基于MATLABSimulink的机电一体化系统的仿真分析实验
- 格式:doc
- 大小:52.65 KB
- 文档页数:4
MATLAB/Simulink 电力系统建模与仿真实验报告姓名:******专业:电气工程及其自动化班级:*******************学号:*******************实验一无穷大功率电源供电系统三相短路仿真1.1 无穷大功率电源供电系统仿真模型构建运行MATLAB软件,点击Simulink模型构建,根据电路原理图,添加下列模块:(1)无穷大功率电源模块(Three-phase source)(2)三相并联RLC负荷模块(Three-Phase Parallel RLC Load)(3)三相串联RLC支路模块(Three-Phase Series RLC Branch)(4)三相双绕组变压器模块(Three-Phase Transformer (Two Windings))(5)三相电压电流测量模块(Three-Phase V-I Measurement)(6)三相故障设置模块(Three-Phase Fault)(7)示波器模块(Scope)(8)电力系统图形用户界面(Powergui)按电路原理图连接线路得到仿真图如下:1.2 无穷大功率电源供电系统仿真参数设置1.2.1 电源模块设置三相电压110kV,相角0°,频率50Hz,接线方式为中性点接地的Y形接法,电源电阻0.00529Ω,电源电感0.000140H,参数设置如下图:1.2.2 变压器模块变压器模块参数采用标幺值设置,功率20MVA,频率50Hz,一次测采用Y型连接,一次测电压110kV,二次侧采用Y型连接,二次侧电压11kV,经过标幺值折算后的绕组电阻为0.0033,绕组漏感为0.052,励磁电阻为909.09,励磁电感为106.3,参数设置如下图:1.2.3 输电线路模块根据给定参数计算输电线路参数为:电阻8.5Ω,电感0.064L,参数设置如下图:1.2.4 三相电压电流测量模块此模块将在变压器低压侧测量得到的电压、电流信号转变成Simulink信号,相当于电压、电流互感器的作用,勾选“使用标签(Use a label)”以便于示波器观察波形,设置电压标签“Vabc”,电流标签“Iabc”,参数设置如下图:1.2.5 故障设置模块勾选故障相A、B、C,设置短路电阻0.00001Ω,设置0.02s—0.2s发生短路故障,参数设置如下图:1.2.6 示波器模块为了得到仿真结果准确数值,可将示波器模块的“Data History”栏设置为下图所示:1.3 无穷大功率电源供电系统仿真结果及分析得到以上的电力系统参数后,可以首先计算出在变压器低压母线发生三相短路故障时短路电流周期分量幅值和冲击电流的大小,短路电流周期分量的幅值为Im=10.63kA,时间常数Ta=0.0211s,则短路冲击电流为Iim=17.3kA。
机电一体化系统仿真实验报告一、实验目标本实验的目标是通过仿真模拟机电一体化系统,验证系统的工作原理和性能参数,探究机电一体化系统在不同工况下的响应特性。
二、实验原理机电一体化系统是由机械部分和电气部分组成的,其中机械部分包括传动装置、力传感器和负载,电气部分包括控制器和电机。
在机电一体化系统中,电机通过控制器产生驱动信号,控制负载的转动。
力传感器用于测量负载的转动产生的力,并反馈给控制器。
三、实验步骤1.搭建仿真模型:根据实验要求,选择合适的仿真软件,搭建机电一体化系统的仿真模型。
通过连接电机、控制器、传动装置、力传感器和负载,构建完整的系统。
2.设置参数:根据实验设定的工况,设置系统的参数。
包括电机的转速、传动装置的传动比、负载的转动惯量和滑动摩擦系数等。
3.运行仿真:对系统进行仿真运行,记录电机的转速、负载的转动惯量、力传感器的输出力以及电机的功率消耗等参数。
4.分析结果:根据仿真结果,分析系统在不同工况下的响应特性。
可以通过绘制曲线图或制作动画来观察系统的运动轨迹和力的变化情况。
五、实验结果与讨论根据实验设置的参数,在不同转速和负载惯量下进行了多组仿真实验,并记录了系统的各项参数。
1.转速与力的关系:随着电机转速的增加,负载的输出力也随之增加,但是增幅逐渐减小。
当转速达到一定值后,输出力和转速的关系呈现饱和状态。
2.负载惯量与转速的关系:在给定转速范围内,随着负载惯量的增加,电机的转速逐渐降低。
这是因为负载惯量增加会增加系统的惯性,降低了电机的响应速度。
3.功率消耗的变化:随着转速和负载惯量的增加,电机的功率消耗呈现增加的趋势。
这是因为转速和负载惯量的增加会增加电机的负载,使其需要输出更大的功率来维持转速。
四、实验总结通过此次实验,我们深入了解了机电一体化系统的工作原理和性能特点。
在不同工况下,电机的转速、负载的力输出、功率消耗等参数都有相应的变化。
通过仿真实验,我们可以准确地预测系统在不同工况下的性能表现,为设计和优化机电一体化系统提供了依据。
201006113 11002 Matlab上机实验报告
◆实验一: Smulink动态仿真集成环境
➢ 1.目的要求
➢熟悉simulink环境, 掌握simulink的仿真方法。
➢ 2.掌握要点
➢熟悉simulink环境, 掌握simulink的仿真方法。
➢ 3.实验内容
➢熟悉simulink环境;
➢熟悉基本的模块库以及功能模块
➢搭建简单的电路进行仿真;
➢对分析参数对结果的影响;
1.建立如图所示的仿真系统.
完成过程:
********* ***** 结果如下:
◆ 2.建立如图所示的仿真系统.
◆将红色区域部分创建并封装装成子系统
完成过程:
没有设置子系统时:
没有设置子系统时的结果如下:
以下开始设置子系统并封装: 修改变量后:
最终如下图所示:
开始封装设置过程: 设置子系统各个参数
设置完成后如下图所示:
双击设置好的封装并分别输入与变量对应的参数如下:
运行结果如下:。
机电系统动态仿真-基于MATLAB Simulink课程设计简介机电系统是由电气、机械及控制部分组成的复杂系统。
动态仿真是一种研究系统行为的方法,可以帮助我们更好地理解系统的运行原理。
本课程设计旨在介绍机电系统动态仿真的基本原理和方法,并使用MATLAB Simulink软件进行实践操作。
课程内容本课程设计包括以下几个部分:1. 机电系统简介介绍机电系统的组成部分、基本特性及其应用场景,旨在让学生对机电系统有一个全面的认识和了解。
2. MATLAB Simulink简介介绍MATLAB Simulink的基本使用方法,包括模块的添加、参数的设置和仿真结果的显示等。
3. 机电系统建模使用MATLAB Simulink软件对机电系统进行建模,包括机械部分、电气部分及控制部分等。
4. 系统仿真利用所建立的机电系统模型进行系统仿真,包括控制器输出、系统响应等结果分析。
5. 结果分析对仿真结果进行对比分析,分析不同参数条件下系统的运行情况,找出系统的优化方案。
实践操作为了让学生更好地掌握机电系统动态仿真的基本原理和方法,本课程设计还包括以下的实践操作:1. 模型建立使用MATLAB Simulink工具箱,建立一个简单的机电系统模型。
2. 参数设置调整模型内参数,观察系统响应情况。
3. 仿真并分析结果执行仿真操作,对仿真结果进行分析,并尝试不同参数条件下系统的运行情况。
4. 优化方案结合分析结果,提出相应的优化方案,并重新设置参数进行仿真。
5. 实验报告整理实验数据、结果和分析,撰写实验报告。
实验环境本课程设计使用的软件工具为MATLAB Simulink,需要学生提前安装并掌握基本使用方法。
课程收获通过本课程的学习和实践操作,学生能够初步掌握机电系统动态仿真的基本原理和方法,了解MATLAB Simulink的基本使用方法,从而更好地理解机电系统的运行原理和优化方案。
同时,学生能够提高实际操作能力,加强分析和解决问题的能力。
Simulink 的仿真实验报告1.实验目的:熟悉使用Simulink的各种使用方法及仿真系统2.数学建模:假设系统的微分方程为:r''(t)+3r'(t)+2r(t)=e(t) , 其中e(t)=u(t)求该系统的零状态响应令等式右边为零,则可求得方程的两个特征根为:r1=-1, r2=-2所以设该系统的零状态响应为:r(t)=Ae^-t+Be^-2t+C其中C为方程的一个特解,由微分方程可知,等式右边没有冲激函数及冲激函数的微分,故系统在零负到零正的过程中没有发生跳变,则C为一个常数。
将C带入方程可解得C=1/2由于零状态响应时系统的初值都为零即r(0-)=0 , r'(0-)=0,且系统无跳变,则r(0+)='(0+)=0.带入r(t)得:A+B+1/2=0-A-2B+1/2=0解得:A=-3/2 B=1所以系统的零状态响应为:r(t)=-3/2e^-t+e^-2t+1/2Simulink仿真:根据系统的微分方程可编辑仿真模型如下图打开开始按键,可以得到波形图:验证仿真结果:由前面得到的系统零状态响应结果:r(t)=-3/2e^-t+e^-2t+1/2可编辑仿真模型:>> t=(0::10);>> plot(t,((-3)/2)*exp((-1)*t)+exp((-2)*t)+1/2)实验结论:Simulink仿真结果和函数仿真结果基本一致,所以simulink仿真是正确的。
实验心得:1.此实验是利用matlab对一个微分方程进行建模求解,既要求我们掌握对微分方程的求解,又要求掌握用matlab对微分方程进行建模,所以要求我们对软件得熟悉。
2.信号与系统的实验主要是用matlab分析或验证书上的东西,前提当然是学好书本上的知识,再学好matlab这个软件。
3.用simulink仿真的时候,对函数用积分器较好,不知为什么用微分器做不出来,报错显示不出图形。
实验九SIMULINK仿真一、实验目的SIMULINK是一个对动态系统(包括连续系统、离散系统和混合系统)进行建模、仿真和综合分析的集成软件包,是MA TLAB的一个附加组件,其特点是模块化操作、易学易用,而且能够使用MATLAB提供的丰富的仿真资源。
在SIMULINK环境中,用户不仅可以观察现实世界中非线性因素和各种随机因素对系统行为的影响,而且也可以在仿真进程中改变感兴趣的参数,实时地观察系统行为的变化。
因此SIMULINK已然成为目前控制工程界的通用软件,而且在许多其他的领域,如通信、信号处理、DSP、电力、金融、生物系统等,也获得重要应用。
对于信息类专业的学生来说,无论是学习专业课程或者相关课程设计还是在今后的工作中,掌握SIMULINK,就等于是有了一把利器。
本次实验的目的就是通过上机训练,掌握利用SIMULINK对一些工程技术问题(例如数字电路)进行建模、仿真和分析的基本方法。
二、实验预备知识1. SIMULINK快速入门在工程实际中,控制系统的结构往往很复杂,如果不借助专用的系统建模软件,则很难准确地把一个控制系统的复杂模型输入计算机,对其进行进一步的分析与仿真。
1990年,Math Works软件公司为MATLAB提供了新的控制系统模型图输入与仿真工具,并命名为SIMULAB,该工具很快就在控制工程界获得了广泛的认可,使得仿真软件进入了模型化图形组态阶段。
但因其名字与当时比较著名的软件SIMULA类似,所以1992年正式将该软件更名为SIMULINK。
SIMULINK的出现,给控制系统分析与设计带来了福音。
顾名思义,该软件的名称表明了该系统的两个主要功能:Simu(仿真)和Link(连接),即该软件可以利用系统提供的各种功能模块并通过信号线连接各个模块从而创建出所需要的控制系统模型,然后利用SIMULINK提供的功能来对系统进行仿真和分析。
⏹SIMULINK的启动首先启动MATLAB,然后在MA TLAB主界面中单击上面的Simulink按钮或在命令窗口中输入simulink命令。
matlab simulink仿真实验报告[Abstract]本篇报告介绍了一项利用Matlab和Simulink进行仿真实验的过程和结果。
实验主要涉及对加速度计数据的滤波和降噪处理,以及利用观测器估计一个非线性系统的状态变量。
本文介绍了实验设计的思路和步骤,详细讲解了实验中所使用到的算法和模型,并对实验结果进行了分析和总结。
[Keywords][Introduction]在自动化控制、机器人技术、航天航空、汽车电子等领域中,传感器和估计器是广泛应用的两类算法。
传感器可以测量物理量,如位置、速度、加速度等,并将其转化为电信号输出。
估计器则通过对物理模型的建模和输出信号的处理,来推测和估计系统的状态变量。
加速度计可以测量物体在三个轴向上的加速度,同时可以进行数据滤波和降噪。
估计器可以用于非线性系统的状态估计,具有广泛的应用前景。
[Simulation Process]1. 数据采集处理加速度计可以用于测量物体在三个轴向上的加速度。
由于传感器的噪声和误差,采集的数据往往不够准确和稳定,需要通过滤波和降噪等算法进行处理。
本实验中采用了常用的Butterworth低通滤波器和移动平均滤波器来对加速度计数据进行处理。
Butterworth低通滤波器是一种线性相位滤波器,可以将高频信号滤去,降低信号噪声。
在Matlab中,可以通过函数[b,a] = butter(n,Wn,'low')生成Butterworth低通滤波器。
其中,n为滤波器的阶数,Wn为截止频率。
移动平均滤波器是一种简单有效的滤波方法,可以对信号进行平均处理,消除信号的高频成分和噪声。
在Matlab中,可以通过函数smooth(x,n)生成移动平均滤波器。
其中,x为待处理的信号,n为滤波器窗口大小。
2. 状态估计模型状态估计模型是一种建立在数学模型基础上的估计方法,常常用于非线性系统的状态估计。
本实验中,给定了以下非线性系统的模型:$$\begin{cases}x_{1}' = x_{2} \cos(x_{1}) \\x_{2}'= u\end{cases}$$其中,x1和x2为系统状态变量,u为系统的控制输入。
实验五、基于MATLAB/Simulink的机电一体化系统的仿真分
析实验
一、实验目的
机电一体化系统建模是进行机电一体化系统分析与设计的基础,通过对系统的简化分析建立描述系统的数学模型,进而研究系统的稳态特性和动态特性,为机电一体化系统的物理实现和后续的系统调试工作提供数据支持,而仿真研究是进行系统分析和设计的有利方法。
本实验目的在于通过实验使同学对机电一体化系统建模方法和仿真方法有初步的了解,初步掌握在MA TLAB/ SIMULINK环境下对机电一体化系统数学模型进行仿真的方法。
(1)掌握机电一体化系统数学建模的基本方法
(2)掌握机电一体化系统数学仿真的基本方法和步骤。
(3)掌握在MA TLAB/ SIMULINK环境下对机电一体化系统数学模型进行仿真的方法。
二、实验器材
(1)计算机
(2)MA TLAB/ SIMULINK软件
三、实验原理
(一)建立数学模型
以一定的理论为依据把系统的行为概括为数学的函数关系,包括以下内容:
1)确定模型的结构,建立系统的约束条件,确定系统的实体、属性与活动。
2)测取有关的模型数据。
3)运用适当理论建立系统的数学描述,即数学模型。
4)检验所建立的数学模型的准确性。
机电一体化系统数学模型的建立是否得当,将直接影响以此为依据的仿真分析与设计的准确性、可靠性,因此必须予以充分重视,以采用合理的方式、方法。
(二)机电一体化系统的计算机数字仿真实现
1)根据已建立的数学模型和精度、计算时间等要求,确定所采用的数值计算方法。
2)将原模型按照算法要求通过分解、综合、等效变换等方法转换为适于在数字计算机上运行的公式、方程等。
3)用适当的软件语言将其描述为数字计算机可接受的软件程序,即编程实现。
4)通过在数字计算机上运行,加以校核,使之正确反映系统各变量动态性能,得到可靠的仿真结果。
(三).凑试法确定PID调节参数
凑试法是通过模拟或闭环运行(如果允许的话)观察系统的响应曲线(例如阶跃响应),然后根据各调节参数对系统响应的大致影响,反复凑试参数,以达到满意的响应,从而确定
PID调节参数。
增大比例系数K p,一般将加快系统的响应,在有静差的情况下有利于减小静差。
但过大的比例系数会使系统有较大的超调,并产生振荡,使稳定性变坏。
增大积分时间T i有利于减小超调,减小振荡;使系统更加稳定,但系统静差的消除将随之减慢。
增大微分时间T d亦有利于加快系统响应,使超调量减小,稳定性增加,但系统对扰动的抑制能力减弱,对扰动有较敏感的响应。
在凑试时,可参考以上参数对控制过程的影响趋势,对参数实行下述先比例,后积分,再微分的整定步骤。
1. 首先只整定比例部分。
即,将比例系数由小变大,并观察相应的系统响应,直至得到反应快、超调小的响应曲线。
如果系统没有静差或静差已小到允许范围内,并且响应曲线已属满意,那么只需用比例调节器即可,比例系数可由此确定。
2. 如果在比例调节的基础上系统的静差不能满足设计要求,则须加入积分环节。
(1)整定时首先置积分时间T i为一较大值,并将经第一步整定得到的比例系数略为缩小(如缩小为原值的0.8倍),
(2)然后减小积分时间,使在保持系统良好动态性能的情况下,静差得到消除。
(3)在此过程中,可根据响应曲线的好环反复改变比例系数与积分时间,以期得到满意的控制过程与整定参数。
3. 若使用比例积分调节器消除了静差,但动态过程经反复调整仍不能满意,则可加入微分环节,构成比例积分微分调节器。
(1)在整定时,可先置微分时间T d为零。
(2)在第二步整定的基础上,增大T d,同时相应地改变比例系数和积分时间,
(3)逐步凑试,以获得满意的调节效果和控制参数。
四、实验内容
本实验首先在分析机电一体化系统(直流伺服电动机驱动的工作台速度控制系统如图17所示)工作原理的基础上,建立系统的数学模型(包括直流伺服电机模型、齿轮减速、滚珠丝杠及工作台模型),其次对所建立的系统数学模型在MA TLAB/ SIMULINK环境下进行计算机仿真,获得该系统的动态特性和稳态特性(设PID调节器的初值为比例系数为1,无积分和微分环节),第三,对PID控制器的参数(比例,积分和微分)进行整定,使系统具有合理的稳态响应和动态响应特性,从而使学生理解比例、积分和微分环节对系统的影响,重点掌握凑试法进行参数整定。
最后绘出该机电一体化系统的阶跃响应动态特性曲线图,分析系统的响应性能。
设该系统为直流伺服电动机驱动的工作台速度控制系统,其中工作台的质量为20KG,减速传动比i1=5 ,i2=6,丝杠的螺距为5mm,忽略丝杠和齿轮的转动惯量和弹性,电机的转动惯量为0.608×10-5kgm2,电感量0.1mH,转子内阻0.85Ω,电枢的电势常数4.3v/kr.min-1,
转矩常数52.3×10-3N.m/A。
方框图中,G1为PID调节器,G2为功率放大器K A=10,G3为电动机及负载的特性,G4为齿轮(与电机相连的齿轮)及丝杠的传动比,G5为与传感器1相连的轮系引起的转速调节系数,G6为传感器的反馈比例系数K r =1。
1.对给定的机电一体化系统方案,应用所学的基础知识建立相应的数学模型。
2.根据建立起来的数学模型,在MA TLAB/ SIMULINK环境下对机电一体化系统数学模型进行仿真的实验,得出系统的动态特性和稳态特性。
(PID控制器的参数由实验者给定)
3.根据实验结果对PID控制的参数进行整定,使系统具有合理的稳态响应和动态响应特性。
五、实验步骤
1.分析如图所给的机电一体化系统的工作原理。
2.根据分析的结果建立系统的数学模型。
3.对所建立的系统数学模型进行计算机仿真,获得该系统的动态特性和稳态特性(设PID调节器的初值为比例系数为1,无积分和微分环节)。
4.对PID控制器的参数(比例,积分和微分)进行整定,使系统具有合理的稳态响应和动态响应特性。
并给出该机电一体化系统的阶跃响应动态特性曲线图,分析系统的响应性能。
六、安全事项
(1)熟悉MA TLAB计算机软件的使用方法。
七、考核要求
实验考核总体分为三部分:实验预习:20%;实验操作:50%;实验报告质量:30%。
根据已知参数建立数学模型,并在MA TLAB/ SIMULINK环境下对机电一体化系统数学模型进行仿真的实验,得出系统的动态特性和稳态特性。
PID控制器的参数由实验者调整,并按照仿真结果填写实验报告。
图1机电一体化系统模型
机电一体化系统建模与仿真实验报告请根据实验要求填写下表结果::
1. 超调百分比δ%<8%
2.t s时的瞬态响应与稳态值之间的偏差(%)=2%
序号
PID参数值
M pδ% t r t p(s)t
s
(s)
t s时的
偏差(%)
阶跃响应波形图P I D
1 2 结论
+
-
G2G4
G5
K r
K A
丝杠转速
1
1
i
2
1
i
G3
G6
G1
功放
电机
滚珠丝杠
工作台
i1
丝杠转速+
-i2 1 P I D
调节器。