一次函数与反比例函数综合应用(经典)
- 格式:docx
- 大小:1.01 MB
- 文档页数:5
一次函数与反比例函数的综合应用一、选择题1. (2011四川凉山,12,4分)二次函数2y ax bx c =++的图象如图所示,反比列函数ay x=与正比列函数y bx =在同一坐标系内的大致图象是( )考点:二次函数的图象;正比例函数的图象;反比例函数的图象. 专题:数形结合.分析:由已知二次函数y =ax 2+bx +c 的图象开口方向可以知道a 的取值范围,对称轴可以确定b 的取值范围,然后就可以确定反比例函数xay =与正比例函数y =bx 在同一坐标系内的大致图象.解答:解:∵二次函数y =ax 2+bx +c 的图象开口方向向下,∴a <0,对称轴在y 轴的左边,∴x =-ab2<0,∴b <0, ∴反比例函数xay =的图象在第二四象限, 正比例函数y =bx 的图象在第二四象限. 故选B .点评:此题主要考查了从图象上把握有用的条件,准确选择数量关系解得a 的值,简单的图象最少能反映出2个条件:开口向下a <0;对称轴的位置即可确定b 的值. 2. (2011•青海)一次函数y=﹣2x+1和反比例函数y=的大致图象是( )O xy O yxAO yxBO yxDO yxCA、B、C、D、考点:反比例函数的图象;一次函数的图象。
分析:根据一次函数的性质,判断出直线经过的象限;再根据反比例函数的性质,判断出反比例函数所在的象限即可.解答:解:根据题意:一次函数y=﹣2x+1的图象过一、二、四象限;反比例函数y=过一、三象限.故选:D.点评:此题主要考查了一次函数的图象及反比例函数的图象,重点是注意y=k1x+b中k1、b及y=中k2的取值.3.(2011山东青岛,8,3分)已知一次函数y1=kx+b与反比例函数y2=kx在同一直角坐标系中的图象如图所示,则当y1<y2时,x的取值范围是()A.x<﹣1或0<x<3 B.﹣1<x<0或x>3 C.﹣1<x<0 D.x>3 考点:反比例函数与一次函数的交点问题。
一次函数与反比例函数综合应用教案一、教学目标1. 让学生掌握一次函数和反比例函数的基本概念和性质。
2. 培养学生运用一次函数和反比例函数解决实际问题的能力。
3. 引导学生通过合作交流,提高解决问题的策略和思维能力。
二、教学内容1. 一次函数的基本概念和性质。
2. 反比例函数的基本概念和性质。
3. 一次函数和反比例函数的综合应用。
三、教学重点与难点1. 教学重点:一次函数和反比例函数的基本概念、性质和综合应用。
2. 教学难点:一次函数和反比例函数的综合应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究一次函数和反比例函数的性质。
2. 利用案例分析法,让学生通过实际问题体会一次函数和反比例函数的应用价值。
3. 采用合作交流法,培养学生团队协作和沟通能力。
五、教学过程1. 导入新课:通过生活实例引入一次函数和反比例函数的概念。
2. 自主学习:让学生自主探究一次函数和反比例函数的性质。
3. 案例分析:分析实际问题,引导学生运用一次函数和反比例函数解决问题。
4. 合作交流:分组讨论,让学生分享解题策略和心得。
5. 总结提升:总结一次函数和反比例函数的性质及应用,提高学生解决问题的能力。
6. 课后作业:布置相关练习题,巩固所学知识。
六、教学活动设计1. 活动一:引入概念通过展示实际生活中的线性关系图片,如直线轨道上列车的运动,引导学生思考线性关系的表现形式。
引导学生提出一次函数的表达式,并解释其含义。
2. 活动二:探索性质学生通过绘制一次函数图像,观察并总结其在坐标系中的性质。
通过实际例子,让学生理解一次函数的斜率和截距对图像的影响。
3. 活动三:反比例函数的引入引导学生从比例关系出发,思考反比例函数的概念。
通过实际问题,如在固定面积内,距离与面积的关系,引入反比例函数。
七、教学评价设计1. 评价目标:学生能理解并应用一次函数和反比例函数解决实际问题。
通过设计具有挑战性的问题,如购物预算问题,让学生应用所学的函数知识。
一次函数与反比例函数的综合应用训练例1:已知一次函数y=(3-k)x-2k2+18.(1)k为时,它的图象经过原点;(2)k为时,它的图象经过点(0,-2);(3)k为时,它的图象平行于直线y=-x;(4)k为时,它的图象垂直于直线y=2x+1;(5)k为时,y随x的增大而减小,=+的图象经过M(0,2),N(1,3)两点.例2:已知一次函数y kx b(l) 求k、b的值;=+的图象与x轴和y轴的交点坐标(2) 求一次函数y kx b=+的图象与坐标轴围成的三角形面积。
(3) 求一次函数y kx b例3:一家小型放映厅的盈利额y元同售票数x之间的关系如图所示,其中保险部门规定:超过150人时,要缴纳公安消防保险费50元,据图回答:(1)当0<x≤150时,y与x的关系式。
(2)当150<x≤200时,y与x的关系式。
(3)当售票数x为时,不赔不赚;当售票数x为时,赔本;若获得最大利润200元x为。
基础巩固小训练:一、选择题1、一次函数y=(m-2)x+(3-2m )的图像经过点(-1,-4),则m 的值为( ).A .-3B .3C .1D .-12、若一次函数y=(2-m )x+m 的图像经过第一、•二、•四象限,•则m•的取值范围是( )3、一次函数y=kx+b 满足x=0时y=-1;x=1时,y=1,则一次函数的表达式为( ).A .y=2x+1B .y=-2x+1C .y=2x-1D .y=-2x-14、如图,线段AB 对应的函数表达式为( )A .y=-32x+2B .y=-23x-2C .y=-23x+2(0≤x ≤3)D .y=-23x+2(0<x<3) 5、已知函数y=x-3,若当x=a 时,y=5;当x=b 时,y=3,a 和b 的大小关系是( )A .a>bB .a=bC .a<bD .不能确定6、已知正比例函数y =kx (k ≠0),y 随x 的增大而减小,则一次函数y =x +k 的图像大致是( )。
反比例函数与一次函数的综合应用反比例函数和一次函数是数学中最常用的函数之一,它们常被用于实际工作中,可以用来模拟、分析和解决实际问题。
本文旨在探讨反比例函数和一次函数在实践中的运用。
详细探讨了反比例函数和一次函数的定义、特点、性质及其综合应用。
反比例函数的定义反比例函数是一种可以求解反比例关系的函数,它是以x和y两个变量组成的一对变量。
反比例函数也可以表示为y与x的倒数的乘积,也就是y=k/x,其中k为常数。
这种变量使得反比例函数有其独特的特征,使得反比例函数与其他函数不同。
反比例函数的特点反比例函数具有以下几个明显的特点:(1)反比例函数的图像为抛物线;(2)反比例函数的导数为负数;(3)反比例函数的函数值与变量值的乘积不变,即yx=k;(4)以反比例函数表示的关系为反比例关系。
一次函数的定义一次函数是一种最为普遍的函数,它由x和y两个变量组成。
一次函数的表达式可以以y=ax+b的形式来表示,其中a为常数,b为常数。
一次函数的特点一次函数具有以下几个明显的特点:(1)一次函数的图像为直线;(2)一次函数的导数为一恒定的常数;(3)一次函数的函数值与变量值的差值不变,即y-b=a(x-0);(4)以一次函数表示的关系为线性关系。
反比例函数与一次函数的综合应用反比例函数和一次函数能够结合起来运用,用于模拟、分析和解决实际问题。
具体应用如下:1.于具有反比例关系的实际现象,可以用反比例函数建立模型,以研究关系性。
例如,用反比例函数可以研究不同工资水平与物价的变化关系;2.于涉及递减的实际现象,可以用一次函数建立模型,以研究关系性。
例如,用一次函数可以研究不同时间段内物价的变化关系;3.于反比例函数和一次函数具有相似关系的实际现象,可以将它们结合起来建立模型,以研究关系性。
例如,用反比例函数和一次函数可以很好地研究不同金额投资与年利润的变化关系。
结论以上,本文概述了反比例函数和一次函数的定义、特点以及综合应用情况,并且将它们在实践中的运用进行总结,提出了综合应用的建议。
反比例函数与一次函数的综合运用蒲岐中学章青海一、教学目标、重点、难点的确定结合本节课的教学内容和学生现有的学习水平,我确定本节课的教学目标如下:1.知识与技能:通过本节学习,巩固反比例函数和一次函数的图像和性质,并能用它解决相关问题.2.过程与方法:通过观察简单图象入手,步步引入,逐渐掌握解决本节例题的方法,通过动手操作,提高分析解决问题的能力,并体会一般与特殊的关系,了解数形结合思想.3.情感、态度与价值观:通过学生之间的讨论、交流和探索,建立合作意识,提高探索能力,激发学习的兴趣和欲望,体会数学在生活中广泛的应用价值.教学重点:利用反比例函数和一次函数的图像和性质解决有关问题教学难点:1、综合运用反比例函数和一次函数的图像和性质知识解决创新型问题2、对数形结合思想的理解与深入应用二、教学流程(一) 简单图象导入,温故知新教师:同学们好,请同学们看屏幕.如图,问题1.如图在Rt△ABC中,∠B=90°,AB=2、BC=1,你可以得出哪些结论?设计意图:让学生复习解直角三角形的知识及一般情况三角形会求哪些结论?引出面积为反比例函数的引入作铺垫。
问(2)将Rt△ABC如图放入直角坐标系中;还可以得出什么结论?设计意图:让学生体会当直角坐标系与简单几何图形结合,点线都可以用代数知识来表示,充分理解直角坐标系是数形结合很好的工具。
.借助哪个函数工具可以画出和它面积一样的直角三角形?设计意图:引入反比例函数,复习反比例函数解析式的求法,充分理解掌握k=xy 面积不变性,认识应用的基本图形,为等积法解决原题作铺垫。
问(3) .在平面直角坐标系中找到点D,使得以A 、B 、C 、 D 为顶点的四边形是平行四边形。
设计意图:比较自然的引出(0,-1);(4,1)又可以得出直线y=21x -1,从数学思想看也复习了分类讨论思想。
问(4).如图反比例函数y=x 4 与一次函数y=21x -1交于C,D 两点 你能提出一个新问题吗?并尝试解决.设计意图:预设3副图解决三类常见问题求交点,求三角形面积及大小比较 让学生总结方法技巧问(5). 直线y=21x-1与x 轴交于点B,过点B 作x 轴的垂线交反比例函数y=x4于点C,连接AC 你能判断三角形ABC 的形状吗?(创新型综合问题)设计意图:还是让学生观察图形特征,总结点规律,为解决原题作基础。
中考数学专题复习《一次函数与反比例函数的综合》经典题型讲解【经典母题】如图Z6-1是一个光学仪器上用的曲面横截面示意图,图中的曲线是一段反比例函数的图象,端点A的纵坐标为80,另一端点B的坐标为B(80,10).求这段图象的函数表达式和自变量的取值范围.【解析】利用待定系数法设出反比例函数的表达式后,代入点B的坐标即可求得反比例函数的表达式.解:设反比例函数的表达式为y=k x ,∵一个端点B的坐标为(80,10),∴k=80×10=800,∴反比例函数的表达式为y=800x.∵端点A的纵坐标为80,∴80=800x,x=10,∴点A的横坐标为10,∴自变量的取值范围为10≤x≤80.【思想方法】求反比例函数的表达式宜用待定系数法,设y=kx,把已知一点代入函数表达式求出k的值即可.【中考变形】1.已知正比例函数y=ax与反比例函数y=bx的图象有一个公共点A(1,2).(1)求这两个函数的表达式;图Z6-1(2)在图Z6-2中画出草图,根据图象写出正比例函数值大于反比例函数值时x 的取值范围.图Z6-2中考变形1答图解:(1)把A (1,2)代入y =ax ,得2=a , 即y =2x ;把A (1,2)代入y =b x ,得b =2,即y =2x ; (2)画草图如答图所示.由图象可知,当x >1或-1<x <0时,正比例函数值大于反比例函数值. 2.如图Z6-3,已知一次函数y =k 1x +b 与反比例函数y =k 2x 的图象交于第一象限内P ⎝ ⎛⎭⎪⎫12,8,Q (4,m )两点,与x 轴交于A 点.(1)分别求出这两个函数的表达式; (2)写出点P 关于原点的对称点P ′的坐标; (3)求∠P ′AO 的正弦值.图Z6-3【解析】①将P 点坐标代入反比例函数关系式,即可求出反比例函数表达式;将Q 点代入反比例函数关系式,即可求出m 的值;将P ,Q 两个点的坐标分别代入一次函数关系式,即可求出一次函数的表达式.②根据平面直角坐标系中,两点关于原点对称,则横、纵坐标互为相反数,可以直接写出点P ′的坐标;③过点P ′作P ′D ⊥x 轴,垂足为D ,可构造出′AD ,又∵点A 在一次函数的图象上,∴可求出点A 坐标,得到OA 长度,利用P ′ 点坐标,可以求出P ′D ,P ′A ,即可得到∠P ′AO 的正弦值. 解:(1)∵点P 在反比例函数的图象上,∴把点P ⎝ ⎛⎭⎪⎫12,8代入y =k 2x ,得k 2=4,∴反比例函数的表达式为y =4x ,∴Q 点坐标为(4,1).把P ⎝ ⎛⎭⎪⎫12,8,Q (4,1)分别代入y =k 1x +b 中,得⎩⎨⎧8=12k 1+b ,1=4k 1+b ,解得⎩⎪⎨⎪⎧k 1=-2,b =9.∴一次函数的表达式为y =-2x +9; (2)P ′⎝ ⎛⎭⎪⎫-12,-8;(3)如答图,过点P ′作P ′D ⊥x 轴,垂足为D . ∵P ′⎝ ⎛⎭⎪⎫-12,-8,中考变形2答图∴OD =12,P ′D =8.∵点A 在y =-2x +9的图象上,∴点A 坐标为⎝ ⎛⎭⎪⎫92,0,即OA =92,∴DA =5,∴P ′A =P ′D 2+DA 2=89. ∴sin ∠P ′AD =P ′D P ′A =889=88989.∴sin ∠P ′AO =88989.3.[2017·成都]如图Z6-4,在平面直角坐标系xOy 中,已知正比例函数y =12x与反比例函数y =kx 的图象交于A (a ,-2),B 两点. (1)求反比例函数表达式和点B 的坐标;(2)P 是第一象限内反比例函数图象上一点,过点P 作y 轴的平行线,交直线AB 于点C ,连结PO ,若△POC 的面积为3,求点P 的坐标.图Z6-4 中考变形3答图解:(1)∵点A (a ,-2)在正比例函数y =12x 图象上, ∴-2=12a ,∴a =-4, ∴点A 坐标为(-4,-2).又∵点A 在反比例函数y =kx 的图象上, ∴k =xy =-4×(-2)=8, ∴反比例函数的表达式为y =8x .∵A ,B 既在正比例函数图象上,又在反比例函数图象上, ∴A ,B 两点关于原点O 中心对称, ∴点B 的坐标为(4,2);(2)如答图,设点P 坐标为⎝ ⎛⎭⎪⎫a ,8a (a >0),∵PC ∥y 轴,点C 在直线y =12x 上,∴点C 的坐标为⎝ ⎛⎭⎪⎫a ,12a ,∴PC =⎪⎪⎪⎪⎪⎪12a -8a =⎪⎪⎪⎪⎪⎪a 2-162a , ∴S △POC =12PC ·a =12⎪⎪⎪⎪⎪⎪a 2-162a ·a =⎪⎪⎪⎪⎪⎪a 2-164=3, 当a 2-164=3时,解得a =28=27, ∴P ⎝⎛⎭⎪⎫27,477. 当a 2-164=-3时,解得a =2,∴P (2,4).综上所述,符合条件的点P 的坐标为⎝⎛⎭⎪⎫27,477,(2,4). 4.如图Z6-5,一次函数y =kx +b 与反比例函数y =mx 的图象交于A (1,4),B (4,n )两点.(1)求反比例函数的表达式; (2)求一次函数的表达式;(3)P 是x 轴上的一个动点,试确定点P 并求出它的坐标,使得P A +PB 最小.图Z6-5解:(1)∵点A (1,4)在函数y =mx 上, ∴m =xy =4,∴反比例函数的表达式为y =4x ; (2)把B (4,n )代入y =4x ,4=xy =4n ,得n =1, ∴B (4,1),∵直线y =kx +b 经过A ,B , ∴⎩⎪⎨⎪⎧4=k +b ,1=4k +b ,解得⎩⎪⎨⎪⎧k =-1,b =5, ∴一次函数的表达式为y =-x +5; (3)点B 关于x 轴的对称点为B ′(4,-1), 设直线AB ′的表达式为y =ax +q , ∴⎩⎪⎨⎪⎧4=a +q ,-1=4a +q ,解得⎩⎪⎨⎪⎧a =-53,q =173,∴直线AB ′的表达式为y =-53x +173, 令y =0,解得x =175,∴当点P 的坐标为⎝ ⎛⎭⎪⎫175,0时,P A +PB 最小.5.[2017·广安]如图Z6-6,一次函数y =kx +b 的图象与反比例函数y =mx 的图象在第一象限交于点A (4,2),与y 轴的负半轴交于点B ,图Z6-6且OB =6.(1)求函数y =mx 和y =kx +b 的表达式.(2)已知直线AB 与x 轴相交于点C .在第一象限内,求反比例函数y =mx 的图象上一点P ,使得S △POC =9.解:(1)∵点A (4,2)在反比例函数y =mx 的图象上, ∴m =4×2=8,∴反比例函数的表达式为y =8x . ∵点B 在y 轴的负半轴上,且OB =6, ∴点B 的坐标为(0,-6),把点A (4,2)和点B (0,-6)代入y =kx +b 中, 得⎩⎪⎨⎪⎧4k +b =2,b =-6,解得⎩⎪⎨⎪⎧k =2,b =-6. ∴一次函数的表达式为y =2x -6; (2)设点P 的坐标为⎝ ⎛⎭⎪⎫n ,8n (n >0).在直线y =2x -6上,当y =0时,x =3, ∴点C 的坐标为(3,0),即OC =3, ∴S △POC =12×3×8n =9,解得n =43. ∴点P 的坐标为⎝ ⎛⎭⎪⎫43,6.6.[2017·黄冈]如图Z6-7,一次函数y =-2x +1与反比例函数y =kx 的图象有两个交点A (-1,m )和B ,过点A 作AE ⊥x 轴,垂足为E ;过点B 作BD ⊥y 轴,垂足为D ,且点D 的坐标为(0,-2),连结DE . (1)求k 的值;(2)求四边形AEDB 的面积.图Z6-7 中考变形6答图解:(1)将点A (-1,m )代入一次函数y =-2x +1, 得-2×(-1)+1=m ,解得m =3.∴A 点的坐标为(-1,3).将A (-1,3)代入y =kx ,得k =(-1)×3=-3;(2)如答图,设直线AB 与y 轴相交于点M ,则点M 的坐标为(0,1), ∵D (0,-2),则点B 的纵坐标为-2,代入反比例函数,得DB =32, ∴MD =3.又∵A (-1,3),AE ∥y 轴, ∴E (-1,0),AE =3. ∴AE ∥MD ,AE =MD .∴四边形AEDM 为平行四边形. ∴S 四边形AEDB =S ▱AEDM +S △MDB =3×1+12×32×3=214.7.[2016·金华]如图Z6-8,直线y =33x -3与x ,y 轴分别交于点A ,B ,与反比例函数y =kx (k >0)的图象交于点C ,D ,过点A 作x 轴的垂线交该反比例函数图象于点E . (1)求点A 的坐标;(2)若AE =AC ,①求k 的值;②试判断点E 与点D 是否关于原点O 成中心对称?并说明理由.图Z6-8中考变形7答图解:(1)当y =0时,得0=33x -3,解得x =3. ∴点A 的坐标为(3,0);(2)①如答图,过点C 作CF ⊥x 轴于点F .设AE =AC =t ,点E 的坐标是(3,t ),则反比例函数y =k x 可表示为y =3tx . ∵直线y =33x -3交y 轴于点B , ∴B (0,-3).在Rt △AOB 中,tan ∠OAB =OB OA =33, ∴∠OAB =30°.在Rt △ACF 中,∠CAF =30°, ∴CF =12t ,AF =AC ·cos30°=32t ,∴点C 的坐标是⎝⎛⎭⎪⎫3+32t ,12t .∴⎝⎛⎭⎪⎫3+32t ×12t =3t ,解得t 1=0(舍去),t 2=2 3. ∴k =3t =6 3.②点E 的坐标为()3,23,设点D 的坐标是⎝ ⎛⎭⎪⎫x ,33x -3,∴x ⎝ ⎛⎭⎪⎫33x -3=63,解得x 1=6(舍去),x 2=-3, ∴点D 的坐标是()-3,-23, ∴点E 与点D 关于原点O 成中心对称. 【中考预测】如图Z6-9,一次函数y =kx +b (k ,b 为常数,k ≠0)的图象与x 轴,y 轴分别交于A ,B 两点,且与反比例函数y =nx (n 为常数且n ≠0)的图象在第二象限交于点C ,CD ⊥x 轴,垂足为D ,若OB =2OA =3OD =6. (1)求一次函数与反比例函数的表达式; (2)求两函数图象的另一个交点的坐标;(3)直接写出不等式kx +b ≤nx 的解集.图Z6-9解:(1)∵OB =2OA =3OD =6, ∴OB =6,OA =3,OD =2, ∵CD ⊥DA ,∴DC ∥OB , ∴OB DC =AO AD ,∴6DC =35, ∴DC =10,∴C (-2,10),B (0,6),A (3,0), 代入一次函数y =kx +b , 得⎩⎪⎨⎪⎧b =6,3k +b =0,解得⎩⎪⎨⎪⎧k =-2,b =6, ∴一次函数的表达式为y =-2x +6. ∵反比例函数y =nx 经过点C (-2,10), ∴n =-20,∴反比例函数的表达式为y =-20x ;(2)由⎩⎨⎧y =-2x +6,y =-20x ,解得⎩⎪⎨⎪⎧x =-2,y =10或⎩⎪⎨⎪⎧x =5,y =-4, ∴另一个交点坐标为(5,-4);(3)由图象可知kx +b ≤nx 的解集为-2≤x <0或x ≥5.。
一次函数与反比例函数
—专项提升
1. 如图1,一次函数y kx b =+的图象与反比例函数m
y x
=(0x <)的图象交于A (-3,2),
B (n ,4)两点.
(1)求一次函数与反比例函数的解析式;
(2)点C (-1,0)是x 轴上一点,求△ABC 的面积.
2、如图2,直线y 1=kx +2与反比例函数23
y x
-=(x <0)相交于点A ,且当x <-1时,y 1>y 2,当-1<x <0时,y 1<y 2.
(1)求出y 1的解析式;
(2)若直线y =2x +b 与x 轴交于点B (3,0),与y 1交于点C ,求出△AOC 的面积.
图1
图2
3、如图,直线1
32
y x =+与x 轴交于点A ,与y 轴交于点B .
(1)求点A 、B 的坐标 (2)若点P 在直线1
32
y x =
+上,且横坐标为-2, 求过点P 的反比例函数图象的解析式.
4、如图9,在平面直角坐标系中,双曲线y =m
x 和直线y =kx +b 交于A ,B 两点,点A 的坐标
为(﹣3,2),BC ⊥y 轴于点C ,且OC =6BC .
(1)求双曲线和直线的解析式; (2)直接写出不等式m
x
>kx +b 的解集.
图9
图10
x
y A
O
B
5、如图10,一次函数y=x+1的图象与反比例函数x
k
y =(k 为常数,且0k )的图象都经过点A (m ,2).
(1)求点A 的坐标及反比例函数的表达式;
(2)设一次函数y=x+1的图象与x 轴交于点B ,若点P 是x 轴上一点,且满足△ABP 的面积是2,请直接写出点P 的坐标.
6、正比例函数y =12x 的图象与反比例函数y =k
x (k ≠0)在第一象限的图象交于A 点,过A
点作x 轴的垂线,垂足为M ,已知△OAM 的面积为1. (1)求反比例函数的解析式;
(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使PA +PB 最小.
O
M
y
图11
A
x。