八年级数学多项式乘以多项式练习题
- 格式:doc
- 大小:47.50 KB
- 文档页数:3
八上数学每日一练:探索数与式的规律练习题及答案_2020年压轴题版答案解析答案解析2020年八上数学:数与式_代数式_探索数与式的规律练习题1.(2019下陆.八上期末) 小明同学在学习多项式乘以多项式时发现:( x+6)(2x+3)(5x ﹣4)的结果是一个多项式,并且最高次项为: x•2x•5x =5x , 常数项为:6×3×(﹣4)=﹣72,那么一次项是多少呢?要解决这个问题,就是要确定该一次项的系数.根据尝试和总结他发现:一次项系数就是:×3×(﹣4)+2×(﹣4)×6+5×6×3=36,即一次项为36x.认真领会小明同学解决问题的思路,方法,仔细分析上面等式的结构特征.结合自己对多项式乘法法则的理解,解决以下问题.(1) 计算(x+1)(3x+2)(4x ﹣3)所得多项式的一次项系数为.(2) ( x+6)(2x+3)(5x ﹣4)所得多项式的二次项系数为.(3) 若计算(x +x+1)(x ﹣3x+a )(2x ﹣1)所所得多项式的一次项系数为0,则a =.(4) 若(x+1)=a x +a x +a x +a x …+a x++a ,则a =.考点: 探索数与式的规律;多项式乘多项式;2.(2018海淀.八上期末) 对于0,1以及真分数p ,q ,r,若p<q<r ,我们称q 为p和r 的中间分数.为了帮助我们找中间分数,制作了下表:两个不等的正分数有无数多个中间分数.例如:上表中第③行中的3个分数、、,有,所以为和的一个中间分数,在表中还可以找到和的中间分数,, , .把这个表一直写下去,可以找到和 更多的中间分数.(1) 按上表的排列规律,完成下面的填空:①上表中括号内应填的数为;②如果把上面的表一直写下去,那么表中第一个出现的和的中间分数是;(2) 写出分数和(a 、b 、c 、d 均为正整数,,)的一个中间分数(用含a 、b 、c 、d 的式子表示),并证明;(3) 若与(m 、n 、s 、 t 均为正整数)都是和 的中间分数,则 的最小值为.考点: 探索数与式的规律;3.(2017扶沟.八上期末) 综合题。
《多项式乘以多项式》教案一、教学目标1. 让学生理解多项式乘以多项式的概念和意义。
2. 培养学生掌握多项式乘以多项式的运算方法和技巧。
3. 提高学生解决实际问题的能力,培养学生的数学思维。
二、教学内容1. 多项式乘以多项式的定义和性质。
2. 多项式乘以多项式的运算规则。
3. 多项式乘以多项式的例题解析和练习。
三、教学重点与难点1. 重点:多项式乘以多项式的运算方法和技巧。
2. 难点:理解多项式乘以多项式的概念和运算规则。
四、教学方法1. 采用讲解法,引导学生理解多项式乘以多项式的概念和意义。
2. 采用示例法,展示多项式乘以多项式的运算过程,让学生直观感受。
3. 采用练习法,让学生通过多做例题和练习题,巩固所学知识。
五、教学过程1. 导入:通过简单的数学问题,引入多项式乘以多项式的概念。
2. 新课讲解:讲解多项式乘以多项式的定义、性质和运算规则。
3. 示例解析:分析并解答几个多项式乘以多项式的例题。
4. 课堂练习:让学生独立完成一些多项式乘以多项式的练习题。
六、教学评价1. 通过课堂提问,检查学生对多项式乘以多项式的概念和运算规则的理解程度。
2. 通过课后作业和练习题,评估学生掌握多项式乘以多项式的运算方法和技巧的情况。
3. 结合学生的课堂表现和练习情况,综合评价学生的学习效果。
七、教学资源1. 教学PPT:制作多媒体教学课件,展示多项式乘以多项式的定义、性质和运算规则。
2. 练习题库:准备一批多项式乘以多项式的练习题,包括基础题和提高题。
3. 教学辅导书:提供相关的教学辅导书籍,供学生自主学习和复习。
八、教学进度安排1. 第一课时:讲解多项式乘以多项式的定义和性质。
2. 第二课时:讲解多项式乘以多项式的运算规则,示例解析。
3. 第三课时:课堂练习,学生独立完成练习题。
九、课后作业1. 完成课后练习题,巩固多项式乘以多项式的运算方法和技巧。
2. 选择一些提高题,挑战自己的极限,提高解决问题的能力。
多项式乘多项式专项练习30题(有答案)1.若(x﹣1)(x+3)=x2+mx+n,那么m,n的值分别是()A.m=1,n=3 B.m=4,n=5 C.m=2,n=﹣3 D.m=﹣2,n=32.下列各式中,计算结果是x2+7x﹣18的是()A.(x﹣1)(x+18)B.(x+2)(x+9) C.(x﹣3)(x+6)D.(x﹣2)(x+9)3.若(x﹣a)(x+2)的展开项中不含x的一次项,则a的值为()A.a=﹣2 B.a=2 C.a=±2 D.无法确定4.如果(x﹣3)(2x+4)=2x2﹣mx+n,那么m、n的值分别是()A.2,12 B.﹣2,12 C.2,﹣12 D.﹣2,﹣125.已知m+n=2,mn=﹣2,则(1﹣m)(1﹣n)的值为()A.﹣3 B.﹣1 C.1D.56.先化简,再求值:5(3x2y﹣xy2)﹣4(﹣xy2+3x2y),其中x=﹣2,y=3.7.计算:(1)30﹣2﹣3+(﹣3)2﹣()﹣1 (2)(﹣2a2b3)4+(﹣a)8•(2b4)3(3)x(2x+1)(1﹣2x)﹣4x(x﹣1)(1﹣x)(4)(2a﹣b+3)(2a+b﹣3)(5)(x﹣1)(x2+x+1)8.计算:(1)(﹣7x2﹣8y2)•(﹣x2+3y2)=_________;(2)(3x﹣2y)(y﹣3x)﹣(2x﹣y)(3x+y)=_________.9.计算:a(a+2)(a﹣3)10.计算:(a+b)(a2﹣ab+b2)11.计算:(2x﹣3y)(x+4y)12.计算:(1)(2)(﹣4x﹣3y2)(3y2﹣4x)13.计算:(2x+5y)(3x﹣2y)﹣2x(x﹣3y)14.5x2﹣(x﹣2)(3x+1)﹣2(x+1)(x﹣5)15.已知6x2﹣7xy﹣3y2+14x+y+a=(2x﹣3y+b)(3x+y+c),试确定a、b、c的值.16.已知多项式(x2+mx+n)(x2﹣3x+4)展开后不含x3和x2项,试求m,n的值.17.计算(x+2)(x2﹣2x+4)=_________.18.一个二次三项式x2+2x+3,将它与一个二次项ax+b相乘,积中不出现一次项,且二次项系数为1,求a,b的值?19.计算:(1)﹣2a(2a2+3a+1);(2)(x+2y)(3x﹣4y)20.(m2﹣2m+3)(5m﹣1)21.计算:(﹣3x﹣2y)(4x+2y)22.先阅读,再填空解题:(x+5)(x+6)=x2+11x+30;(x﹣5)(x﹣6)=x2﹣11x+30;(x﹣5)(x+6)=x2+x﹣30;(x+5)(x﹣6)=x2﹣x﹣30.(1)观察积中的一次项系数、常数项与两因式中的常数项有何关系?答:_________.(2)根据以上的规律,用公式表示出来:_________.(3)根据规律,直接写出下列各式的结果:(a+99)(a﹣100)=_________;(y﹣80)(y﹣81)=_________.23.填空(x﹣y)(x2+xy+y2)=_________;(x﹣y)(x3+x2y+xy2+y3)=_________根据以上等式进行猜想,当n是偶数时,可得:(x﹣y)(x n+x n﹣1y+y n﹣2y2+…+x2y n﹣2+xy n﹣1+y n)=_________.24.如果(x﹣3)(x+5)=x2+Ax+B,求3A﹣B的值.25.计算:(1)﹣(2a﹣b)+[a﹣(3a+4b)](2)(a+b)(a2﹣ab+b2)26.(a﹣b+c﹣d)(c﹣a﹣d﹣b)27.(x﹣1)(x﹣2)=(x+3)(x﹣4)+20.28..29.小明在计算一个多项式乘以x+y﹣4的题目时,误以为是加法运算,结果得到2x+2y.你能计算出这个多项式乘以x+y﹣4的正确结果吗?30.化简:(x+y)(x2﹣xy+y2)参考答案:1.∵(x﹣1)(x+3)=x2+2x﹣3=x2+mx+n,∴m=2,n=﹣3.故选C.2.A、原式=x2+17x﹣18;B、原式=x2+11x+18;C、原式=x2+3x﹣18;D、原式=x2+7x﹣18.故选D3.∵(x﹣a)(x+2)=x2+(2﹣a)﹣2a.又∵结果中不含x的项,∴2﹣a=0,解得a=2.故选B4.原方程可化为:2x2﹣2x﹣12=2x2﹣mx+n,∴﹣2=﹣m,n=﹣12,解得m=2,n=﹣12.故选C5.∵m+n=2,mn=﹣2,∴(1﹣m)(1﹣n)=1﹣(m+n)+mn=1﹣2﹣2=﹣3.故选A6.原式=15x2y﹣5xy2+4xy2﹣12x2y=3x2y﹣xy2,当x=﹣2,y=3时,原式=3×(﹣2)2×3﹣(﹣2)×32=36+18=547.(1)原式=1﹣+9﹣4=(2)原式=16a8b12+8a8b12=24a8b12(3)x﹣4x3+4x3﹣8x2+4x=﹣8x2+5x(4)原式=(2a)2﹣(b﹣3)2=4a2﹣(b2﹣6b+9)=4a2﹣b2+6b﹣9(5)原式=x(x2+x+1)﹣(x2+x+1)=x3﹣18.(1)(﹣7x2﹣8y2)•(﹣x2+3y2)=7x4﹣21x2y2+8x2y2﹣24y4=7x4﹣13x2y2﹣24y4;(2)(3x﹣2y)(y﹣3x)﹣(2x﹣y)(3x+y)=3xy﹣9x2﹣2y2+6xy﹣(6x2+2xy﹣3xy﹣y2)=﹣9x2﹣2y2+9xy﹣6x2+xy+y2 =﹣15x2﹣y2+10xy.9.原式=(a2+2a)(a﹣3)=a3﹣3a2+2a2﹣6a=a3﹣a2﹣6a10.原式=a3+a2b﹣a2b﹣ab2+ab2+b3=a3+b3.11.(2x﹣3y)(x+4y)=2x2﹣3xy+8xy﹣12y2=2x2+5xy﹣12y2.12.(1)原式=(2x2﹣4xy+7y2)=;(2)原式=(﹣4x﹣3y2)(﹣4x+3y2)=(﹣4x)2﹣(3y2)2=16x2﹣9y413.原式=6x2+11xy﹣10y2﹣2x2+6xy=4x2+17xy﹣10y2.14.原式=5x2﹣(3x2﹣5x﹣2)﹣2(x2﹣4x﹣5)=5x2﹣3x2+5x+2﹣2x2+8x+10=13x+1215.∵(2x﹣3y+b)(3x+y+c)=6x2﹣7xy﹣3y2+(2c+3b)x+(b﹣3c)y+bc∴6x2﹣7xy﹣3y2+(2c+3b)x+(b﹣3c)y+bc=6x2﹣7xy﹣3y2+14x+y+a∴2c+3b=14,b﹣3c=1,a=bc联立以上三式可得:a=4,b=4,c=1故a=4,b=4,c=116.原式=x4﹣3x3+4x2+mx3﹣3mx2+4mx+nx2﹣3nx+4n=x4+(m﹣3)x3+(4﹣3m+n)x2+(4m﹣3n)x+4n.由题意得m﹣3=0,4﹣3m+n=0,解得m=3,n=517.(x+2)(x2﹣2x+4)=x3﹣2x2+4x+2x2﹣4x+8=x3+8.故答案为:x3+8.18.(x2+2x+3)×(ax+b)=ax3+bx2+2ax2+2xb+3ax+3b=ax3+(bx2+2ax2)+(2xb+3ax)+3b,∵积中不出现一次项,且二次项系数为1,∴2a+b=1,2b+3a=0,∴b=﹣3,a=219.(1)﹣2a(2a2+3a+1)=﹣4a3﹣6a2﹣2a;(2)(x+2y)(3x﹣4y)=3x2﹣4xy+6xy﹣8y2=3x2+2xy﹣8y220.(m2﹣2m+3)(5m﹣1)=5m3﹣m2﹣10m2+2m+15m﹣3=5m3﹣11m2+17m﹣321.原式=﹣3x•4x﹣3x•2y﹣2y•4x﹣2y•2y=﹣12x2﹣6xy﹣8xy﹣4y2=﹣12x2﹣14xy﹣4y222.(1)观察积中的一次项系数、常数项与两因式中的常数项有何关系是:一次项系数是两因式中的常数项的和,常数项是两因式中的常数项的积;(2)根据以上的规律,用公式表示出来:(a+b)(a+c)=a2+(b+c)a+bc;(3)根据(2)中得出的公式得:(a+99)(a﹣100)=a2﹣a﹣9900;(y﹣80)(y﹣81)=y2﹣161y+6480.故填:一次项系数是两因式中的常数项的和,常数项是两因式中的常数项的积;(a+b)(a+c)=a2+(b+c)a+bc;a2﹣a﹣9900,y2﹣161y+648023.原式=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3;故答案为:x3﹣y3;原式=x4+x3y+x2y2+xy3﹣x3y﹣x2y2﹣xy3﹣y4=x4﹣y4;故答案为:x4﹣y4;原式=x n+1+x n y+xy n﹣2+x2y n﹣1+xy n﹣x n y﹣x n﹣1y2﹣y n﹣1y2﹣…﹣x2y n﹣1﹣xy n﹣y n+1=x n+1﹣y n+1,故答案为:x n+1﹣y n+124.∵(x﹣3)(x+5)=x2+5x﹣3x﹣15=x2+2x﹣15,∴A=2,B=﹣15,∴3A﹣B=21.故3A﹣B的值为21 25.(1)原式=﹣2a+b+[a﹣3a﹣4b]=﹣2a+b+a﹣3a﹣4b=﹣4a﹣3b;(2)原式=a3﹣a2b+ab2+a2b﹣ab2+b3=a3+b326.原式=[(c﹣b﹣d)+a][(c﹣b﹣d)﹣a]=(c﹣b﹣d)2﹣a2=(c﹣b)2﹣2(c﹣b)d+d2﹣a2=c2﹣2cb+b2﹣2cd+2bd+d2﹣a227.:原方程变形为:x2﹣3x+2=x2﹣x﹣12+20整理得:﹣2x﹣6=0,解得:x=﹣328.原式=﹣6x3+13x2﹣429.根据题意列得:[(2x+2y)﹣(x+y﹣4)](x+y﹣4)=(2x+2y﹣x﹣y+4)(x+y﹣4)=(x+y+4)(x+y﹣4)=(x+y)2﹣16=x2+2xy+y2﹣1630.(x+y)(x2﹣xy+y2)=x3﹣x2y+xy2+x2y﹣xy2+y3=x3+y3.故答案为:x3+y3.。
代数式课时1.整式及其运算【课标要求】1.代数式:用运算符号(加、减、乘、除、乘方、开方)把 或表示 连接而成的式子叫做代数式.2.代数式的值:用 代替代数式里的字母,按照代数式里的运算关系,计算后所得的 叫做代数式的值. 3.整式(1)单项式:由数与字母的 组成的代数式叫做单项式(单独一个数或 也是单项式).单项式中的 叫做这个单项式的系数;单项式中的所有字母的 叫做这个单项式的次数.(2)多项式:几个单项式的 叫做多项式.在多项式中,每个单项式叫做多项式的 ,其中次数最高的项的 叫做这个多项式的次数.不含字母的项叫做 .(3)整式: 与 统称整式.4.同类项:在一个多项式中,所含 相同并且相同字母的 也分别相等的项叫做同类项.合并同类项的法则是 相加,所得的结果作为合并后的系数,字母和字母的指数 。
5.幂的运算性质:a m ·a n = ;(a m )n = ;a m ÷a n =_____;(ab)n = .6.乘法公式:(1)=++))((d c b a ;(2)(a +b )(a -b)= ; (3)(a +b)2= ;(4)(a -b)2= . 7.整式的除法⑴单项式除以单项式的法则:把 、 分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.⑵多项式除以单项式的法则:先把这个多项式的每一项分别除以 ,再把所得的商 .【中考试题】一.选择题1.(20KK 年,3分)计算的结果是() A . B . C . D . 2.(20KK 年,3分)下列运算中,正确的是()A .B .C .D . 3.(20KK 年,3分)下列计算中,正确的是A .020=B .2a a a =+C3=±D .623)(a a =4.(20KK 年,云南)下列计算正确的是() A .B .(-2)3=8C . D . 5.(20KK 年,昆明)下列运算正确的是()A .16=±4B .2a +3b =5abC .(x -3)2=x 2-9D .(-n m )2= n 2m26.(20KK 四川)计算a+(-a)的结果是() (A )2a (B )0(C )-a 2(D )-2a7.(20KK 浙江)计算,正确的结果是 A .B .C .D .8.(20KK 浙江台州)计算的结果是() A. B. C. D.9.(20KK 广东株洲)计算x 2·4x 3的结果是() A .4x 3 B .4x 4 C .4x 5 D .4x 610.(20KK 江苏宿迁)计算(-a 3)2的结果是() A .-a 5B .a 5C .a 6D .-a 611.(20KK 重庆市)计算3a 2a 的结果是A .6aB .6a 2C.5aD.5a12.(20KK 湖北宜昌)下列计算正确的是(). A.3a -a=3B.a 2.a 3=a 6C.(3a 3)2=2a 6D.2a÷a=213.(20KK 浙江舟山)下列计算正确的是( )(A ) (B ) (C ) (D ) 14.(20KK 广东广州)下面的计算正确的是( ). A .3x 2·4x 2=12x 2 B .x 3·x 5=x 15 C .x 4÷x=x 3 D .(x 5)2=x 7 15.(20KK 江苏扬州)下列计算正确的是()A. B.(a+b)(a -2b)=a 2-2b 2C.(ab 3)2=a 2b 6D.5a —2a=316.(20KK 山东日照)下列等式一定成立的是() (A )a 2+a 3=a 5(B )(a+b )2=a 2+b 2 (C )(2ab 2)3=6a 3b 6(D )(x -a )(x -b )=x 2-(a+b )x+ab 17.(20KK 山东泰安)下列运算正确的是()A .3a 3+4a 3=7a 6B .3a 2-4a 2=-a 2C.3a 2·4a 3=12a 3D .(3a 3)2÷4a 3=34a 218.(20KK 山东威海)下列运算正确的是()A .B .C .D .19.(20KK 山东烟台)下列计算正确的是() A.a 2+a 3=a 5B.a 6÷a 3=a 2C.4x 2-3x 2=1D.(-2x 2y)3=-8x 6y 3 20.(20KK 宁波市)下列计算正确的是223a a +23a 24a 43a 44a 34=-m m ()m n m n --=+236m m =()m m m =÷22222()a b a b -=-11()33-=632a a a ÷=23a a 62a 52a 6a 5a 32)(a 23a 32a 5a 6a ⋅232x x x =⋅2x x x =+532)(x x =236x x x =÷632a a a =∙326a a a ⋅=336()x x =5510x x x +=5233()()ab ab a b -÷-=-A .(a 2)3=a 6B .a 2+a 2=a 4C .(3a)·(2a)=6aD .3a -a =3 21.(20KK 浙江义乌)下列计算正确的是()A .B .C .D . 22.(20KK 浙江省嘉兴)下列计算正确的是( )(A ) (B ) (C ) (D )23.(20KK 山东济宁)下列等式成立的是A .a 2+a 2=a 5B .a 2-a 2=aC .a 2a 2=a 6D .(a 2)3=a 6 24.(20KK 山东聊城)下列运算不正确的是()A .B .C .D .25.(20KK 湖南益阳)下列计算正确的是A.B .C .D . 26.(20KK 四川成都)下列计算正确的是(A ) (B)(C)(D)27.(20KK 四川宜宾)下列运算正确的是()A .3a -2a=1B .C .D . 29.(20KK 湖南怀化)下列运算正确的是A.a·a 3=a 3B.(ab)3=ab 3C.a 3+a 3=a 6D.(a 3)2=a 6 30.(20KK 江苏南京)下列运算正确的是 A .a 2+a 3=a 5 B .a 2•a 3=a 6 C .a 3÷a 2=a D .(a 2)3=a 831.(20KK 山东临沂)下列运算中正确的是() A .(-ab )2=2a 2b 2B .(a +1)2=a 2+1C .a 6÷a 2=a 3D .2a 3+a 3=3a 3 32.(20KK 四川绵阳)下列运算正确的是 A.a+a²=a³B.2a+3b=5abC.(a³)2=a 9 D.a 3÷a 2=a 33.(20KK 山东泰安)下列等式不成立的是() A.m 2-16=(m -4)(m+4)B.m 2+4m=m(m+4) C.m 2-8m+16=(m -4)2D.m 2+3m+9=(m+3)2 34.(20KK 江西)下列运算正确的是(). A.a+b=abB.a 2·a 3=a 5C.a 2+2ab -b 2=(a -b)2D.3a -2a=1 35.(20KK 湖北襄阳)下列运算正确的是A. B. C. D.36.(20KK 湖南永州)下列运算正确是()A .B .C .D .37.(20KK 江苏盐城)下列运算正确的是 A .x 2+x 3=x 5 B .x 4·x 2=x 6 C .x 6÷x 2=x 3 D .(x 2)3=x 8 38.(20KK 山东东营)下列运算正确的是( )A B .C .D .39.(20KK1江苏镇江)下列计算正确的是()A. B. C.3m+3n=6mnD.40.(20KK 内蒙古乌兰察布)下列计算正确的是()A. B. C. D. 41.(20KK 广东湛江)下列计算正确的是246x x x +=235x y xy +=632x x x ÷=326()x x =32x x x =⋅2x x x =+532)(x x =236x x x =÷⋅5552a aa +=()32622a a -=-2122a aa -⋅=()322221a a a a -÷=-()222x y x y +=+()2222x y x xy y -=--()()22222x y x y x y +-=-()2222x y x xy y -+=-+2x x x =+x x x 2=⋅532)(x x =23x x x =÷632a a a =⋅2222)(b ab a b a +-=-222)(b a b a +=+a a a =-2632)(a a -=-236x x x =÷222)(y x y x +=+1)1(--=--a a 222)(b a b a -=-a a =2532a a a =⋅3362x x x +=824x x x ÷=m n mn x x x =5420()x x -=236a a a ∙=33y y y ÷=()236x x =()236a a =2232aa a =+623a a a =∙339a a a =÷A B C D42.(20KK 河北)下列运算中,正确的是() A .2x -x=1 B .C .D .43.(20KK 湖南)下列计算,正确的是()A .B .C .D .44.(20KK 山东)如下列计算正确的是() A .a 6÷a 2=a 3B .a 2+a 3=a 5C .(a 2)3=a 6D .(a +b)2=a 2+b 245.(20KK 安徽芜湖)如图,从边长为(a +4)cm 的正方形纸片中剪去一个边长为cm 的正方形,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为().A .B .C .D .46.(20KK 山东枣庄)如图,边长为(m+3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A .m+3B .m+6C .2m+3D .2m+6 47.(20KK 湖南益阳)观察下列算式: ①1×3-22=3-4=-1 ②2×4-32=8-9=-1 ③3×5-42=15-16=-1 ④ ……(1)请你按以上规律写出第4个算式; (2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.48.(20KK 浙江省)如图,下面是按照一定规律画出的“数形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”,……,照此规律,图A6比图A2多出“树枝”() A.28B.56C.60D.12449.(20KK 广东肇庆)如图5所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第(是大于0的整数)个图形需要黑色棋子的个数是.235a a a =2a a a +=235()a a =22(1)1a a a +=+54xx x =+()33x 6-x 2-=22x y y x =÷()32628x x=623a a a ÷=222326a a a ⨯=01303⎛⎫⨯= ⎪⎝⎭()1a +(0)a >22(25)cm a a +2(315)cm a +2(69)cm a +2(615)cm a+n n50.(20KK 内蒙古)将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第n 个图形有个小圆.(用含n 的代数式表示)51.(20KK 山东聊城)如图,用围棋子按下面的规律摆图形,则摆第n 个图形需要围棋子的枚数是()A .5nB .5n -1C .6n -1D .2n2+1 52.(20KK 广东)如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是,它是自然数的平方,第8行共有个数;(2)用含n 的代数式表示:第n 行的第一个数是,最后一个数是,第n 行共有个数; (3)求第n 行各数之和.53.(20KK 浙江绍兴,17,4分)先化简,再求值:,其中.课时2.因式分解【课标要求】1.因式分解:就是把一个多项式化为几个整式的 的形式.分解因式要进行到每一个因式都不能再分解为止.2(2)2()()()a a b a b a b a b -++-++1,12a b =-=第1个图形第 2 个图形 第3个图形第 4 个图形第 18题图2.因式分解的方法:⑴ ,⑵ ,⑶ ,3.提公因式法:=++mc mb ma __________ _________.4.公式法:⑴=-22b a ⑵=++222b ab a , ⑶=+-222b ab a .5.十字相乘法:()=+++pq x q p x 2. 6.因式分解的一般步骤:一“提”(取公因式),二“套”(公式).三“十字”四“查”. 7.易错知识辨析注意因式分解与整式乘法的关系; 【中考试题】 一.选择题1.下列各式从左到右的变形中,是因式分解的为()A .bx ax b a x -=-)(B .222)1)(1(1y x x y x ++-=+-C .)1)(1(12-+=-x x x D .c b a x c bx ax ++=++)( 2.(20KK 浙江)下列各式能用完全平方式进行分解因式的是() A .x 2+1 B.x 2+2x -1 C.x 2+x+1 D.x 2+4x+4 3.(20KK 浙江金华)下列各式能用完全平方式进行分解因式的是() A .x 2+1B.x 2+2x -1C.x 2+x+1D.x 2+4x+44.(20KK 山东济宁)把代数式分解因式,结果正确的是() A .B .C .D .5.(20KK 江苏无锡)分解因式2x 2−4x+2的最终结果是() A .2x(x−2)B .2(x 2−2x+1)C .2(x−1)2D .(2x−2)26.(20KK 江苏盐城)已知a -b=1,则代数式2a -2b -3的值是_____ A .-1 B .1 C .-5 D .57.(08东莞)下列式子中是完全平方式的是()A .22b ab a ++B .222++a aC .222b b a +-D .122++a a8.(20KK 湖北荆州)将代数式化成的形式为_____ A .B .C .D . 9.如图,在长为a 的正方形中挖掉一个边长为b 的小正方形(a>b )把余下的部分剪拼成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是() A .a 2-b 2=(a+b)(a-b) B .(a+b)2=a 2+2ab+b 2C .(a-b)2=a 2-2ab+b 2D .(a+2b)(a-b)=a 2+ab-2b 2R24R π c ,A.锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形 二填空题1.(20KK 湖南)分解因式:2(20KK 湖南)分解因式:=________________.322363x x y xy -+(3)(3)x x y x y +-223(2)x x xy y -+2(3)x x y -23()x x y -142-+x x q p x ++2)(3)2(2+-x 4)2(2-+x 5)2(2-+x 4)2(2++x 24_________.x x -=m m -23.(20KK 宁波)因式分解:xy -y =_______________4.(20KK 江苏)分解因式:2a 2-4a=_______________.5.(20KK 浙江台州)因式分解:=_______________6.(20KK 四川宜宾)分解因式:____________________.7.(20KK 上海)因式分解:_______________. 8.(20KK 湖北黄冈)分解因式8a 2-2=________________.9.(20KK 山东)分解因式:=________________. 10.(20KK 安徽芜湖)因式分解=______________.11.(20KK 江苏南通)分解因式:3m(2x -y)2-3mn 2=______________12.(20KK 山东临沂)分解因式:9a -ab 2=______________.13.(20KK 四川)分解因式:______________。
八年级多项式乘以多项式专项练习题一(命题:八年级数学组)班级:姓名:分数:1.(2a-3b)(2a+3b)2.(3x-1)(4x+5)3.(x-1)(x-2)4.(x+3)(x+4)5.(4x-y)(5x+2y)6.(y-2)(y-3)7.(x+1)(x-1)8.(2x+3y)(3x-2y)9.(2x-3y)(4x2+6xy+9y2) 10.(a2+2)(a4-2a2+4) 11.(3x2+2x+1)(2x2+3x-1) 12.(2a-3b)(2a+3b) 13. (3x-1)(4x+5) 14. (x-1)(x-2) 15. (x+3)(x+4)16.(4x-y)(5x+2y) 17.(y-2)(y-3) 18.(x+1)(x-1) 19.(2x+3y)(3x-2y)20.(2x-3y)(4x2+6xy+9y2) 21.(a2+2)(a4-2a2+4) 22.(3x2+2x+1)(2x2+3x-1)23.(2a-3b)(2a+3b) 24. (3x-1)(4x+5) 25. (x-1)(x-2) 26. (x+3)(x+4)27.(4x-y)(5x+2y) 28.(y-2)(y-3) 29.(x+1)(x-1) 30.(2x+3y)(3x-2y)31.(2x-3y)(4x2+6xy+9y2) 32.(a2+2)(a4-2a2+4) 33.(3x2+2x+1)(2x2+3x-1) 34.(2a-3b)(2a+3b) 35. (3x-1)(4x+5) 36.(x-1)(x-2) 37.(x+3)(x+4)38.(4x-y)(5x+2y) 39.(y-2)(y-3) 40. (x+1)(x-1) 41. (2x+3y)(3x-2y)42.(2x-3y)(4x2+6xy+9y2) 43.(a2+2)(a4-2a2+4) 44.(3x2+2x+1)(2x2+3x-1)周末作业——八年级多项式乘以多项式专项练习题二(命题:八年级数学组满分:120分)班级: 姓名: 分数:一、填空题.(30分)1.22(3)(21)x x x --+-= 。
2022-2023学年人教版八年级数学上册单元测试定心卷第十四章 整式的乘法与因式分解(能力提升)时间:100分钟 总分:120分一、选择题目(每题3分,共24分)1.计算()2223x x ⋅-的结果是 ( )A .46x -B .56xC .52x -D .62x【解析】 解:()2223x x ⋅-=46x -,故选:A .【点睛】本题考查单项式乘单项式,熟练掌握运算法则是解答的关键.2.下列单项式中,使多项式216a M +能用平方差公式因式分解的M 是 ( )A .aB .2bC .-16aD .2b -【解析】解:A 、16a 2+a ,不符合平方差公式,不符合题意;B 、16a 2+b 2,不符合平方差公式,不符合题意;C 、16a 2-16a ,不符合平方差公式,不符合题意;D 、16a 2-b 2,符合平方差公式,符合题意.故选:D .【点睛】本题考查了平方差公式:a 2-b 2=(a+b )(a-b ),掌握平方差公式是解题的关键.3.若323b a =+,则代数式224129a ab b -+的值为 ( )A .1-B .9C .7D .5【解析】解:∵323b a =+,∴323b a -=∴()222412932a ab b b a -+=-23= =9.故选:B .【点睛】本题考查求代数式的值,完全平方式,解题关键能发现所给的条件等式与所求代数式之间的关系.4.把一块边长为a 米(5a >)的正方形土地的一边增加5米,相邻的另一边减少5米,变成一块长方形土地,你觉得土地的面积 ( )A .没有变化B .变大了C .变小了D .无法确定【解析】解:由题意得:长方形土地的长为()5a +米,宽为()5a -米,∴长方形的面积为()()()225525m a a a +-=-,正方形的面积为2a 平方米,∴2225a a >-,∴我觉得土地的面积变小了;故选C .【点睛】本题主要考查平方差公式,熟练掌握平方差公式是解题的关键.5.观察图形,用两种不同的方法计算大长方形面积,我们可以验证等式 ( )A .(a +b )(a +2b )=a2+3ab +2b2B .(a +b )(2a +b )=2a2+3ab +b2C .(a +b )(a +2b )=2a2+3ab +b2D .(a +b (2a +b )=a2+3ab +2b2【解析】解:∵长方形的面积=(a +b )(a +2b )长方形的面积=a 2+ab +ab +ab +b 2+b 2= a2+3ab +2b2,∴(a +b )(a +2b )= a 2+3ab +2b 2故选:A .【点睛】本题考查多项式乘以多项式的几何意义,通过几何图形之间的数量关系对多项式乘以多项式做出几何解释.6.阅读材料:数学课上,杨老师在求代数式245x x -+的最小值时,利用公式222)2(a ab b a b ±+=±,对式子作如下变形:22245441(2)1x x x x x ++=+++=++,因为2(2)0x +≥,所以2(2)11x ++≥,当2x =-时,2(2)11x ++=,因此245x x ++的最小值是1.通过阅读,解答问题:当x 取何值时,代数式289x x ---有最大或最小值,是多少?( )A .当4x =时,有最小值7-.B .当4x =-时,有最小值7.C .当4x =-时,有最大值7.D .当4x =时,有最大值7-.【解析】解:289x x ---=()289x x -++=()28167x x -+++=()247x -++∴当4x =-时,有最大值7,故选:C .【点睛】本题考查求代数式的最值,完全平方公式的应用,解题的关键是参照样例对代数式进行变形.7.如图,有两个正方形A ,B ,现将B 放置在A 的内部得到图甲,将A 、B 并列放置,以正方形A 与正方形B 的边长之和为新的边长构造正方形得到图乙,若图甲和图乙中阴影部分的面积分别为1和8,则正方形A 、B 的面积之和为 ( )A .8B .9C .10D .12【解析】解:设大小正方形边长分别为a 、b ,S 阴1=(a ﹣b )2=1,即a 2+b 2﹣2ab =1,S 阴2=(a +b )2﹣a 2﹣b 2=8,得:ab =4.∴a 2+b 2﹣2×4=1,∴a 2+b 2=9.故选:B .【点睛】考查了完全平方式的应用,把阴影部分表示出来是解题的关键.8.若()()35M x x =--,()()26N x x =--,则M 与N 的关系为 ( )A .M NB .M N >C .M N <D .不能确定【解析】 解:∵()()235815M x x x x =--=-+,()()226812N x x x x =--=-+,()228158123M N x x x x -=-+--+=>0,∴M N >.故选:B .【点睛】本题主要考查多项式乘以多项式、整式的加减.注意不要漏项,漏字母,有同类项的合并同类项,掌握多项式乘以多项式的法则是解题的关键.二、填空题目(每题3分,共24分)9.计算:(21)(21)x x -+--_________.【解析】解:(21)(21)x x -+--241x =-.故答案为:241x -【点睛】本题主要考查了平方差公式,熟练掌握平方差公式是解题的关键.10.计算:4.3×202.2+7.6×202.2-1.9×202.2=__________.【解析】解:4.3×202.2+7.6×202.2-1.9×202.2=202.2×(4.3+7.6-1.9)=202.2×10=2022,故答案为:2022.【点睛】本题考查提公因式法分解因式,掌握提公因式的方法是正确应用的前提.11.已知(1)(1)8x y --=,8x y +=,则xy =________.【解析】解:(1)(1)8,x y --=18,xy x y ∴--+=()18,xy x y ∴-++=()7,xy x y ∴=++8,x y ∴+=7815.xy ∴=+=故答案为:15.【点睛】本题主要考查了多项式乘多项式,熟练掌握多项式乘多项式乘法法则是解此题的根据.12.若2(3)9x m x +-+是完全平方式,则m =______.【解析】解:∵2(3)9x m x +-+是完全平方式,∴m −3=±6,解得:m =-3或9.故答案为:-3或9.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13.已知21m x =+,132m y +=+,若用含x 的代数式表示y ,则y =______.【解析】∵21m x =+,132m y +=+,∴12m x -=,322m y -=⨯,∴3(1)2y x -=-⨯,即21y x =+,故答案为:21x +.【点睛】本题考查了同底数幂的乘法的逆用,掌握同底数幂的乘法是解答本题的关键.14.若n 满足22(2020)(2022)1n n -+-=,则(2020)(2022)n n --=________.【解析】解:()()()()()()222420202022=20202022+220202022n n n n n n ⎡⎤=-+--+---⎣⎦, 又22(2020)(2022)1n n -+-=,212(2020)(2022)24n n ∴+--==,3(2020)(2022)2n n ∴--=, 故答案为:32.【点睛】本题考查了完全平方公式,能灵活运用完全平方公式进行变形计算是解此题的关键.15.已知6m n -=,216730mn c c +++=,则m +n +c 的值为__________.【解析】解:∵m −n =6,∴m =n +6,∵216730mn c c +++=,∴n (n +6)+c 2+16c +73=0,∴n 2+6n +c 2+16c +73=0,∴n 2+6n +9+c 2+16c +64=0,∴(n +3)2+(c +8)2=0,∴n +3=0,c +8=0,∴n =−3,c =−8,∴m =n +6=−3+6=3,∴m +n +c =3+(−3)+(−8)=−8,∴m +n +c 的值为−8.故答案为:−8.【点睛】本题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.16.如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”,他的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的.“杨辉三角”中有许多规律,如它的每一行的数字正好对应了()na b +(n 为非负整数)的展开式中a 按次数从大到小排列的项的系数,例如:()2222a b a ab b +=++展开式中的系数1,2,1恰好对应图中第三行的数字;()3322333a b a a b ab b +=+++展开式中的系数1,3,3,1恰好对应图中第四行的数字…….请认真观察此图,根据前面各式的规律,写出()5a b +的展开式:()5a b +=______.解:可得:(a+b )4=a 4+4a 3b+6a 2b 2+4ab 3+b 4;则(a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5.故答案为:a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5.【点睛】本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.三、解答题(每题8分,共72分)17.计算(1)计算:(2x ﹣y )2﹣(2x +y )(2x ﹣y );(2)用简便方法计算:20212﹣2020×2022.【解析】(1)解:原式=4x 2-4xy +y 2-4x 2+y 2=-4xy +2y 2;(2)解:原式=(2020+1)2-2020×(2020+2)=20202+2×2020×1+1-20202-2020×2=1.【点睛】本题考查整式混合运算,完全平方公式,平方差公式,熟练掌握完全平方公式和平方差公式是解题的关键.18.以下是小鹏化简代数式()()()()221123a a a a a -++---的过程.(1)小鹏的化简过程在第______步开始出错,错误的原因是______.(2)请你帮助小鹏写出正确的化简过程,并计算当0.5a =-时代数式的值.【解析】(1)小鹏在第①步开始出错,(a -2)2≠a 2-2a +4,错误的原因是完全平方公式运用错误. 故答案为:①,完全平方公式运用错误.(2)(a -2)2+(a +1)(a -1)-2a (a -3)=a 2-4a +4+a 2-1-2a 2+6a=2a +3.∴当0.5a =-时,原式=2×(-0.5)+3=2.【点睛】本题考查了整式的混合运算,熟练掌握相关公式及运算法则是解题的关键.19.甲、乙两个同学因式分解2x ax b ++时,甲看错了a ,分解结果为()()48x x +-,乙看错了b ,分解结果为()()26x x -+.求多项式2x ax b ++分解因式的正确结果.【解析】解:∵()()248432x x x x +-=--,甲看错了a 的值,又∵()()226412x x x x -+=+-,乙看错了b 的值,∴4a =,∴多项式()()2243284x ax b x x x x ++=+-=+-.故答案为:()()84x x +-.【点睛】本题考查因式分解和整式化简之间的关系,牢记各自的特点并能灵活应用是解题关键.20.如图,学校有一块长为()2m a b +,宽为()m a b +的长方形土地,四个角留出四个边长为()m b a -的小正方形空地,剩余部分进行绿化.(1)用含a 、b 的式子表示要进行绿化的土地面积;(结果要化简)(2)当6a =,10b =时,求要进行绿化的土地面积.【解析】(1)解:由于S 绿化面积=S 长方形﹣4S 小正方形,因此有,(a +b )(a +2b )﹣4(b ﹣a )2=a 2+3ab +2b 2﹣4a 2+8ab ﹣4b 2=(11ab ﹣3a 2﹣2b 2)(m 2),答:绿化的面积为(11ab ﹣3a 2﹣2b 2)(m 2);(2)解:当a =6,b =10时,原式=660﹣108﹣200=352(m 2)答:当a =6,b =10时,绿化的土地面积为352m 2.【点睛】本题考查完全平方公式的几何背景,多项式乘多项式,单项式乘多项式,掌握完全平方公式的结构特征,多项式乘多项式,单项式乘多项式的计算方法是正确解答的前提.21.计算并观察规律,完成下列问题:例:计算:32022202120222023-⨯⨯解:设2022x =,则原式3(1)(1)x x x x =--⋅⋅+32(1)x x x =--x =2022=.(1)计算:2223224222-⨯;(2)若123456789123456786M =⨯,123456788123456787N =⨯,请比较M 、N 的大小.【解析】(1)设223=x,∴2232-224×122=x2-(x+1)(x-1)=x2-x2+1=1;(2)设123456786=x,∴M=123456789×123456786=(x+3)•x=x2+3x,N=123456788×123456787=(x+2)(x+1)=x2+3x+2,∴M<N.【点睛】本题考查了整式的混合运算,单项式乘多项式,理解例题的解题思路是解题的关键.22.初中数学的一些代数公式可以通过几何图形的面积来推导和验证.如图①,从边长为a的正方形中挖去一个边长为b的小正方形后,将其沿虚线裁剪,然后拼成一个矩形(如图②).(1)通过计算图①和图②中阴影部分的面积,可以验证的公式是:.(2)小明在计算(2+1)(22+1)(24+1)时利用了(1)中的公式:(2+1)(22﹣1)(24+1)=1•(2+1)(22+1)(24+1)=.(请你将以上过程补充完整.)(3)利用以上的结论和方法、计算:12+(3+1)(32+1)(34+1)(38+1)(316+1).【解析】(1)解:图①中阴影部分的面积可以看作两个正方形的面积差,即a2−b2,图②是长为(a+b),宽为(a−b)的长方形,因此面积为(a+b)(a−b),由图①、图②面积相等可得:(a+b)(a −b)=a2−b2,故答案为:(a+b)(a−b)=a2−b2;(2)解:原式=(2−1)•(2+1)(22+1)(24+1)=(22−1)(22+1)(24+1)=(24−1)(24+1)=28−1,故答案为:28−1;(3)解:原式=12+12(3−1)(3+1)(32+1)(34+1)(38+1)(316+1)=12+12(32−1)(32+1)(34+1)(38+1)(316+1)=12+12(34−1)(34+1)(38+1)(316+1)=12+12(38−1)(38+1)(316+1)=12+12(316−1)(316+1)=12+12(332−1)=12+3232−12=3232. 【点睛】本题考查平方差公式的几何背景,掌握平方差公式的结构特征是正确解答的前提,用代数式表示图形中阴影部分的面积是正确解答的关键.23.先阅读,再解答.例:222450x y x y +-++=,求x y +的值.解:∵222450x y x y +-++=∴()2221)440x x y y -++++=( 即()221)20x y -++=( 221)0,(20x y -≥+≥()221020x y ∴-=+=(),()1,2x y ∴==- 1x y ∴+=-(1)已知22464100x y x y +-++=,求xy 的值;(2)已知c a b 、、为ΔABC 的三边,且满足()222220,a b c b a c ++-+=判断ΔABC 的形状,并说明理由.【解析】(1)解:∵22464100x y x y +-++=∴()2269)4410x x y y -++++=( 即()223)210x y -++=( ∵()223)0,210x y -≥+≥( ∴()()2230,210x y -=+= ∴13,2x y ==- ∴32xy =-.(2)解:ΔABC 是等边三角形,理由∵()222220,a b c b a c ++-+=∴()()2222220a ab b b bc c -++-+=∴()()220a b b c +-=-∵()()220,0a b b c -≥-≥∴()()220,0a b b c -=-=∴,a b b c ==即a b c ==∴ΔABC 是等边三角形.【点睛】本题考查了配方法的应用以及非负数的性质,等边三角形的判定,熟练掌握完全平方公式是解题的关键.24.(1)请用两种不同的方法表示图中阴影部分的面积和.方法1:____________________________;方法2:____________________________.(2)请你直接写出三个代数式:()2a b +,22a b +,ab 之间的等量关系.(3)根据(2)中的等量关系,解决如下问题:①已知5m n +=,2220m n +=,求mn 和()2m n -的值;②已知()()222021202374x x -+-=,求()22022x -的值.【解析】解:(1)方法1:两个阴影部分的面积和就是边长为a 的正方形,与边长为b 的正方形的面积和,即22a b +;方法2:两个阴影部分的面积和也可以看作从边长为a b +的正方形面积中减去两个长为a ,宽为b 的长方形面积,即2()2a b ab +-;故答案为:22a b +,2()2a b ab +-;(2)由(1)得,222()2a b a b ab +=+-;(3)①5m n +=,222()252m n m mn n ∴+==++,2220m n +=,25mn ∴=, 即52mn =;222()220515m n m mn n -=-+=-=,答:52mn =,2()15m n -=;②设2021a x =-,2023b x =-,则2a b -=,2222(2021)(2023)74a b x x +=-+-=, 所以2222()7423522a b a b ab +---===, 即(2021)(2023)35x x --=,所以2[(2022)1][(2022)1](2022)135x x x -+--=--=,即2(2022)36x -=.【点睛】本题考查完全平方公式的几何背景,解题的关键是用不同的代数式表示阴影部分的面积.25.在求代数式值的问题中,有时通过观察式子的特点,可以找到较为简单的解法. 例如,若x 满足()()2510x x --=,求()()2225x x ---的值,可以按下列的方法来解: 解:设()2x a -=,()5x b -=,则()()2510ab x x =--=,()()253a b x x -=---=,∴()()22449a b a b ab +=-+=,∴7a b +=±,∴()()()()2222257321x x a b a b a b ---=-=+-=±⨯=±.请仿照上面的方法求解下面的问题:(1)若x 满足()()496x x --=,求()()2249x x -+-的值; (2)将正方形ABCD 和正方形EFGH 按如图所示摆放,点F 在BC 边上,EH 与CD 交于点I ,且1ID =,2CG =,长方形EFCI 的面积为24,以CF 为边作正方形CFMN .设AD x =,①用含x 的代数式直接表示EF 和CF 的长;②求图中阴影部分的面积.【解析】(1)解:设()4x a -=,()9x b -=,则()()496ab x x =--=,()()495a b x x -=---=, ∴()()()22222249252637x x a b a b ab -+-=+=-+=+⨯=;(2)①∵四边形ABCD 是正方形,四边形EFGH 是正方形,四边形EFCI 是长方形,1ID =,2CG =, ∴CD =AD =x ,∴1EF IC x ==-,∴FG =1EF x =-,∴123CF x x =--=-;②∵长方形EFCI 的面积为24,∴()()1324x x --=,设1x a -=,3x b -=,则24ab =,2a b -=,∴()()224100a b a b ab +=-+=,∵0a >,0b >,∴10a b +=,∴()()()()22221320S x x a b a b a b =---=-=+-=阴影.【点睛】本题主要考查了完全平方公式和平分差公式的应用,牢记完全平方公式和平方差公式以及变形公式(a +b )2=(a −b )2+4ab 是解题关键.祝福语祝你考试成功!。
2021-2022学年八年级数学上册尖子生同步培优题典【华师大版】专题12.6多项式乘多项式姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2017秋•浦东新区期中)若(x2+px+q)(x2+7)的计算结果中,不含x2项,则q的值是()A.0B.7C.﹣7D.±7【分析】把式子展开,找到所有x2项的系数,令它的系数分别为0,列式求解即可.【解析】∵(x2+px+q)(x2+7)=x4+7x2+px3+7px+qx2+7q=x4+px3+(7+q)x2+7px+7q.∵乘积中不含x2项,∴7+p=0,∴q=﹣7.故选:C.2.(2020秋•鱼台县期末)若(x+m)(x﹣8)中不含x的一次项,则m的值为()A.8B.﹣8C.0D.8或﹣8【分析】先根据多项式乘以多项式法则展开式子,并合并,不含x的一次项就是含x项的系数等于0,求解即可.【解析】∵(x+m)(x﹣8)=x2﹣8x+mx﹣8m=x2+(m﹣8)x﹣8m,又结果中不含x的一次项,∴m﹣8=0,∴m=8.故选:A.3.(2021•长丰县模拟)如果(x﹣2)(x+3)=x2+px+q,那么p、q的值为()A.p=5,q=6B.p=1,q=﹣6C.p=1,q=6D.p=5,q=﹣6【分析】已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件求出p与q的值即可.【解析】∵(x﹣2)(x+3)=x2+x﹣6=x2+px+q,∴p=1,q=﹣6,故选:B.4.(2019秋•普陀区月考)设P是关于x的五次多项式,Q是关于x的三次多项式,则下面说法可能正确的是()A.P+Q是关于x的八次多项式B.P﹣Q是关于x的二次多项式C.P+Q是关于x的五次多项式D.P•Q是关于x的十五次多项式【分析】根据整式的加减只能是同类项间的加减,非同类项之间不能进行合并,多项式相加时次数等于次数高的哪个多项式的次数可判断各选项,或根据P是关于x的五次多项式,Q是关于x的三次多项式,利用乘法法则得出P•Q的次数.【解析】A、两式相加只能为5次多项式,故本选项错误;B、P﹣Q是只能为关于x的5次多项式,故本选项错误;C、P+Q只能为关于x的5次多项式,故本选项正确;D、P•Q只能为关于x的8次多项式,故本选项错误;故选:C.5.(2020秋•南关区校级期中)计算(a+3)(﹣a+1)的结果是()A.﹣a2﹣2a+3B.﹣a2+4a+3C.﹣a2+4a﹣3D.a2﹣2a﹣3【分析】运用多项式乘以多项式法则,直接计算即可.【解析】(a+3)(﹣a+1)=﹣a2﹣3a+a+3=﹣a2﹣2a+3.故选:A.6.(2021春•鹿邑县期末)若M=(x﹣3)(x﹣4),N=(x﹣1)(x﹣6),则M与N的大小关系为()A.M>N B.M=NC.M<N D.由x的取值而定【分析】求出M和N的展开式,计算M﹣N的正负性,即可判断M与N的大小关系.【解析】M=(x﹣3)(x﹣4)=x2﹣7x+12;N=(x﹣1)(x﹣6)=x2﹣7x+6;∵M﹣N=6>0;∴M>N;故选:A.7.(2020春•商河县期末)在下列多项式中,与﹣x﹣y相乘的结果为x2﹣y2的多项式是()A.x﹣y B.x+y C.﹣x+y D.﹣x﹣y【分析】依据多项式乘多项式法则进行判断即可.【解析】(x﹣y)(﹣x﹣y)=y2﹣x2,故A错误;(﹣x﹣y)(x+y)=﹣x2﹣2xy﹣y2,故B错误;(﹣x+y)(﹣x﹣y)=x2﹣y2,故C正确;(﹣x﹣y)(﹣x﹣y)=x2+2xy+y2,故D错误.故选:C.8.(2020春•东平县期末)如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式,你认为其中正确的有()①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn.A.①②B.③④C.①②③D.①②③④【分析】根据图中长方形的面积可表示为总长×总宽,也可表示成各矩形的面积和,【解析】表示该长方形面积的多项式①(2a+b)(m+n)正确;②2a(m+n)+b(m+n)正确;③m(2a+b)+n(2a+b)正确;④2am+2an+bm+bn正确.故选:D.9.(2020秋•定西期末)若(x﹣2)(x+3)=x2+ax+b,则a、b的值分别为()A.a=5,b=6B.a=1,b=﹣6C.a=1,b=6D.a=5,b=﹣6【分析】已知等式左边利用多项式乘多项式法则计算,利用多项式相等的条件求出a与b的值即可.【解析】∵(x﹣2)(x+3)=x2+x﹣6=x2+ax+b,∴a=1,b=﹣6.故选:B.10.(2021春•萧山区期末)如图是一所楼房的平面图,下列式子中不能表示它的面积的是()A.a2+5a+15B.(a+5)(a+3)﹣3aC.a(a+5)+15D.a(a+3)+a2【分析】分别用不用的方法表示楼房的面积,逐个排除即可得到正确的答案.【解析】A.是三个图形面积的和,正确,不符合题意;B.是补成一个大长方形,用大长方形的面积减去补的长方形的面积,正确,不符合题意;C.是上面大长方形的面积加上下面小长方形的面积,正确,不符合题意;D.不是楼房的面积,错误,符合题意.故选:D.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020秋•浦东新区期中)若(x+4)(x﹣2)=x2﹣mx﹣n,则mn=﹣16.【分析】先根据多项式乘以多项式法则进行化简,再求出m、n的值,最后代入求出即可.【解析】(x+4)(x﹣2)=x2﹣2x+4x﹣8=x2+2x﹣8,∵(x+4)(x﹣2)=x2﹣mx﹣n,∴﹣m=2,﹣n=﹣8,∴m=﹣2,n=8,∴mn=﹣2×8=﹣16,故答案为:﹣16.12.(2019秋•徐汇区校级月考)若计算2x﹣1与ax+1相乘的结果中不含有x的项,则a的值为2.【分析】先根据多项式与多项式相乘的法则进行计算,由不含有x的项,即x的一次项的系数为0,列式可得结论.【解析】(2x﹣1)(ax+1)=2ax2+2x﹣ax﹣1,∵不含有x的项,∴2﹣a=0,∴a=2,故答案为:2.13.(2019秋•黄浦区月考)若x+y=3,xy=2,则(x+1)(y+1)=6.【分析】原式利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值.【解析】∵x+y=3,xy=2,∴原式=xy+x+y+1=2+3+1=6,故答案为:6.14.(2020秋•奉贤区期末)计算:(2x﹣y)(x﹣2y)=2x2﹣5xy+2y2.【分析】利用多项式乘以多项式计算法则进行计算即可.【解析】原式=2x•x﹣2x•2y﹣y•x+y•2y=2x2﹣4xy﹣xy+2y2=2x2﹣5xy+2y2.故答案为:2x2﹣5xy+2y2.15.(2021春•金牛区校级期中)若(x2+px−13)(x2﹣3x+q)的积中不含x项与x3项,则p=3,q=−13.【分析】利用多项式乘以多项式的法则将式子展开后,令x和x3的系数为0,得到p,q的方程,解方程可得结论.【解析】(x2+px−13)(x2﹣3x+q)=x4﹣3x3+qx2+px3﹣3px2+pqx−13x2+x−13q=x4+(p﹣3)x3+(q﹣3p−13)x2+(pq+1)x−13q.∵积中不含x项与x3项,∴p﹣3=0,pq+1=0.解得:p=3,q=−1 3.故答案为:p=3,q=−1 3.16.(2020秋•西峰区期末)若(x+m)(x+n)=x2﹣7x+mn,则﹣m﹣n的值为7.【分析】按照多项式的乘法法则展开运算后【解析】∵(x+m)(x+n)=x2+(m+n)x+mn=x2﹣7x+mn,∴m+n=﹣7,∴﹣m﹣n=7,故答案为:7.17.(2020秋•沙坪坝区校级期末)若(2x﹣a)(x+1)的积中不含x的一次项,则a的值为2.【分析】多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.【解析】(2x﹣a)(x+1)=2x2+(2﹣a)x﹣a,∵积中不含x的一次项,∴2﹣a=0,∴a=2,故答案为:2.18.(2020•浙江自主招生)设a,b,c为整数,且对一切实数x都有(x﹣a)(x﹣8)+1=(x﹣b)(x﹣c)恒成立,则a+b+c=20或28.【分析】等式两边化简之后,利用一次项系数相等和常数项相等得到两个等式a+8=b+c和8a+1=bc;消去a结合b,c都是整数得到b﹣8=1,c﹣8=1或b﹣8=﹣1,c﹣8=﹣1,分别计算出a,b,c的值即可分析出答案.【解析】∵(x﹣a)(x﹣8)+1=x2﹣(a+8)x+8a+1,(x﹣b)(x﹣c)=x2﹣(b+c)x+bc又∵(x﹣a)(x﹣8)+1=(x﹣b)(x﹣c)恒成立,∴﹣(a+8)=﹣(b+c)∴8a+1=bc消去a得:bc﹣8(b+c)=﹣63即(b﹣8)(c﹣8)=1∵b,c都是整数,故b﹣8=1,c﹣8=1或b﹣8=﹣1,c﹣8=﹣1解得b=c=9或b=c=7当b=c=9时,解得a=10,当b=c=7时,解得a=6故a+b+c=9+9+10=28或7+7+6=20故答案为:20或28三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)(2a﹣1)(a﹣4)﹣(a+3)(a﹣1);(2)t2﹣(t+1)(t﹣5);(3)(x+1)(x2+x+1);(4)(2x+3)(x2﹣x+1).【分析】(1)根据多项式的乘法和合并同类项解答即可;(2)根据多项式的乘法和合并同类项解答即可;(3)根据多项式的乘法和合并同类项解答即可;(4)根据多项式的乘法和合并同类项解答即可.【解析】(1)(2a﹣1)(a﹣4)﹣(a+3)(a﹣1)=2a2﹣8a﹣a+4﹣a2+a﹣3a+3=a2﹣11a+7;(2)t2﹣(t+1)(t﹣5)=t2﹣t2+5t﹣t+5=4t+5;(3)(x+1)(x2+x+1);=x3+x2+x+x2+x+1=x3+2x2+2x+1;(4)(2x+3)(x2﹣x+1)=2x3﹣2x2+2x+3x2﹣3x+320.计算:(1)(﹣7x2﹣8y2)•(﹣x2+3y2);(2)(3x+2y)(9x2﹣6xy+4y2);(3)(3x﹣2y)(y﹣3x)﹣(2x﹣y)(3x+y).【分析】(1)(2)先利用多项式乘多项式法则,再合并同类项;(3)先利用多项式乘多项式法则作乘法,再加减.【解析】(1)原式=7x4﹣21x2y2+8x2y2﹣24y4=7x4﹣13x2y2﹣24y4;(2)原式=(3x+2y)[(3x)2﹣3x×2y+(2y)2]=(3x)3+(2y)3=27x3+8y3;(3)原式=3xy﹣9x2﹣2y2+6xy﹣(6x2+2xy﹣3xy﹣y2)=3xy﹣9x2﹣2y2+6xy﹣6x2﹣2xy+3xy+y2=10xy﹣15x2﹣y2.21.(2019秋•浦东新区校级期中)已知x2﹣x﹣3=0,求(x2+3x﹣7)(x3+2x2﹣2x﹣5)﹣16x的值.【分析】若本题利用多项式乘以多项式法则,直接展开,次数高项数多,考虑把已知整体代入两个多项式因式,从而使运算简便.【解析】∵x2﹣x﹣3=0,∴x2=x+3,x2﹣x=3,∵x2+3x﹣7=x2﹣x+4x﹣7=3+4x﹣7=4x﹣4,x3+2x2﹣2x﹣5=x3﹣x2+3x2﹣3x+x﹣5=x(x2﹣x)+3(x2﹣x)+x﹣5=3x+9+x﹣5=4x+4∴(x2+3x﹣7)(x3+2x2﹣2x﹣5)﹣16x=(4x﹣4)(4x+4)﹣16x=16x2﹣16x﹣16∵x2﹣x=3,∴原式=16×3﹣16=32.22.(2019秋•闵行区校级月考)在(x2+ax+b)(2x3﹣3x﹣1)的积中,x3的系数为﹣5,x2的系数为﹣6,求a,b.【分析】根据多项式与多项式相乘的法则进行计算,根据题意列式计算,得到答案.【解析】(x2+ax+b)(2x3﹣3x﹣1)=2x5﹣3x3﹣x2+2ax4﹣3ax2﹣ax+2bx3﹣3bx﹣b=2x5﹣(1+3a)x2+2ax4+(2b﹣3)x3﹣(a+3b)x﹣b,由题意得,2b﹣3=﹣5,1+3a=6,解得,a=53,b=﹣1.23.(2019秋•嘉定区校级月考)已知:A=1+2x,B=1﹣2x+4x2,C=1﹣4x3求:(1)A•B﹣C;(2)求当x=−32时,求A•B﹣C的值.【分析】(1)直接利用多项式乘法运算法则结合整式的加减运算法则分别计算得出答案;(2)直接把x的值代入原式求出答案.【解析】(1)∵A=1+2x,B=1﹣2x+4x2,C=1﹣4x3,∴A•B﹣C=(1+2x)(1﹣2x+4x2)﹣1+4x3=1﹣2x+4x2+2x﹣4x2+8x3﹣1+4x3=12x3;(2)当x=−32时,A•B﹣C=12x3=12×(−32)3=﹣40.5.24.(2019秋•潮州期末)欢欢与乐乐两人共同计算(2x+a)(3x+b),欢欢抄错为(2x﹣a)(3x+b),得到的结果为6x2﹣13x+6;乐乐抄错为(2x+a)(x+b),得到的结果为2x2﹣x﹣6.(1)式子中的a、b的值各是多少?(2)请计算出原题的正确答案.【分析】(1)根据由于欢欢抄错了第一个多项式中的a符号,得出的结果为6x2﹣13x+6,可知(2x﹣a)(3x+b)=6x2+(2b﹣3a)x﹣ab=6x2﹣13x+6,于是2b﹣3a=﹣13①;再根据乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为2x2﹣x﹣6,可知常数项是﹣6,可知(2x+a)(x+b)=2x2﹣x﹣6,可得到2b+a=﹣1②,解关于①②的方程组即可求出a、b的值;(2)把a、b的值代入原式求出整式乘法的正确结果.【解析】(1)根据题意可知,由于欢欢抄错了第一个多项式中的a的符号,得到的结果为6x2﹣13x+6,那么(2x﹣a)(3x+b)=6x2+(2b﹣3a)x﹣ab=6x2﹣13x+6,可得2b﹣3a=﹣13 ①乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为2x2﹣x﹣6,可知(2x+a)(x+b)=2x2﹣x﹣6即2x2+(2b+a)x+ab=2x2﹣x﹣6,可得2b+a=﹣1 ②,解关于①②的方程组,可得a=3,b=﹣2;(2)正确的式子:(2x+3)(3x﹣2)=6x2+5x﹣6。
(x+a )(x+b )型乘法1.若2()(2)6x m x x nx -+=+- 则m n +的值是 ( )A .2B .-2C .4D .-4 【答案】A【分析】利用多项式乘多项式的法则计算即可.【详解】解:∵()22()(2)=22=6-++--+-x m x x m x m x nx ∵2=-m n 即=2m n +故选:A【点睛】本题考查多项式乘多项式的法则 解题的关键是掌握多项式乘多项式法则 找出2=-m n .2.若2(3)(1)3x x x mx -+=+- 则常数m 的值是( )A .2m =-B .2m =C .3m =-D .3m =【答案】A【分析】根据多项式乘多项式法则即可求出答案.【详解】解:∵(x -3)(x +1)=x 2-2x -3∵m =-2故选A .【点睛】本题考查多项式乘多项式 解题的关键是熟练运用多项式乘多项式法则 本题属于基础题型.3.若(x -a )(x -5)=x 2-bx +10 则a +b 的值为( )A .2B .5C .7D .9 【答案】D【分析】根据多项式乘多项式的乘法法则解决此题.【详解】解:∵(x -a )(x -5)=x 2-bx +10∵x 2-(5+a )x +5a =x 2-bx +10∵5+a =b 5a =10∵a =2 b =7∵a +b =2+7=9故选:D .【点睛】本题主要考查多项式乘多项式 熟练掌握多项式乘多项式的乘法法则是解决本题的关键.4.()()23515x x x px --=++ 则p 的值是( )A .-3B .8C .-8D .-5 【答案】C 【分析】利用多项式乘以多项式计算()()35x x --的值 然后利用一次项系数相等得到p 的值.【详解】解:()()235581x x x x ---=+2215158x x x px ∴+=++-8p ∴=-.故选:C .【点睛】本题主要考查多项式乘以多项式 掌握多项式乘以多项式的运算法则是解题的关键.5.若多项式()()213x x x ax b +-=++ 则a b 的值分别是( )A .2a = 3b =B .2a =- 3b =-C .2a =- 3b =D .2a = 3b =-【答案】B 【分析】首先利用多项式乘法将原式展开 进而得出a b 的值 即可得出答案.【详解】解:∵(x +1)(x -3)=x 2-2x -3=x 2+ax +b故a =-2 b =-3故选:B .【点睛】本题主要考查了多项式乘法 正确利用多项式乘多项式的法则用将原式展开是解题关键.6.若(x +2)(x ﹣5)=x 2﹣mx ﹣10 则m 值为( )A .3B .﹣3C .±3D .10【答案】A【分析】根据整式的乘法法则计算等式的左边 由此即可得出答案.【详解】解:因为()()22255210310x x x x x x x +-=-+-=-- 所以2231010x x x mx --=--所以3m =故选:A .【点睛】本题考查了整式的乘法 熟练掌握运算法则是解题关键.7.计算:()()1? 2x x ++=________.【答案】232x x ++【分析】直接根据多项式乘以多项式运算法则求解即可.【详解】解:()()22122232x x x x x x x ++=+++=++故答案为:232x x ++.【点睛】题目主要考查多项式乘以多项式 熟练掌握运算法则是解题关键.8.计算:(x +3)(x +5)=_____.【答案】2815x x ++【分析】根据多项式与多项式相乘的法则计算.【详解】解:(x +3)(x +5)=x 2+5x +3x +15=x 2+8x +15故答案为:x 2+8x +15.【点睛】本题考查了多项式乘多项式.解题的关键在于熟练掌握多项式乘多项式的运算法则. 9.乘积(5)(2)x x +-的计算结果是_______.【答案】2310x x +-【分析】根据多项式乘以多项式的运算法则即可得.【详解】解:22(5)(2)2510310x x x x x x x +-=-+-=+-故答案为:2310x x +-.【点睛】本题考查了多项式乘以多项式 熟练掌握运算法则是解题关键.10.计算:(x 2﹣3)(x 2+5)=___. 【答案】42215x x +-【分析】根据多项式乘以多项式进行计算即可.【详解】(x 2﹣3)(x 2+5)4225315x x x =+--42215x x =+-故答案为:42215x x +-.【点睛】本题考查了多项式乘以多项式 正确的计算是解题的关键.11.若(x +2)(x ﹣3)=x 2﹣x +m 则m 的值为__________.【答案】-6【分析】首先利用多项式乘以多项式计算(x +2)(x -3) 然后可得x 2-x -6=x 2-x +m 再使常数项相等可得m 的值.【详解】解:(x +2)(x -3)=x 2-3x +2x -6=x 2-x -6∵(x +2)(x -3)=x 2-x +m∵x 2-x -6=x 2-x +m∵m =-6.故答案为:-6.【点睛】此题主要考查了多项式乘以多项式 关键是掌握多项式乘法法则.12.若()()225x x x mx n =-+++(,m n 为常数) 则m =______ n =______.【答案】 3 -10【分析】直接利用多项式乘多项式进而计算得出答案.【详解】解:∵(x -2)(x +5)=x 2+mx +n (m 、n 为常数)∵x 2+3x -10=x 2+mx +n (m 、n 为常数)∵m =3 n =-10故答案为:3 -10.【点睛】此题主要考查了多项式乘多项式 正确掌握相关运算法则是解题关键.13.如果2(1)(2)x x x px q --=++ 则p q +=_________. 【答案】-1【分析】将等式左边展开 再合并同类项 根据系数相等可得p 、q 的值 代入计算即可.【详解】解:∵(1)(2)x x --=222x x x --+=232x x -+=2x px q ++∵p =-3 q =2∵p +q =-3+2=-1故答案为:-1.【点睛】本题考查了多项式乘多项式 熟练掌握运算法则是解题的关键.14.()()56x x +-=__________.【答案】x 2-x -30【分析】依据多项式乘多项式法则进行计算即可.【详解】解:原式=x2-6x+5x-30=x2-x-30.故答案为:x2-x-30.【点睛】本题主要考查的是多项式乘多项式熟练掌握多项式乘多项式法则是解题的关键.15.(x-2)(x+1)=______.【答案】x2-x-2【分析】原式利用多项式乘以多项式法则计算然后合并同类项即可得到结果.【详解】解:(x-2)(x+1)=x2+x-2x-2=x2-x-2.故答案为:x2-x-2.【点睛】此题考查了多项式乘多项式熟练掌握运算法则是解本题的关键注意各项的符号.16.如果x2+Ax+B=(x﹣3)(x+5)求3A﹣B的值.【答案】21.【分析】根据整式的乘法可得相等的整式根据相等整式中同类项的系数相等即可求解.【详解】解:x2+Ax+B=(x﹣3)(x+5)=x2+2x﹣15 得A=2 B=﹣15.3A﹣B=3×2+15=21.故答案为21.【点睛】本题考查因式分解解题的关键是利用整式的乘法得出相等整式中同类项的系数相等.17.观察下列各式:(x-2)(x-3)=x2-5x+6.(x+5)(x-2)=x2+3x-10.(x+3)(x+6)=x2+9x+18.(x+9)(x-10)=x2-x-90.可以看出:两个一次二项式相乘结果是一个____次____项式其中一次项系数和常数项分别和原来的两个二项式的常数项具有怎样的关系?请利用你的结论直接写出下面两个一次二项式相乘的结果.(x+5)(x-1)=____.(a+11)(a-30)=____.【答案】二次三项式;其中一次项系数和常数项分别和原来的两个二项式的常数项之和与积相等;x2+4x-5;a2-19a-330.【分析】根据题意 可得规律:两个一次二项式相乘 结果是一个 二次 三项式 其中一次项的系数、常数项分别和原来的两个二项式的常数项之和、常数项之积相等.据此计算下列2个二项式相乘的结果.【详解】根据题意 可得规律:两个一次二项式相乘 结果是一个二次三项式 其中一次项系数和常数项分别和原来的两个二项式的常数项之和与积相等.∵(x +5)(x -1)=x 2+4x -5(a +11)(a -30)=a 2-19a -330.故答案为二次三项式;其中一次项系数和常数项分别和原来的两个二项式的常数项之和与积相等;x 2+4x -5;a 2-19a -330.【点睛】本题考查多项式乘多项式 解题的关键是根据题意得到规律.18.在分解因式时2x ax b ++时 甲看错了a 的值 分解的结果是(1)(9)x x ++;乙看错了b 的值 分解的结果是(2)(4)x x --.那么2x ax b ++分解因式正确的结果是多少?为什么? 【答案】()23x - 理由见解析【分析】根据甲、乙看错的情况下得出a 、b 的值 进而再利用完全平方公式分解因式即可.【详解】解:∵(1)(9)x x ++2109x x =++∵9b =∵(2)(4)x x --268x x =-+∵6a =-∵2x ax b ++()22693x x x =-+=-【点睛】本题考查了多项式的乘法与因式分解 正确的计算是解题的关键.19.甲、乙同学在分解因式:mx 2+ax +b 时 甲仅看错了a 分解结果为2(x ﹣1)(x ﹣9);乙仅看错了b 分解结果为2(x ﹣2)(x ﹣4) 求m 、a 、b 的正确值 并将mx 2+ax +b 分解因式. 【答案】m =2 a =﹣12 b =18;2(x ﹣3)2【分析】根据多项式乘多项式展开 合并同类项 即可得到m 、a 、b 的值 代入多项式 分解因式即可.【详解】解:∵2(x ﹣1)(x ﹣9)=2(x 2﹣9x ﹣x +9)=2(x 2﹣10x +9)=2x 2﹣20x +18∵m =2 b =18∵2(x ﹣2)(x ﹣4)=2(x 2﹣4x ﹣2x +8)=2(x 2﹣6x +8)=2x 2﹣12x +16∵a =﹣12∵mx 2+ax +b=2x 2﹣12x +18=2(x 2﹣6x +9)=2(x ﹣3)2【点睛】本题考查了多项式的乘法与因式分解 正确的计算是解题的关键.20.观察下列各式的计算结果与相乘的两个多项式之间的关系:2(2)(3)56x x x x ++=++;2(4)(2)68x x x x ++=++;2(6)(5)1130x x x x ++=++.你发现有什么规律?按你发现的规律填空:2(3)(5)x x x ++=+(_____+______)x +_____×______你能很快说出与()()x a x b ++相等的多项式吗先猜一猜 再用多项式相乘的运算法则验证. 【答案】3 5 3 5;详见解析【分析】由多项式乘以多项式法则发现规律 解答.【详解】解:(x +3)(x +5)=x 2+(3+5)x +3×5=x 2+8x +15故答案为:3 5 3 5.(x +a )(x +b )=x 2+(a +b )x +ab .验证:(x +a )(x +b )=x 2+ax +bx +ab =x 2+(a +b )x +ab .【点睛】本题考查多项式乘以多项式 是基础考点 掌握相关知识是基础考点.21.先化简 再求值:(x +2)(x ﹣2)+(x ﹣1)(x +5) 其中x =1.【答案】2249x x +- 3-【分析】根据平方差公式 多项式的乘法化简 然后将字母的值代入计算即可求解.【详解】解:原式=22445x x x -++-2249x x =+-;当1x =时 原式221419=⨯+⨯-249=+-69=-3=-.【点睛】本题考查了整式乘法的化简求值 正确的计算是解题的关键.22.在计算时我们如果能总结规律 并加以归纳 得出数学公式 一定会提高解题的速度 在解答下面问题中请留意其中的规律.(1)计算后填空:(x +1)(x +2)= ;(x +3)(x ﹣1)= ;(2)归纳、猜想后填空:(x +a )(x +b )=x 2+ x + ;(3)运用(2)猜想的结论 直接写出计算结果:(x +2)(x +m )= . 【答案】(1)x 2+3x +2 x 2+2x ﹣3(2)(a +b ) ab(3)x 2+(2+m )x +2m【分析】(1)根据多项式乘以多项式法则进行计算即可;(2)根据(1)的结果得出规律即可;(3)根据(x +a )(x +b )=x 2+(a +b )x +ab 得出即可.(1)解:()()22122232x x x x x x x +++++++== ;()()22313323x xx x x x x ++-+﹣=-=﹣ 故答案为:x 2+3x +2 x 2+2x ﹣3;(2)解:()()()2x a x b x a b x ab +++++=.故答案为:(a +b ) ab ;(3)解:()()2222x x m x m x m +++++= .故答案为:()222x m x m +++.【点睛】本题考查了多项式乘以多项式的应用 主要考查学生的计算能力.23.填空:()()23a a ++= ;()()23a a +-= ;()()35a a ++= ;()()35a a --= ;(1)从上面的计算中总结规律 写出下式结果:()()x a x b ++= ;(2)运用上述结果 写出下列各题结果:①()()20121000x x +-= ;②()()20122000x x --=【答案】填空:256a a ++ 26a a -- 2815a a ++ 2815a a -+;(1)2()x a b x ab +++;(2)①210122012000x x +-;②240124024000x x -+.【分析】填空:根据多项式乘以多项式的法则即可得;(1)根据上面的结果 归纳类推出一般规律即可得;(2)①运用(1)的规律即可得;②运用(1)的规律即可得.【详解】解:()()222332656a a a a a a a ++=+++=++()()22233266a a a a a a a +-=-+-=--()()22355315815a a a a a a a ++=+++=++()()22355315815a a a a a a a --=--+=-+故答案为:256a a ++ 26a a -- 2815a a ++ 2815a a -+;(1)由上面的计算可知 ()()2()x a x b x a b x ab ++=+++故答案为:2()x a b x ab +++;(2)①()()220121000(20121000)2012(1000)x x x x +-=+-+⨯-210122012000x x =+-故答案为:210122012000x x +-;②()()220122000(20122000)(2012)(2000)x x x x --=+--+-⨯-240124024000x x =-+故答案为:240124024000x x -+.【点睛】本题考查了多项式乘以多项式 熟练掌握多项式的乘法法则是解题关键.。
2023-2024学年北京市海淀区首都师大二附中八年级(上)期末数学模拟练习试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.如图,将一张长方形纸片对折,再对折,然后沿第三个图中的虚线剪下,将纸片展开,得到一个四边形,这个四边形的面积是()A. B. C. D.2.化简的结果是()A. B. C. D.x3.如图,小明从A地出发,沿直线前进15米后向左转,再沿直线前进15米,又向左转……,照这样走下去,他第一次回到出发地A地时,一共走的路程是()A.200米B.250米C.300米D.350米4.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度和燃烧时间小时之间的函数关系用图象可以表示为图中的()A. B.C. D.5.一个三角形的两边长分别为2和5,且第三边长为整数,这样的三角形的周长最大值是()A.11B.12C.13D.146.如图,在中,,BD是的角平分线交AC于点D,于E点,下列四个结论中正确的有()①;②;③;④≌A.1个B.2个C.3个D.4个7.下面计算正确的是()A. B.C. D.8.如图,在三角形ABC中,已知,D为BC边上的一点,且,,则等于()A. B. C. D.9.若是整数,则()A.6B.7C.8D.910.a,b是两个连续整数,若,则的值是()A.7B.9C.21D.25二、填空题:本题共8小题,每小题3分,共24分。
11.已知是方程组的解,则的值是______.12.计算的结果中不含x的一次项,则a的值是__________.13.如图,在中,,点D是BC的中点,交AB于E,点O在DE上,,,,则______.14.在平面直角坐标系中,已知一次函数的图象经过、两点,若,则______填“>”,“<”或“=”15.在实数范围内规定一种新的运算“☆”,其规则是:a☆,已知关于x的不等式:x☆的解集在数轴上表示出来如图所示.则m的值是______.16.已知点,若A、B两点关于x轴对称,则B的坐标是______.17.若分式,在实数范围内有意义,则实数x的取值范围是______.18.如图,直角坐标系中,直线和直线相交于点,则方程组的解为______.三、解答题:本题共8小题,共64分。
多项式乘以多项式·一.选择题;;1.(2015•镇江模拟)学校买来钢笔若干枝,可以平均分给(x﹣1)名同学,也可分给(x﹣2)名同学(x为正整数).用代数式表示钢笔的数量不可能的是()A.x2+3x+2 B.3(x﹣1)(x﹣2) C.x2﹣3x+2 D.x3﹣3x2+2x2.(2015•佛山)若(x+2)(x﹣1)=x2+mx+n,则m+n=();A.1 B.﹣2 C.﹣1 D.23.(2015春•岱岳区期末)若(x+a)(x+b)=x2﹣kx+ab,则k的值为();;A.a+b B.﹣a﹣b C.a﹣b D.b﹣a4.(2015春•莘县期末)已知m+n=2,mn=﹣2,则(1﹣m)(1﹣n)的值为()A.﹣3 B.﹣1 C.1 D.55.(2015春•张家港市期末)如果的积中不含x项,则q等于()A.B.5 C. D.﹣56.(2015春•乐平市期中)如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你认为其中正确的有()A.①② B.③④ C.①②③D.①②③④7.(2015春•西安校级月考)如果(x+a)(x+b)的积中不含x的一次项,那么a,b一定()A.互为倒数 B.互为相反数C.a=b且b=0 D.ab=08.(2014•溧水县校级模拟)把三张大小相同的矩形卡片A,B,C叠放在一个底面为矩形的盒底上,底面未被卡片覆盖的部分用阴影表示.若按图1摆放时,阴影部分的面积为S1;若按图2摆放时,阴影部分的面积为S2,则()A.S1>S2B.S1=S2 C.S1<S2D.无法确定二.填空题9.(2015•徐州校级模拟)计算:(2x+1)(x﹣1)= .10.(2015春•嵊州市期末)如果(x+3)(x+a)=x2﹣2x﹣15,则a= .11.(2015春•兴化市校级期末)在(x+1)(2x2﹣ax+1)的运算结果中x2的系数是﹣6,那么a的值是.12.(2015春•肥城市期末)若(ax﹣b)(3x+4)=bx2+cx+72,则a+b+c的值为.13.(2015春•苏州校级期末)现有若干张边长为a的正方形A型纸片,边长为b的正方形B型纸片,长宽为a、b的长方形C型纸片,小明同学选取了2张A型纸片,7张B型纸片,3张C型纸片拼成了一个四边形,则此四边形的周长为.(用a、b代数式表示)三.解答题14.(2015春•莘县期末)计算(1)﹣12+(π﹣3.14)0﹣3﹣2(2)(2m﹣n)(m﹣2n)15.(2015春•成都校级月考)若x2+5y2﹣4(xy﹣y﹣1)=0,且(2x+m)(x+1)的展开式中不含x的一次项,求代数式(x﹣y)m的值.16.(2014春•成都校级月考)已知将(x2+nx+3)(x2﹣2x﹣m)乘开的结果不含x3和x2项.(1)求m、n的值;(2)当m、n取第(1)小题的值时,求(m﹣n)(m2+mn+n2)的值.17.(2015春•宿州期末)观察下列各式(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…①根据以上规律,则(x﹣1)(x6+x5+x4+x3+x2+x+1)= .②你能否由此归纳出一般性规律:(x﹣1)(x n+x n﹣1+…+x+1)= .③根据②求出:1+2+22+…+234+235的结果.人教版八年级数学上册《14.1.4.3多项式乘以多项式》同步训练习题(教师版)一.选择题1.(2015•镇江模拟)学校买来钢笔若干枝,可以平均分给(x﹣1)名同学,也可分给(x﹣2)名同学(x为正整数).用代数式表示钢笔的数量不可能的是()A.x2+3x+2 B.3(x﹣1)(x﹣2) C.x2﹣3x+2 D.x3﹣3x2+2x考点:多项式乘多项式.专题:计算题.分析:根据题意列出算式,利用多项式乘以多项式法则计算,即可做出判断.解答:解:根据题意得:(x﹣1)(x﹣2)=x2﹣3x+2,则钢笔的数量不可能的是x2+3x+2,故选A点评:此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.2.(2015•佛山)若(x+2)(x﹣1)=x2+mx+n,则m+n=()A.1 B.﹣2 C.﹣1 D.2考点:多项式乘多项式.分析:依据多项式乘以多项式的法则,进行计算,然后对照各项的系数即可求出m,n的值.解答:解:∵原式=x2+x﹣2=x2+mx+n,∴m=1,n=﹣2.∴m+n=1﹣2=﹣1.故选:C.点评:本题考查了多项式的乘法,熟练掌握多项式乘以多项式的法则是解题的关键.3.(2015春•岱岳区期末)若(x+a)(x+b)=x2﹣kx+ab,则k的值为()A.a+b B.﹣a﹣b C.a﹣b D.b﹣a考点:多项式乘多项式.分析:已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件即可求出k.解答:解:(x+a)(x+b)=x2+(a+b)x+ab=x2﹣kx+ab,得到a+b=﹣k,则k=﹣a﹣b.故选:B.点评:此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.4.(2015春•莘县期末)已知m+n=2,mn=﹣2,则(1﹣m)(1﹣n)的值为()A.﹣3 B.﹣1 C.1 D.5考点:多项式乘多项式.分析:多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积转换成以m+n,mn为整体相加的形式,代入求值.解答:解:∵m+n=2,mn=﹣2,∴(1﹣m)(1﹣n),=1﹣(m+n)+mn,=1﹣2﹣2,=﹣3.故选:A.点评:本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.5.(2015春•张家港市期末)如果的积中不含x项,则q等于()A.B.5 C. D.﹣5考点:多项式乘多项式.分析:把式子展开,找出所有x的系数,令其为0,解即可.解答:解:∵=x2+(q+)x+q,又∵积中不含x项,则q+=0,q=﹣.故选C.点评:本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.6.(2015春•乐平市期中)如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你认为其中正确的有()A.①② B.③④ C.①②③D.①②③④考点:多项式乘多项式.专题:计算题.分析:①大长方形的长为2a+b,宽为m+n,利用长方形的面积公式,表示即可;②长方形的面积等于左边,中间及右边的长方形面积之和,表示即可;③长方形的面积等于上下两个长方形面积之和,表示即可;④长方形的面积由6个长方形的面积之和,表示即可.解答:解:①(2a+b)(m+n),本选项正确;②2a(m+n)+b(m+n),本选项正确;③m(2a+b)+n(2a+b),本选项正确;④2am+2an+bm+bn,本选项正确,则正确的有①②③④.故选D.点评:此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.7.(2015春•西安校级月考)如果(x+a)(x+b)的积中不含x的一次项,那么a,b一定()A.互为倒数 B.互为相反数C.a=b且b=0 D.ab=0考点:多项式乘多项式.专题:计算题.分析:原式利用多项式乘以多项式法则计算,根据结果中不含x的一次项求出a与b的值即可.解答:解:原式=x2+(a+b)x+ab,由结果中不含x的一次项,得到a+b=0,则a,b一定互为相反数,故选B.点评:此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.8.(2014•溧水县校级模拟)把三张大小相同的矩形卡片A,B,C叠放在一个底面为矩形的盒底上,底面未被卡片覆盖的部分用阴影表示.若按图1摆放时,阴影部分的面积为S1;若按图2摆放时,阴影部分的面积为S2,则()A.S1>S2B.S1=S2 C.S1<S2D.无法确定考点:多项式乘多项式.专题:计算题.分析:根据矩形的性质,可以把两块阴影部分合并后计算面积,然后,比较S1和S2的大小.解答:解:设底面的矩形的长为a,宽为b,矩形卡片A,B,C的长为m,宽为n,由图1,得S1=(b﹣n)(a﹣m)=ab﹣bm﹣an+mn,由图2,得S2=(b﹣n)(a﹣m)=ab﹣bm﹣an+mn,则S1=S2.故选B.点评:此题考查了多项式乘多项式,熟练掌握运算法则解本题的关键.二.填空题9.(2015•徐州校级模拟)计算:(2x+1)(x﹣1)= 2x2﹣x﹣1 .考点:多项式乘多项式.分析:根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.解答:解:(2x+1)(x﹣1)=2x2﹣2x+x﹣1=2x2﹣x﹣1.故答案为:2x2﹣x﹣1.点评:本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.10.(2015春•嵊州市期末)如果(x+3)(x+a)=x2﹣2x﹣15,则a= ﹣5 .考点:多项式乘多项式.分析:已知等式左边利用多项式乘多项式法则计算,合并后利用多项式相等的条件即可求出a的值.解答:解:(x+3)(x+a)=x2+(a+3)x+3a=x2﹣2x﹣15,可得a+3=﹣2,解得:a=﹣5.故答案为:﹣5.点评:此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.11.(2015春•兴化市校级期末)在(x+1)(2x2﹣ax+1)的运算结果中x2的系数是﹣6,那么a的值是8 .考点:多项式乘多项式.分析:先运用多项式的乘法法则进行计算,再根据运算结果中x2的系数是﹣6,列出关于a的等式求解即可.解答:解:(x+1)(2x2﹣ax+1)=2x3﹣ax2+x+2x2﹣ax+1=2x3+(﹣a+2)x2+(1﹣a)x+1;∵运算结果中x2的系数是﹣6,∴﹣a+2=﹣6,解得a=8,故答案为:8.点评:本题考查了多项式的乘法,注意运用运算结果中x2的系数是﹣6,列方程求解.12.(2015春•肥城市期末)若(ax﹣b)(3x+4)=bx2+cx+72,则a+b+c的值为 6 .考点:多项式乘多项式.专题:计算题.分析:已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件求出a,b,c的值,即可求出a+b+c 的值.解答:解:∵(ax﹣b)(3x+4)=3ax2+(4a﹣3b)x﹣4b=bx2+cx+72,∴3a=b,4a﹣3b=c,﹣4b=72,解得:a=﹣6,b=﹣18,c=30,则a+b+c=﹣6﹣18+30=6.故答案为:6点评:此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.13.(2015春•苏州校级期末)现有若干张边长为a的正方形A型纸片,边长为b的正方形B型纸片,长宽为a、b的长方形C型纸片,小明同学选取了2张A型纸片,7张B型纸片,3张C型纸片拼成了一个四边形,则此四边形的周长为6a+8b .(用a、b代数式表示)考点:多项式乘多项式.分析:首先求出四边形的面积将原式分解因式进而得出其边长求出即可.解答:解:根据题意得:2a2+7b2+3ab=(a+3b)(2a+b),故四边形的边长为:a+3b,2a+b,则此四边形的周长为:2(a+3b+2a+b)=6a+8b.故答案为:6a+8b.点评:此题考查了十字相乘法因式分解,正确掌握十字相乘法分解因式是解题关键.三.解答题14.(2015春•莘县期末)计算(1)﹣12+(π﹣3.14)0﹣3﹣2(2)(2m﹣n)(m﹣2n)考点:多项式乘多项式;零指数幂;负整数指数幂.分析:(1)直接利用零指数幂的性质以及负整数指数幂的性质化简进而求出即可;(2)利用多项式乘以多项式运算法则化简求出即可.解答:解:(1))﹣12+(π﹣3.14)0﹣3﹣2=﹣1+1﹣=﹣;(2)(2m﹣n)(m﹣2n)=2m2﹣4mn﹣mn+2n2,=2m2﹣5mn+2n2.点评:此题主要考查了多项式乘以多项式以及实数运算,正确掌握运算法则是解题关键.15.(2015春•成都校级月考)若x2+5y2﹣4(xy﹣y﹣1)=0,且(2x+m)(x+1)的展开式中不含x的一次项,求代数式(x﹣y)m的值.考点:多项式乘多项式.专题:计算题.分析:已知等式整理后,利用完全平方公式化简,利用非负数的性质求出x与y的值,再利用多项式乘以多项式法则化简(2x+m)(x+1),求出m的值,即可确定出原式的值.解答:解:x2+5y2﹣4(xy﹣y﹣1)=0,整理得:x2﹣4xy+4y2+y2+4y+4=0,即(x﹣2y)2+(y+2)2=0,∴x+2y=0,y+2=0,解得:x=4,x=﹣2,∵(2x+m)(x+1)=2x2+(m+2)x+m中不含x的一次项,∴m+2=0,即m=﹣2,则原式=.点评:此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.16.(2014春•成都校级月考)已知将(x2+nx+3)(x2﹣2x﹣m)乘开的结果不含x3和x2项.(1)求m、n的值;(2)当m、n取第(1)小题的值时,求(m﹣n)(m2+mn+n2)的值.考点:多项式乘多项式.专题:计算题.分析:(1)原式利用多项式乘以多项式法则计算,合并后根据乘开的结果不含x3和x2项,求出m与n的值即可;(2)原式利用多项式乘以多项式法则计算,把m与n的值代入计算即可求出值.解答:解:(1)原式=x4﹣2x3﹣mx2+nx3﹣2nx2﹣mnx+3x2﹣6x﹣3m=x4+(n﹣2)x3+(3﹣m﹣2n)x2+(mn+6)x﹣3m,由乘开的结果不含x3和x2项,得到n﹣2=0,3﹣m﹣2n=0,解得:m=﹣1,n=2;(2)当m=﹣1,n=2时,原式=m3+m2n+mn2﹣m2n﹣mn2﹣n3=m3﹣n3=﹣1﹣8=﹣9.点评:此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.17.(2015春•宿州期末)观察下列各式(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…①根据以上规律,则(x﹣1)(x6+x5+x4+x3+x2+x+1)= x7﹣1 .②你能否由此归纳出一般性规律:(x﹣1)(x n+x n﹣1+…+x+1)= x n+1﹣1 .③根据②求出:1+2+22+…+234+235的结果.考点:多项式乘多项式.专题:规律型.分析:①观察已知各式,得到一般性规律,化简原式即可;②原式利用得出的规律化简即可得到结果;③原式变形后,利用得出的规律化简即可得到结果.解答:解:①根据题意得:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;②根据题意得:(x﹣1)(x n+x n﹣1+…+x+1)=x n+1﹣1;③原式=(2﹣1)(1+2+22+…+234+235)=236﹣1.故答案为:①x7﹣1;②x n+1﹣1;③236﹣1点评:此题考查了多项式乘以多项式,弄清题中的规律是解本题的关键.。
学习目标:理解多项式乘以多项式的运算法则,能够按多项式乘法步骤进行简单的乘法运算.学习重点:多项式与多项式的乘法法则的理解及应用.学习过程:一、自学指导(请利用5分钟阅读P147-148§15.1.4并完成下列活动)1、【活动1】小组讨论总结阅读P147-148§15.1.1的主要内容2、【活动2】创设情境 我们在上一节课里学习了单项式与多项式的乘法,请口算下列练习中的(1)、(2): (1) 3x(x+y)= ; (2) (a+b)k= ;(3) (a+b)(m+n)= ?比较(3)与(1)、(2)在形式上有何不同?如何进行多项式乘以多项式的计算呢?3、【活动3】探索新知:问题1:为了扩大绿地面积,要把街心花园的一块长a 米,宽m 米的长方形绿地增长b 米,加宽n 米,你能用几种方法表示扩大后的绿地面积吗?不同表示方法之间有什么关系?问题2:请同学们认真观察上述等式的特征,讨论并回答如何用文字语言叙述多项式的乘法法则?多项式与多项式相乘, 字母表示为:二、【活动4】范例学习:例1:计算(1) (a+4)(a+3) (2) (3x -1)(2x+1) (3)(x -3y )(x+7y )(4)(x+2y)2 (5)(3x+y)(3x -y) (6)(x+y)( x 2-xy+y 2)例2 计算:(1)n(n+1)(n+2) (2) )168()4(2--+x x (3)8x 2-(x -2)(3x+1)练习:计算:(1) (3a 2+2)(4a+1) (2) (5m+ 2)(4m 2- 3) (3) 2(a -4)(a+3)-(2a+1)(a -3)a bm n Ⅱ Ⅲ Ⅳ Ⅰ例3先化简,再求值:(a -3b )2+(3a+b )2-(a+5b )2+(a -5b )2,其中a=-8,b=-6.练习3 先化简,再求值(x -2y )(x+3y )-2(x -y )(x -4y ),其中x=-1,y=2.三、【活动1】学以致用:1.判断题:(1) (a+b)(c+d)= ac +bd ;( ) (2) (a+b)(c+d)= ac+ad+bc+bd ; ( )(3) (a-b)(c-d)= ac- bd ;( ) (4) (a- b)(c-d)= ac+ ad+bc- ad .( )1.下列各式计算中,正确的是( ).A .(x -1)(x+2)=x 2-3x -2B .(a -3)(a+2)=a 2-a+6C .(x+4)(x -5)=x 2-20x -1D .(x -3)(x -1)=x 2-4x+32.计算(5x+2)(2x -1)的结果是( ).A .10x 2-2B .10x 2-x -2C .10x 2+4x -2D .10x 2-5x -23.计算:(1) )32)(1(-+x x (2))67)(23(n m n m -+ (3))37)(37(x x +-(4))12)(2(++n n n (5) 2x-1)(4x 2+2x+1)四、作业:1、教材P148练习 P149习题5、62、练习册P61 §15.1.4整式的乘法(二)。
3.多项式与多项式相乘
一、选择题
1.计算(2a-3b)(2a+3b)的正确结果是()
A.4a2+9b2B.4a2-9b2C.4a2+12ab+9b2D.4a2-12ab+9b2 2.若(x+a)(x+b)=x2-kx+ab,则k的值为()
A.a+b B.-a-b C.a-b D.b-a
3.计算(2x-3y)(4x2+6xy+9y2)的正确结果是()
A.(2x-3y)2B.(2x+3y)2C.8x3-27y3D.8x3+27y3 4.(x2-px+3)(x-q)的乘积中不含x2项,则()
A.p=q B.p=±q C.p=-q D.无法确定
5.若0<x<1,那么代数式(1-x)(2+x)的值是()
A.一定为正B.一定为负C.一定为非负数D.不能确定
6.计算(a2+2)(a4-2a2+4)+(a2-2)(a4+2a2+4)的正确结果是()
A.2(a2+2)B.2(a2-2)C.2a3D.2a6
7.方程(x+4)(x-5)=x2-20的解是()
A.x=0 B.x=-4 C.x=5 D.x=40
8.若2x2+5x+1=a(x+1)2+b(x+1)+c,那么a,b,c应为()
A.a=2,b=-2,c=-1 B.a=2,b=2,c=-1
C.a=2,b=1,c=-2 D.a=2,b=-1,c=2
9.若6x2-19x+15=(ax+b)(cx+b),则ac+bd等于()
A.36 B.15 C.19 D.21
10.(x+1)(x-1)与(x4+x2+1)的积是()
A.x6+1 B.x6+2x3+1 C.x6-1 D.x6-2x3+1
二、填空题
1.(3x-1)(4x+5)=__________.
2.(-4x-y)(-5x+2y)=__________.
3.(x+3)(x+4)-(x-1)(x-2)=__________.
4.(y-1)(y-2)(y-3)=__________.
5. (x 3+3x 2+4x -1)(x 2-2x +3)的展开式中,x 4的系数是__________.
6. 若(x +a )(x +2)=x 2-5x +b ,则a =__________,b =__________.
7. 若a 2+a +1=2,则(5-a )(6+a )=__________.
8. 当k =__________时,多项式x -1与2-kx 的乘积不含一次项.
9. 若(x 2+ax +8)(x 2-3x +b )的乘积中不含x 2和x 3项,则a =_______,b =_______.
10. 如果三角形的底边为(3a +2b ),高为(9a 2-6ab +4b 2),则面积=__________.
三、解答题
1、计算下列各式
(1)(2x +3y )(3x -2y ) (2)(x +2)(x +3)-(x +6)(x -1)
(3)(3x 2+2x +1)(2x 2+3x -1) (4)(3x +2y )(2x +3y )-(x -3y )(3x +4y )
2、求(a +b )2-(a -b )2-4ab 的值,其中a =2002,b =2001.
3、2(2x -1)(2x +1)-5x (-x +3y )+4x (-4x 2-52y ),其中x =-1,y =2.
4、解方程组
⎩
⎪⎨⎪⎧(x -1)(2y +1)=2(x +1)(y -1)x (2+y )-6=y (x -4)
四、探究创新乐园
1、若(x2+ax-b)(2x2-3x+1)的积中,x3的系数为5,x2的系数为-6,求a,b.
2、根据(x+a)(x+b)=x2+(a+b)x+ab,直接计算下列题
(1)(x-4)(x-9) (2)(xy-8a)(xy+2a)
五、数学生活实践
一块长a m,宽b m的玻璃,长、宽各裁掉c m后恰好能铺盖一张办公桌台面(玻璃与台面一样大小),问台面面积是多少?
六、思考题:
请你来计算:若1+x+x2+x3=0,求x+x2+x3+…+x2000的值.。