液压系统温升及散热器选型计算
- 格式:docx
- 大小:244.94 KB
- 文档页数:7
计算出液压系统单位时间内的热损耗,即系统的发热功率pv,然后结合你需要的油温期望值t1,对照风冷却器的当量冷却功率p1曲线图,选择与之匹与的型号。
这是普遍使用的计算方法。
必须注意,在测定系统单位时间内油的温升时,要区分是否有冷却器在工作,该文所指的工况是系统没有冷却器时油的温升。
计算公式:pv=ρ
油×v×c
油
×δt/h,式中:
pv:发热功率(w)
ρ油:油的密度(常取0.85kg/l)
v:油的容积(l)
c油:液压油的比热容,常取2.15kj/kg℃
δt:一定时间内油的温升
h:温升时间(s)
例:某一液压系统(无冷却器的工况下)在10分钟内油温从30℃上升至45℃,液压油的容积为80l。
发热功率计算如下:
pv=0.85×80×2.15×(45-30)/(10×60)=3.655kw
已知环境温度t2=30℃,最佳油温期望值55℃,则当量冷却功率计算如下:
p1= pv×η/(t1 -t2),式中:
p1:当量冷却功率(w/℃)
η:安全系数,一般取1.1
t1:油温期望值(℃)
t2:环境温度(℃)
故:p1=3.655×1.1/(55-30)=0.161kw/℃=161 w/℃
对应主泵流量,依据161 w/℃的当量冷却功率查曲线图,选取匹配的风冷却器。
最方便的另一种散热计算法,是发热功率估算法:一般取系统总功率的1/3~1/2作为冷却器的散热功率,若工况为长时间保压状态(如夹紧作业),则系数最大值推荐2/3。
禾风如贵客,一达便繁华!谢谢您的浏览。
转载请注明出处。
液压发热功率系统发热来源于系统内部的能量损失,如液压泵和执行元件的功率损失、溢流阀的溢流损失、液压阀及管道的压力损失等。
这些能量损失转换为热能,使油液温度升高。
油液的温升使粘度下降,泄漏增加,同时,使油分子裂化或聚合,产生树脂状物质,堵塞液压元件小孔,影响系统正常工作,因此必须使系统中油温保持在允许范围内。
一般机床液压系统正常工作油温为30~50℃;矿山机械正常工作油温50~70℃;最高允许油温为70~90℃。
1、系统发热功率P的计算:P=PB(1-η)(W)式中:PB为液压泵的输入功率(W);η为液压泵的总效率。
2、若一个工作循环中有几个工序,则可根据各个工序的发热量,求出系统单位时间的平均发热量。
式中:T为工作循环周期(s);ti为第i个工序的工作时间(s);Pi 为循环中第i个工序的输入功率(W)。
大兰液压系统3、系统的散热和温升系统的散热量可按下式计算。
式中:Kj为散热系数(W/m2℃),当周围通风很差时,K≈8~9;周围通风良好时,K≈15;用风扇冷却时,K≈23;用循环水强制冷却时的冷却器表面K≈110~175;Aj为散热面积(m2),当油箱长、宽、高比例为1∶1∶1或1∶2∶3,油面高度为油箱高度的80%时,油箱散热面积近似看成,式中V为油箱体积(L);Δt为液压系统的温升(℃),即液压系统比周围环境温度的升高值;j为散热面积的次序号。
4、当液压系统工作一段时间后,达到热平衡状态,则:P=P′。
计算所得的温升Δt,加上环境温度,不应超过油液的最高允许温度。
当系统允许的温升确定后,也能利用上述公式来计算油箱的容量。
液压系统的效率是由液压泵、执行元件和液压回路效率来确定的。
1、液压回路效率ηc一般可用下式计算:P1Q1+P2Q2+……/Pb1Qb1+Pb2Qb2式中:P1,Q1;P2,Q2;……为每个执行元件的工作压力和流量;Pb1,Qb1;Pb2,Qb2为每个液压泵的供油压力和流量。
液压系统中风冷式油冷却机的计算公式
计算出液压系统单位时间内的热损耗,即系统的发热功率Pv,然后结合你需要的油温期望值T1,对照风冷却器的当量冷却功率P1曲线图,选择与之匹与的型号。
这是普遍使用的计算方法。
必须注意,在测定系统单位时间内油的温升时,要区分是否有冷却器在工作,该文所指的工况是系统没有冷却器时油的温升。
计算公式:Pv=ρ油×V×C油×ΔT/H,式中:
Pv:发热功率(W)
ρ油:油的密度(常取0.85Kg/L)
V:油的容积(L)
C油:液压油的比热容,常取2.15Kj/Kg℃
ΔT:一定时间内油的温升
H:温升时间(s)
例:某一液压系统(无冷却器的工况下)在10分钟内油温从30℃上升至45℃,液压油的容积为80L。
发热功率计算如下:
Pv=0.85×80×2.15×(45-30)/(10×60)=3.655Kw
已知环境温度T2=30℃,最佳油温期望值55℃,则当量冷却功率计算如下:
P1= Pv×η/(T1 -T2),式中:
P1:当量冷却功率(w/℃)
η:安全系数,一般取1.1
T1:油温期望值(℃)
T2:环境温度(℃)
故:P1=3.655×1.1/(55-30)=0.161Kw/℃=161 w/℃
对应主泵流量,依据161 w/℃的当量冷却功率查曲线图,选取匹配的风冷却器。
最方便的另一种散热计算法,是发热功率估算法:一般取系统总功率的1/3~1/2作为冷却器的散热功率,若工况为长时间保压状态(如夹紧作业),则系数最大值推荐2/3。
散热器技术参数(2008-6-5 15:03:24 阅读V 64次)在使用功率器件时最重要的是如何使其产生的热量有效地散发出去,以获得高可靠性。
散热的最一般方法是把器件安装在散热器上,散热板将热量辐射到周围的空气中去,以及通过自然对流来散发热量。
一般地说,从散热器到周围的空气的热流量(P)可由下例表示。
P=hA η△T式中h为散热器总的传热导率(W/cm2℃),A为散热器的表面积(cm2),η为散热器效率,△T为散热器的最高温度与环境温度之差(℃)。
上式中h是由辐射及对流来决定,η是由散热器的形成来决定。
总之,散热器的表面积越大,与环境温度之差越大,散热板的热量辐射越有效。
(1)辐射散热下述近似式表示辐射散热hr=2.3×10-11×ε(△T/2+237)3(W/cm2℃)式中ε是表面辐射率,随散热器的表面状况而变化。
表面研磨光洁的产品ε=0.05~0.1也就是说辐射率极差。
然而,散热器表面涂以涂料,经氧化可使ε=1。
(2)对流散热功率器件安装在装置的框架上时,采用对流散热比辐射散热更有效。
在一个大气压的空气中,采用对流散热器的传导率近似地由下式表示。
hc=4.3×10-4×(△T/H)1/4(W/cm2 ℃)式中,H是散热器垂直方向长于水平方向更为有效。
(3)散热器效率η若用薄材料制成散热器,则离热源越远,表面温度越低,散热效果也越差。
上述公式是假定温度都是均在分布的,而实际上在散热板的边缘部位表面温度越低。
这种由散热器本身温度确定的系数就是散热器效率,它表示散热板实际传递的热量与器材安装部位最高温度视为均匀分布时的热量之比。
η主要是由所用散热器的材料大小与厚度来决定的。
一般地说,热传导率高的材料如铝(2.12W/cm2 ℃)及铜(3.85W/cm2 ℃)而钢(0.46W/cm2 ℃)就相当差了。
另外,散热器的厚度以厚些为好,并以跟散热器的长度平方成比例为最佳。
液压系统温升及散热器
选型计算
The manuscript was revised on the evening of 2021
液压系统温升及散热器选型计算
液压系统油液温升计算及冷却器选型
摘要: 介绍了液压系统的系统损耗功率及油液温升的计
算。
通过对两种冷却器的比较, 提出了正确的选型方法。
关键词: 液压系统; 油液温升; 冷却器; 损耗功率
1 前言
液压系统的压力、容积和机械损失构成总的能
量损失, 这些能量损失都将转化为热量, 使系统油温升高。
油温的变化将直接影响液压元件的寿命; 油温升高将使油液氧化, 加速油液的变质; 油温过高还严重影响液压油的稳定性, 进而影响液压系统的寿命和传动效率。
为此, 必须对系统进行发热与温升计算, 以便对系统温升加以控制。
下面对液压系统的发热量及温升计算和冷却器的选择予以介绍。
2 系统损耗功率和温升计算
损耗功率计算
液压系统发热的主要原因是由液压泵和执行器
的功率损失以及溢流阀的溢流损失造成的。
其系统的损耗功率即发热功率为:
H=P( 1- η)
式中:
P—系统泵组的总驱动功率;
η—系统效率。
η=ηP
ηC
ηA
其中:
ηP
—液压泵的效率, 可从产品样本中查到;
ηA
—液压执行器总效率, 液压缸一般取~;
ηC
—液压回路的效率。
ηC
=
Σp1 q1
Σp P q P
式中:
Σp1 q1 —各执行器负载压力和负载流量即输入
流量乘积的总和;
Σp p q p —各液压泵供油压力和输出流量乘积的
总和。
系统的损耗功率即发热功率H 也可按下式估
算, 由于热能的损耗总量约占泵组驱动功率的15% ~30%, 因此:
H=( 15%~30%) P
油液温升计算
液压系统中产生的热量H, 由系统中各个散热
面散发至空气中, 其中油箱是主要散热面。
因为管道散热面积相对较小, 且与其身的压力损失产生的热量基本平衡, 故一般略去不计。
当只考虑油箱散热
时, 其散热量H O 可按下式计算:
H O=KAΔt
式中:
K—散热系数[ W(/ m2·℃) ] , 计算时可选用推荐值: 当通风很差( 空气不循环) 时, K=8[ W/ ( m2·℃) ] ; 通风良好( 空气流速为1m/s 左右) 时, K=14~20[ W(/ m2·℃) ] ; 风扇冷却时,
K=20~25[ W(/ m2·℃) ] ; 用循环水冷却时,
K=110~175[ W(/ m2·℃) ] 。
A—油箱散热面积, m2;
Δt—系统温升, 即系统达到热平衡时油温与环
境温度之差。
一般工作机械Δt≤35℃; 工
程机械Δt≤40℃; 数控机床Δt≤25℃。
当系统产生的热量H 等于其散发出去的热量
H O 时, 系统达到平衡, 此时:
Δt=
H
KA ( 1)
当六面体油箱长、宽、高比例为1∶1∶1~1∶2∶3 且液面高度是油箱高度的倍时, 其散热面积的近
似计算式为:
A= V2 3" ( 2)
由式( 1) 和( 2) 可导出:
Δt=
H
V2 3"
式中:
V—油箱的有效容量, L。
若计算结果超出允许值并且适当加大油箱散热
面积仍不能满足要求时, 则应采取风扇强制散热或
加冷却器。
3 冷却器的选择
若系统长时间运转( 多班次连轴转) , 或出现环
境温度过高等散热问题, 均可采用外装冷却器解决。
重工与起重技术
HEAVY INDUSTRIAL & HOISTING MACHINERY
2007
Serial
2007 年第4 期
总第16 期
- 26-
重工与起重技术
HEAVY INDUSTRIAL & HOISTING MACHINERY
冷却器包括油- 气冷却器和油- 水冷却器两种
形式。
这两种形式各有优缺点: 油- 气冷却器安装成
本低、维修方便, 电机和电压可自由选取, 不会对液压系统造成损害; 但它比油- 水冷却器单元机组的体积大, 易产生噪音, 受环境温度影响较大。
油- 水
冷却器利用冷却水散热, 因此现场要有一定的水
源, 当冷却水温度一定时, 它有固定的冷却能力, 而与环境温度上升无关, 与油- 气冷却器相比, 在相同
冷却能力的情况下, 其体积更小, 但冷却水有渗漏
的可能, 也可能进入液压油, 损害设备。
选择油- 气冷却器时只要满足其冷却功率Pv=
( 15%~30%) P, 再根据相应的产品样本即可查得冷却器的型号规格。
选择油- 水冷却器时的主要参数是换热面积A T
A T=
H- H o
KΔt m
式中:
Δt m —对数平均温差, 即:
Δt m=
( T1 - t2) -( T2 - t1)
ln( T1 - t2) -( T2 - t1)
其中:
T1、T2—液压油液进出口温度, ℃;
t1、t2—冷却水进出口温度, ℃。
4 结束语
液压系统的设计计算包括系统压力损失、系统
效率、系统发热与温升及液压冲击等。
其计算的目的
是验算液压系统的技术性能, 从而对液压系统的设
计质量作出评价。
如果发生矛盾, 则应对液压系统进
行修正或改变液压元件规格。
我公司设计人员根据多年的实践经验, 对油液
温升问题做了详细地分析研究, 所选择的冷却器型
号规格, 均达到了很好的冷却效果, 延长了液压油液
的使用寿命, 减轻了对液压元件的损害, 因而, 延长
了整套设备的使用寿命, 为用户节省了大量的维修
与维护费用。
参考文献
1.张妍主编.现代液压站建设新技术与组装调试.运行维
护及故障诊断实务全书.北方工业出版社, 2007
f 主编.液压传动与液压元件.2003。