测定仪1套,抽气泵1台,福廷式压力计1支,加热电炉1个,搅拌马达1台,1/10℃温度计2支。
实验二 液体饱和蒸气压和摩尔汽化热的测定一、实验目的1.明确纯液体饱和蒸气压的定义和气液两相平衡的概念,掌握纯液体饱和蒸气压和温度关系的克劳修斯—克拉贝龙方程及物质摩尔气化热的求算方法。
2.学习真空的获得与检漏技术,学会用等压计测定不同温度下液体饱和蒸气压的方法.二.实验原理在一定的温度下,真空密闭容器内的液体能很快和它的蒸汽相建立动态平衡,即蒸汽分子向液面凝结和液体中分子从表面逃逸的速率相等。
此时液面上的蒸汽压力就是液体在此温度下的饱和蒸汽压。
纯液体的饱和蒸汽压与液体的本性(分子大小、结构、形状)和温度、外压有关。
其值是物质重要的物性参数,对研究气-液相变基础理论、相变热力学具有特别重要的意义。
在热物理、化学物理及热力学、石油化工、分离与提纯、冶金、材料科学与工程等领域都具有广泛的应用。
当外压一定时,纯液体的蒸汽压与温度的关系可用克拉贝龙—克劳修斯方程式描述2ln m p d p H dT RT ⎛⎞⎜⎟Δ⎝⎠=\ 式中p 为液体在温度T 时的饱和蒸汽压(Pa ),T 为热力学温度(K ),△H m 为液体摩尔气化热(J ·mol -1),R 为气体常数。
如果温度变化的范围不大,△H m 可视为常数,将上式积分可得:ln p p \=-m H RTΔ+C 式中C 为积分常数。
由上式可见,若在一定温度范围内,测定不同温度下的饱和蒸汽压,以ln p p \对T 1作图,可得一直线,直线的斜率为-m H R Δ,而由斜率可求出实验温度范围内液体的平均摩尔气化热△H m 。
当液体的蒸汽压与外界压力相等时,液体便沸腾,外压不同,液体的沸点也不同,我们把液体的蒸汽压等于101.325KPa时的沸腾温度定义为液体的正常沸点。
从图中也可求得该液体的正常沸点。
测量物质的饱和蒸汽压常用的方法有动态法和静态法。
本实验采用静态法测定乙醇的饱和蒸汽压。
即将待测物质放在一个密闭体系中,在不同的温度下,直接测量蒸汽压或在不同外压下测定液体相应的沸点。
水的饱和蒸汽压测定和平均摩尔汽化热实验数据实验目的:1.了解液体的蒸发和气化过程。
2.了解水蒸气产生的原理和影响因素。
3.测量水的饱和蒸汽压和温度的关系。
实验器材:1. 外壳、支撑架、加热板、温度计、传感器、气压计等。
2. 温度传感器:搭配专门的探头测量温度。
3. 气压计:用于测量压力。
4. 平衡品:用于放置试管以保持平衡。
实验原理:在特定的温度下,液体从表面逐渐蒸发。
当它达到一个特定的温度(饱和温度)时,蒸发从表面不再增加,因为与之相反的过程开始占主导位置——液体表面蒸发出的水分子反复撞击空气分子,一部分水分子重新转化成液滴回到液体表面。
因此,在气相和液相之间达到一个平衡状态,此时液体内部的蒸汽压力称为饱和蒸汽压。
实验步骤:1. 准备试管和试管盖,将一定量的水注入试管中。
2. 将试管放入加热板中,并将传感器插入试管。
3. 开始加热,直到水完全沸腾。
4. 记下水沸腾时的温度和饱和蒸汽压,并记录相关数据。
实验记录:实验数据:2.了解水的平均摩尔汽化热的概念和计算方法。
1. 装液体的烧杯、热水槽、恒温水浴、温度计、电天平等。
2. 电天平:用于称量物质的质量。
4. 恒温水浴:用于控制水的温度。
液体沸腾的条件是其饱和蒸汽压与外界的压强相等。
在沸腾过程中,液体的温度保持不变,从而可以测量蒸发的质量(≈0),以及蒸气的温度和压强。
利用平衡条件来计算水的摩尔汽化热。
1. 将约100毫升水倒入烧杯中,放入热水槽中,升温至开始沸腾。
2. 待水完全沸腾后,稳定5分钟左右,然后重复测量工作,并记录相关数据。
3. 利用测量结果计算出水的平均摩尔汽化热。
水的汽化热的测定实验报告一、实验目的1、学习用混合量热法测定水的汽化热。
2、了解量热器的使用方法,熟悉热学实验中的基本测量技术。
二、实验原理当水在沸点时变为同温度的蒸汽所吸收的热量,称为水的汽化热。
设质量为 m 的水在沸点时全部变为同温度的蒸汽所吸收的热量为 Q,则汽化热 L 为:\L =\frac{Q}{m}\在本实验中,我们使用混合量热法来测定水的汽化热。
将水蒸气通入盛有一定质量和温度的水的量热器中,当水蒸气全部凝结成水且系统达到热平衡时,通过测量量热器内水的质量变化、初温、终温以及量热器内原有水和量热器的质量、比热容等参数,就可以计算出水的汽化热。
根据热平衡原理,水蒸气放出的热量等于量热器内原有水和量热器吸收的热量之和。
设水蒸气的质量为 m',量热器内原有水的质量为 m1,量热器的质量为 m2,比热容分别为 c1 和 c2,水的初温为 T1,终温为T2,水蒸气的温度为 T(沸点),则有:\m'L =(m1c1 + m2c2)(T2 T1)\由此可得水的汽化热:\L =\frac{(m1c1 + m2c2)(T2 T1)}{m'}\三、实验仪器1、量热器2、蒸汽发生器3、温度计4、天平5、绝热盖6、秒表四、实验步骤1、用天平称出量热器内筒及搅拌器的质量 m2。
2、在内筒中加入适量的水,称出总质量 m1 + m2,算出所加水的质量 m1,并记录水的初温 T1。
3、连接好蒸汽发生器,将蒸汽导入量热器。
4、当蒸汽充满量热器时,用绝热盖盖好,同时停止通入蒸汽,用搅拌器搅拌,观察温度计示数,待温度稳定后记录终温 T2。
5、称出量热器、水和凝结水的总质量 m1 + m2 + m',算出凝结水的质量 m'。
五、实验数据记录与处理|实验序号|m1 (g)|m2 (g)|T1 (℃)|T2 (℃)|m' (g)|||||||||1|_____|_____|_____|_____|_____||2|_____|_____|_____|_____|_____||3|_____|_____|_____|_____|_____|平均值:\\bar{m_1} =\frac{m_{11} + m_{12} + m_{13}}{3}\\\bar{m_2} =\frac{m_{21} + m_{22} + m_{23}}{3}\\\bar{T_1} =\frac{T_{11} + T_{12} + T_{13}}{3}\\\bar{T_2} =\frac{T_{21} + T_{22} + T_{23}}{3}\\\bar{m'}=\frac{m_{1}'+ m_{2}'+ m_{3}'}{3}\已知水的比热容 c1 = 42×10³ J/(kg·℃),量热器的比热容 c2 约为04×10³ J/(kg·℃),根据实验数据计算水的汽化热 L:\L =\frac{(\bar{m_1}c1 +\bar{m_2}c2)(\bar{T_2} \bar{T_1})}{\bar{m'}}\六、误差分析1、热量散失:在实验过程中,系统不可避免地会与外界发生热交换,导致热量散失,从而使测量结果偏小。
80℃下水的摩尔汽化热
摩尔汽化热是指在特定温度下,单位质量的物质从液态转化为气态所需要的能量。
在80℃的高温条件下,水的摩尔汽化热为2.624kJ/mol。
这个值相较于其他常见物质的摩尔汽化热数据来说,要稍微高一些。
但是,需要注意的是,这个值仅仅是在特定条件下得出的,如果在其他温度下或者压力不同,摩尔汽化热的结果也会有所变化。
水的摩尔汽化热与水的状态密切相关。
在标准状态下,也就是100℃和101℃时,水的摩尔汽化热为2.180kJ/mol,而在20℃的低温条件下,水的摩尔汽化热为1.122kJ/mol。
可以发现,随着温度的升高,水的摩尔汽化热也随之增加。
另外,需要注意的是,不同温度下的摩尔汽化热可能有所不同。
比如,在250℃的高温条件下,水的摩尔汽化热为3.336kJ/mol;而在300℃的温度下,水的摩尔汽化热为3.558kJ/mol。
这些数据也说明了在高温条件下,水的摩尔汽化热相较于低温条件下有所增加,但并不意味着温度越高,水的摩尔汽化热就越高。
总之,在80℃的高温条件下,水的摩尔汽化热为2.624kJ/mol。
这个值相对较高,但需要注意的是,这仅仅是在特定条件下得出的数据,温度和压力的变化也会对结果产生影响。
所以,在具体应用中,需要根据实际情况综合考虑。
第一部分:思考题实验七十四纯液体饱与蒸气压得测量1、简述由纯液体饱与蒸气压得测量求该液体平均摩尔汽化热得基本原理。
2、在纯液体饱与蒸汽压测定实验中,测定装置中安置缓冲储气罐起什么作用?3、在纯液体饱与蒸汽压测定实验中,平衡管得U形管中得液体起什么作用?冷凝管又起什么作用?4、在纯液体饱与蒸汽压测定中,如何检查体系就是否漏气?能否在热水浴中检查体系就是否漏气?5、说明纯液体饱与蒸气压、沸腾温度、正常沸点与摩尔汽化热得含义。
6、在纯液体饱与蒸气压测量实验中,怎样根据数字式压力表得读数确定系统得压力?7、在纯液体饱与蒸气压测量实验中,何时读取数字式压力表得读数?所得读数就是否就就是该纯液体得饱与蒸汽压?8、在纯液体饱与蒸气压测量实验中,测定沸点得过程中,若出现空气倒灌,则会产生什么结果?9、在纯液体饱与蒸气压测量实验中,测量过程中,如何判断平衡管内得空气已赶尽?10、在纯液体饱与蒸气压测量实验中应注意些什么?11、若用纯液体饱与蒸气压测量装置测量易燃液体得饱与蒸汽压,加热时应注意什么?12、在纯液体饱与蒸气压测量实验中,为什么ac弯管中得空气要排除净,怎样操作,怎样防止空气倒灌?13、在纯液体饱与蒸气压测量实验中,如果平衡管B、C内空气未被驱除干净,对实验结果有何影响?14、克-克方程式在什么条件下适用?15、用纯液体饱与蒸气压测量装置,可以很方便地研究各种液体,如苯、二氯乙烯、四氯化碳、水、正丙醇、异丙醇、丙酮与乙醇等,这些液体中很多就是易燃得,在加热时应该注意什么问题?16、能否用纯液体饱与蒸气压测量装置测定溶液得蒸气压,为什么?17、液体饱与蒸汽压得测定实验中为什么要测定不同温度下样品得饱与蒸汽压?18、您所用得每个测量仪器得精确度就是多少? 估计最后所得到得汽化热应有几位有效数字?19、若要测量当天大气压下纯液体得沸腾温度,该如何操作?20、纯液体饱与蒸汽压得测定实验中产生误差得原因有哪些?第二部分:参考答案实验七十四纯液体饱与蒸气压得测量1、简述由纯液体饱与蒸气压得测量求该液体平均摩尔汽化热得基本原理。