超定方程用最小二乘法求解
- 格式:doc
- 大小:29.00 KB
- 文档页数:3
求超定方程组的最小二乘解最小二乘法是一种常用的数学方法,用于求解超定方程组的近似解。
超定方程组指方程的个数多于未知数的个数,因此无法直接求解精确解。
而最小二乘法通过将方程组中的每个方程的残差平方之和最小化,找到一个最接近解的估计值。
最小二乘法的应用非常广泛,尤其在数据拟合和回归分析中被广泛使用。
举个例子来说,假设我们有一组观测数据,表示了某个物理过程的实际情况。
而我们想要通过一个数学模型来描述这个物理过程。
但是由于观测误差等原因,我们无法通过这组数据直接得到精确的解。
这时,我们可以使用最小二乘法来逼近这个数学模型。
首先,我们假设这个数学模型是一个线性方程组。
然后,我们根据观测数据,使用最小二乘法来找到一个最接近的解。
具体的求解步骤如下:1. 假设我们的线性方程组可以表示为 Ax = b 的形式,其中 A是一个 m 行 n 列的系数矩阵,x 是一个 n 维列向量表示未知数,b是一个 m 维列向量表示观测数据。
2. 我们的目标是找到一个最小二乘解 x*,使得 ||Ax - b||^2 = min。
其中,||.|| 表示向量的模(即向量的长度的平方)。
3. 通过数学推导可以得到,最小二乘解可以通过求解正规方程组ATAx = ATb 得到。
其中,AT 是 A 的转置矩阵,A^T 表示 A 的伪逆矩阵。
4. 求解正规方程组的方法有多种,最常见的是使用矩阵的分解方法,如QR分解或奇异值分解等。
通过以上步骤,我们可以得到最小二乘解 x*,并使用它来逼近我们的数学模型。
最小二乘法的优点在于它能够处理带有误差的观测数据,提供一个最优的近似解。
它在实际应用中具有广泛的指导意义。
举个实际案例来说,假设我们要估计一辆汽车的燃油消耗量与其速度的关系。
我们首先收集了一组汽车在不同速度下的燃油消耗数据。
然后,我们可以使用最小二乘法来拟合一个线性模型,得到一个最优的近似解。
通过最小二乘法,我们可以得到一个线性关系的方程,表示速度与燃油消耗量之间的关系。
正定超定适定方程求解正定超定适定方程是在数学和工程领域中经常遇到的问题之一。
解决这类方程需要清晰的思路和流畅的表达,同时需要避免包含任何会对阅读体验产生负面影响的元素。
首先,让我们来了解一下正定超定适定方程是什么。
正定超定适定方程是指方程的个数多于未知数的个数,同时这些方程又具有唯一解的特点。
在求解这类方程时,我们需要找到一个最优解,使得方程组中的所有方程都得到满足。
为了解决正定超定适定方程,我们可以使用最小二乘法。
最小二乘法是一种常用的数值方法,可以求解方程组的近似解。
它的基本思想是通过最小化误差的平方和来找到最优解。
具体来说,我们可以将方程组转化为一个矩阵形式,然后对该矩阵进行求解。
在进行求解之前,我们需要确保方程组是正定的。
正定矩阵具有特殊的性质,即所有的特征值都大于零。
如果方程组不是正定的,我们可以通过调整方程组的变量或添加约束条件来使其变为正定。
一旦方程组满足正定条件,我们就可以使用最小二乘法求解。
在求解过程中,我们需要注意避免加入任何与正文不符的标题。
标题应该准确地概括文章内容,让读者能够快速了解文章的主题。
同时,我们也不能在文章中加入任何广告信息,以保证文章的纯净性。
此外,我们还需要避免涉及版权等侵权争议的内容。
在引用他人的研究成果或观点时,我们应该遵循适当的引用规范,并注明出处,以尊重他人的知识产权。
在文章的标题、简介和正文中,我们也要注意不要出现包含不适宜展示的敏感词或其他不良信息。
这些内容会给读者带来负面影响,并且违背了良好的写作准则。
最后,在文章的正文中,我们要保证语句不缺失、序号不丢失,段落也要完整。
这样可以确保文章的逻辑清晰,读者能够更好地理解和消化文章的内容。
总的来说,解决正定超定适定方程需要遵循一定的写作规范和准则。
我们要确保文章的思路清晰,表达流畅,并且避免包含任何会对阅读体验产生负面影响的元素。
通过遵循以上几点,我们可以写出一篇优秀的关于“正定超定适定方程求解”的文章。
在进行C++矩阵超定方程的最小二乘求解时,我们首先需要理解什么是矩阵超定方程和最小二乘法。
矩阵超定方程指的是方程组的数量多于未知数的数量,这种情况下无法精确求解方程组,因为方程组中存在冗余信息。
而最小二乘法是一种数学优化方法,用于寻找一组参数,使得函数的预测值与实际观测值之间的残差平方和最小化。
在C++中,我们可以利用已有的数学库或自己编写矩阵运算的函数来实现矩阵超定方程的最小二乘求解。
我们需要将超定方程组表示成矩阵形式,例如 A * x = b,其中 A 是m×n 的矩阵(m > n),x 是n×1 的未知数向量,b 是m×1 的观测值向量。
然后我们可以利用最小二乘法来求解未知数向量 x。
在C++中,我们可以使用Eigen这样的成熟数学库来进行矩阵运算和最小二乘求解。
Eigen提供了方便的矩阵和向量操作接口,使得矩阵超定方程的最小二乘求解变得非常简单和高效。
我们可以使用Eigen中的LeastSquaresConjugateGradient类或其他最小二乘求解器来解决超定方程组,从而得到最优的未知数向量 x。
除了使用成熟的数学库外,我们还可以自己编写矩阵运算和最小二乘求解的函数。
通过理解最小二乘法的原理和矩阵运算的基本操作,我们可以实现一个高效的最小二乘求解算法,用于解决矩阵超定方程。
这种方式可以加深我们对最小二乘法和矩阵运算的理解,同时也可以满足特定的需求和定制化的要求。
在C++中实现矩阵超定方程的最小二乘求解是一项非常重要和有意义的任务。
无论是使用现有的数学库还是自己编写算法,都需要深入理解矩阵运算和最小二乘法的原理,同时结合具体的应用场景来实现高质量、深度和广度兼具的算法。
希望通过我们的努力,能够为矩阵超定方程的最小二乘求解提供更加全面、深入的理解和应用。
希望以上内容对你有所帮助。
如有任何疑问或需要进一步讨论的,欢迎随时与我联系。
矩阵超定方程的最小二乘求解在实际应用中有着广泛的应用,比如在工程、物理学、经济学和统计学等领域。
超定⽅程组最优解(最⼩⼆乘解)推导⼀、超定⽅程组##超定⽅程组即为有效⽅程个数⼤于未知数个数的⽅程组。
(这⾥只讨论多元⼀次的情况)超定⽅程组可以写成矩阵的形式:Ax=b其中A为m×n的矩阵,其与b组成的增⼴矩阵[A|b]的秩⼤于n。
x为n维列向量未知数。
⼆、超定⽅程组的最⼩⼆乘解##超定⽅程组是⽆解的,但是我们可以求得其最⼩⼆乘解,就是将等式左右两端乘上A的转置。
\begin{equation}\begin{split}A TAx=A Tb\end{split}\end{equation}该⽅程有增⼴矩阵[A T A|A T b]的秩等于n,即该⽅程的未知数的个数等于有效⽅程的个数,所以该⽅程有唯⼀解且为原⽅程的最⼩⼆乘解。
平时记住结论直接⽤就好三、推导过程##(记录,⼤家不要看:其实⼩⽣也是只知道结论不知道结论是怎么来的,不过有⼀天看斯坦福⼤学的机器学习公开课的第⼆节,看到了推导过程。
)1.前置结论###1. trAB=trBA2. trABC=trBCA=trCAB3. ∇A trAB=B T4. trA=trA T5. tra=a6)∇A trABA T C=CAB+C T AB Ttr代表矩阵的迹,⼤写字母为矩阵⼩写字母表⽰实数,∇表⽰求导。
2.公式推导###作差[]Ax−b=a T1x−b1⋮a T m−b m构建最⼩⼆乘\begin{equation}\begin{split}\frac{1}{2}(Ax-b)^T(Ax-b) = \frac{1}{2}\sum_{i=1}m(a_i Tx-b_i)^2\end{split}\end{equation}对x求导\begin{equation}\begin{split}\nabla_x \frac{1}{2}(Ax-b)^T(Ax-b) = \nabla_x tr(x TA TAx-x TA Tb-b TAx+b Tb)\end{split}\end{equation}利⽤前置结论2)4)5)\begin{equation}\begin{split}\nabla_x \frac{1}{2}(Ax-b)^T(Ax-b) = \nabla_xtr[xx TA TA-\nabla_xb TAx-\nabla_xb TAx]\end{split}\end{equation}其中利⽤前置结论6)注:⼤括号下的A为前置结论中的A,⼤括号上的A为矩阵A。
超定方程组,又称为过定方程组,是线性代数中的一个概念。
当方程组的未知数数量少于方程数量时,该方程组就被称为超定方程组。
由于超定方程组通常没有精确解,我们常常会寻求一个近似解,使得所有方程的残差平方和最小。
这就是最小二乘解的原理。
一、最小二乘解的基本概念最小二乘法是一种数学优化技术,它通过最小化误差的平方和来寻找数据的最佳函数匹配。
利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和最小。
最小二乘法还可用于曲线拟合,其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
二、超定方程组的性质对于超定方程组,由于方程数量多于未知数数量,因此通常不存在一个解能够使得所有方程同时成立。
这种情况下,我们需要寻找一个近似解,即一个解,使得所有方程的残差(即方程的实际值与解代入方程后得到的计算值之间的差)的平方和最小。
三、最小二乘解的原理最小二乘解的原理就是基于上述思想,通过最小化残差平方和来寻找超定方程组的近似解。
具体步骤如下:构建残差平方和函数:首先,我们需要构建一个表示残差平方和的函数。
假设超定方程组有(m) 个方程,(n) 个未知数((m > n)),未知数的向量记作(\mathbf{x} = (x_1, x_2, \ldots, x_n)^T),方程组的系数矩阵记作(\mathbf{A} = (a_{ij})_{m \times n}),常数项向量记作(\mathbf{b} = (b_1, b_2, \ldots, b_m)^T)。
那么,残差向量可以表示为(\mathbf{r} = \mathbf{A}\mathbf{x} - \mathbf{b}),残差平方和函数可以写为(S(\mathbf{x}) = \mathbf{r}^T\mathbf{r} = (\mathbf{A}\mathbf{x} - \mathbf{b})^T(\mathbf{A}\mathbf{x} - \mathbf{b}))。
python 最小二乘法求解超定最小二乘法是一种优化技术,用于求解超定方程组,也就是方程的数量大于未知数的数量的方程组。
在Python中,我们可以使用NumPy库中的linalg.lstsq函数来实现最小二乘法。
首先,我们需要理解最小二乘法的基本原理。
最小二乘法的基本思想是通过最小化误差的平方和来找到最佳函数匹配。
在超定方程组的情况下,我们无法找到一个精确的解,因为方程的数量超过了未知数的数量。
但是,我们可以找到一个最佳近似解,这个解能使得所有方程的残差平方和最小。
在Python中使用最小二乘法求解超定方程组的基本步骤如下:导入NumPy库。
定义超定方程组的系数矩阵A和目标向量b。
使用numpy.linalg.lstsq(A, b)函数求解超定方程组。
以下是一个示例代码:pythonimport numpy as np# 定义超定方程组的系数矩阵A和目标向量bA = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])b = np.array([1, 2, 3, 4])# 使用numpy.linalg.lstsq函数求解超定方程组x, residuals, rank, s = np.linalg.lstsq(A, b, rcond=None)print("解向量x:", x)print("残差:", residuals)print("矩阵A的秩:", rank)print("奇异值:", s)注意,numpy.linalg.lstsq函数返回四个值:解向量x,残差,矩阵A的秩,以及A的奇异值。
其中,解向量x就是我们要求的近似解。
以上就是Python中使用最小二乘法求解超定方程组的方法。
选择题使用最小二乘法求解超定方程组时,我们的目标是:A. 最小化残差的平方和B. 最大化残差的平方和C. 使得所有方程严格成立D. 求解出方程组的无穷多解(正确答案)对于一个超定方程组Ax = b,其中A 是m×n 矩阵(m > n),最小二乘解x 是通过以下哪个公式求得的?A. x = A\b (A 的左除)B. x = AT * bC. x = (AT * A)(-1) * AT * b (当AT * A 可逆时)(正确答案)D. x = b / A在最小二乘法中,残差定义为:A. 实际观测值与模型预测值之差B. 模型预测值与实际观测值之和C. 实际观测值与模型预测值之积D. 模型预测值与实际观测值之商(正确答案)关于最小二乘法,以下哪个说法是正确的?A. 它只能用于求解恰定方程组B. 它总是能找到使所有方程都成立的解C. 它是一种优化方法,用于找到使残差平方和最小的解(正确答案)D. 它只能用于线性方程组在求解超定方程组时,如果增加更多的观测数据,通常会对最小二乘解产生什么影响?A. 解会变得更加不准确B. 解会保持不变C. 解可能会变得更加稳定,但也可能受异常值影响(正确答案)D. 解的维度会增加最小二乘法在统计学中常用于:A. 计算样本均值B. 进行假设检验C. 进行数据拟合(正确答案)D. 计算样本方差对于超定方程组,以下哪个性质是最小二乘解不一定具有的?A. 唯一性(当AT * A 可逆时)B. 使所有方程成立C. 使残差平方和最小D. 是方程组的一个近似解(正确答案)在最小二乘法中,如果观测数据中存在异常值,可能会对最小二乘解产生什么影响?A. 解会变得更加准确B. 解会完全不受影响C. 解可能会受到较大影响,导致偏差(正确答案)D. 解的维度会降低关于最小二乘解,以下哪个说法是不正确的?A. 它是一种逼近解,不一定满足所有方程B. 它的求解过程中涉及到了矩阵运算C. 它总是能给出全局最优解(正确答案)D. 它适用于观测数据多于未知数个数的情况。
超定方程用最小二乘法求解根据解的存在情况,线性方程可以分为:有唯一解的恰定方程组,解不存在的超定方程组,有无穷多解的欠定方程组。
对于方程组Ax=b,A为n×m矩阵,如果A列满秩,且n>m。
则方程组没有精确解,此时称方程组为超定方程组。
线性超定方程组经常遇到的问题是数据的曲线拟合。
对于超定方程,在MATLAB 中,利用左除命令(x=A\b)来寻求它的最小二乘解;还可以用广义逆来求,即x=pinv(A),所得的解不一定满足Ax=b,x只是最小二乘意义上的解。
左除的方法是建立在奇异值分解基础之上,由此获得的解最可靠;广义逆法是建立在对原超定方程直接进行householder变换的基础上,其算法可靠性稍逊与奇异值求解,但速度较快;独立方程个数大于独立的未知参数的个数的方程,称为超定方程,在matlab里面有三种方法求解,一是用伪逆法求解,x=pinv(A)*b,二是用左除法求解,x=A\b,三是用最小二乘法求解,x=lsqnonneg(A,b)(3)矩阵求逆行数和列数相等的矩阵称为方阵,只有方阵有逆矩阵。
方阵的求逆函数为:B=inv(A)该函数返回方阵A的逆阵。
如果A不是方阵或接近奇异的,则会给出警告信息。
在实际应用中,很少显式的使用矩阵的逆。
在MATLAB中不是使用逆阵x=inv(A)*B来求线性方程组Ax=B的解,而是使用矩阵除法运算x=A\B来求解。
因为MATLAB设计求逆函数inv时,采用的是高斯消去法,而设计除法解线性方程组时,并不求逆,而是直接采用高斯消去法求解,有效的减小了残差,并提高了求解的速度。
因此,MATLAB推荐尽量使用除法运算,少用求逆运算。
(4)除法运算在线性代数中,只有矩阵的逆的定义,而没有矩阵除法的运算。
而在MATLAB 中,定义了矩阵的除法运算。
矩阵除法的运算在MATLAB中是一个十分有用的运算。
根据实际问题的需要,定义了两种除法命令:左除和右除。
矩阵左除:C=A\B或C=mldivide(A,B)矩阵右除;C=A/B或C=mrdivide(A,B)通常矩阵左除不等于右除,如果A是方阵,A\B等效于A的逆阵左乘矩阵B。
超定方程的最小二乘解超定方程的最小二乘解,听起来像个高大上的数学概念,但其实说白了,就是把一堆数据弄得更好看、更合理。
想象一下,你在菜市场买水果,看到一堆苹果,价格差不多,但总觉得有点贵。
你想啊,要是能找到个便宜又好吃的苹果就好了。
这时候,你就得动脑筋了,超定方程就像是你寻找便宜苹果的工具。
先说说这个超定方程,它的意思就是你的方程数比未知数多,听起来有点复杂,其实就像你找了一堆好吃的食材,但还是希望能做出更好吃的菜。
说到这,大家是不是觉得数学和生活真是密不可分呢?回到我们的苹果,假设你想要找到每个苹果的最佳价格,结果却发现,有的价格偏高,有的又偏低,这时候就得用最小二乘法来调整一下,让整体看起来更加合理。
最小二乘法其实就是个很聪明的办法,简单来说就是把每个苹果的价格都看成一个方程,算一算,把那些偏差大的都给调回去。
就像你一开始看那些价格,可能心里有点嘀咕,最后通过计算发现其实也没那么贵。
这种方法可以让我们找到一个“最佳”的解决方案,虽然不一定是完美的,但已经足够靠谱。
再来聊聊这个“最小”的意思。
这里的最小可不是说只便宜一点,而是指那些误差最小的意思。
就像你在超市里碰到的打折商品,可能有的打折力度大,但质量却差;有的虽然只便宜一点,但质量超好,最后还是得选个性价比最高的。
这就是最小二乘法的真谛:在一堆数据中,找到那个让大家都满意的解决方案。
这种方法具体怎么运作呢?想象一下,你把所有数据都放进一个大锅里,慢慢煮熟,最后捞出来的就是你想要的结果。
这个过程中,最小二乘法就像是个厨师,不断调整火候,直到拿到完美的汤底。
每次调味的时候,厨师都会尝一尝,看看是不是合适,其实就是在不断优化那些数据,让它们更贴近真实的情况。
生活中,我们常常面对各种各样的选择。
比如说,你想买车,预算有限,又希望车好又省油。
这个时候,最小二乘法也能给你一些启示。
你可能会列出不同车型的数据,把每个车的油耗、价格、性能一一列出,然后用最小二乘法的思路,找到那个最符合你需求的车,避免了“看上去不错,实际上不合适”的陷阱。
超定方程组的最小二乘解 mathematica 超定方程组是指方程数量大于未知数数量的方程组。
在实际问题中,经常会遇到这种情况。
最小二乘解是指对于超定方程组,求解出的使得方程组的误差最小的解。
本文介绍如何使用Mathematica求解超定方程组的最小二乘解。
首先,构造一个超定方程组。
假设有$m$个方程,$n$个未知数,其中$m>n$。
方程组可以写成$Ax=b$的形式,其中$A$是$mtimes n$的系数矩阵,$x$是$ntimes 1$的未知向量,$b$是$mtimes 1$的常数向量。
接下来,使用Mathematica中的“PseudoInverse”函数求解最小二乘解。
该函数可以求解在最小二乘意义下的伪逆矩阵。
伪逆矩阵满足$A^+Ax=A^+b$,其中$A^+$为$A$的伪逆矩阵。
因此,最小二乘解为$x=A^+b$。
下面给出一个具体的例子。
假设有以下超定方程组:$$begin{cases}2x_1+3x_2=7 4x_1+5x_2=11 6x_1+7x_2=15 8x_1+9x_2=19end{cases}$$其中有$4$个方程,$2$个未知数。
我们可以将其写成矩阵形式: $$begin{pmatrix}2 & 3 4 & 5 6 & 7 8 &9end{pmatrix}begin{pmatrix}x_1x_2end{pmatrix}=begin{pmatrix}7 11 15 19end{pmatrix}$$ 然后使用Mathematica求解最小二乘解:```mathematicaA = {{2, 3}, {4, 5}, {6, 7}, {8, 9}};b = {7, 11, 15, 19};x = PseudoInverse[A].b```运行结果为:```{0.4, 1.5}```因此,最小二乘解为$x_1=0.4$,$x_2=1.5$。
总结一下,使用Mathematica求解超定方程组的最小二乘解非常简单。
根据解的存在情况,线性方程可以分为:
有唯一解的恰定方程组,
解不存在的超定方程组,
有无穷多解的欠定方程组。
对于方程组Ax=b,A为n×m矩阵,如果A列满秩,且n>m。
则方程组没有精确解,此时称方程组为超定方程组。
线性超定方程组经常遇到的问题是数据的曲线拟合。
对于超定方程,在MATLAB 中,利用左除命令(x=A\b)来寻求它的最小二乘解;
还可以用广义逆来求,即x=pinv(A),所得的解不一定满足Ax=b,x只是最小二乘意义上的解。
左除的方法是建立在奇异值分解基础之上,由此获得的解最可靠;
广义逆法是建立在对原超定方程直接进行 householder变换的基础上,其算法可靠性稍逊与奇异值求解,但速度较快;
独立方程个数大于独立的未知参数的个数的方程,称为超定方程,在matlab里面有三种方法求解,
一是用伪逆法求解,x=pinv(A)*b,二是用左除法求解,x=A\b,三是用最小二乘法求解,
x=lsqnonneg(A,b)
(3)矩阵求逆
行数和列数相等的矩阵称为方阵,只有方阵有逆矩阵。
方阵的求逆函数为:
B=inv(A)
该函数返回方阵A的逆阵。
如果A不是方阵或接近奇异的,则会给出警告信息。
在实际应用中,很少显式的使用矩阵的逆。
在MATLAB中不是使用逆阵x=inv(A)*B来求线性方程组Ax=B的解,
而是使用矩阵除法运算x=A\B来求解。
因为MATLAB设计求逆函数inv时,采用的是高斯消去法,而设计除法解线性方程组时,
并不求逆,而是直接采用高斯消去法求解,有效的减小了残差,并提高了求解的速度。
因此,MATLAB推荐尽量使用除法运算,少用求逆运算。
(4)除法运算
在线性代数中,只有矩阵的逆的定义,而没有矩阵除法的运算。
而在MATLAB 中,定义了矩阵的除法运算。
矩阵除法的运算在MATLAB中是一个十分有用的运算。
根据实际问题的需要,定义了两种除法命令:左除和右除。
矩阵左除:
C=A\B或C=mldivide(A,B)
矩阵右除;
C=A/B或C=mrdivide(A,B)
通常矩阵左除不等于右除,
如果A是方阵,A\B等效于A的逆阵左乘矩阵B。
也就是inv(A)*B。
如果A是一个n*n矩阵,B是一个n维列向量,或是有若干这样的列的矩阵,则A\B就是采用高斯消去法求得的方程AX=B的解。
如果A接近奇异的,MATLAB将会给出警告信息。
如果A是一个m*n矩阵,其中m不等于n,B是一个m维列向量,或是由若干这样的列的矩阵,
则X=A\B是不定或超定方程组AX=B的最小二乘解。
通过QR分解确定矩阵A 的秩k,方程组的解X每一列最多只有k个非零元素。
如果k<n,方程的解是不唯一的,用矩阵除法求得的最小二乘解是这种类型解中范数最小的。
matlab中关于左除的定义:
mldivide(A,B) and the equivalent A\B perform matrix left division (back slash). A and B must be matrices that have the same number of rows, unless A is a scalar, in which case A\B performs element-wise division —that is, A\B = A.\B.
If A is a square matrix, A\B is roughly the same as inv(A)*B, except it is computed in a different way. If A is an n-by-n matrix and B is a column vector with n elements, or a matrix with several such columns, then X = A\B is the solution to the equation AX= B. A warning message is displayed if A is badly scaled or nearly singular.
If A is an m-by-n matrix with m ~= n and B is a column vector with m components, or a matrix with several such columns, then X = A\B is the solution in the least squares sense to the under- or overdetermined system of equations AX= B. In other words, X minimizes norm(A*X - B), the length of the vector AX- B. The rank k of A is determined from the QR decomposition with column pivoting. The computed solution X has at most k nonzero elements per column. If k < n, this is usually not the same solution as x = pinv(A)*B, which returns a least squares solution.
注:在不理解矩阵分解的条件下,使用左除求解超定方程的解。
A*X=B, A:M*N, M>N, B-N*1;
X=A\B;
B/A大体等效于B*inv(A) (B右乘A的逆阵),但在计算方法上存在差异,更精确的,B/A=(AT\BT)T。
输入:A=[1 2 3;4 5 7;4 7 9];B=[1 3 7;3 5 7;8 5 1];
矩阵左除。
输入:A\B
显示:ans =
-0.7500 -0.5000 -2.0000
5.7500 -3.5000 -18.0000
-3.2500 3.5000 15.0000
矩阵右除。
输入:A/B
显示:ans =
-0.0217 0.4565 -0.0435
0.6522 0.3043 0.3043
-0.5652 1.8696 -0.1304。