【最新】余弦定理一
- 格式:ppt
- 大小:1.38 MB
- 文档页数:4
余弦定理的证明方法大全(共十法)一、余弦定理余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦的积的两倍,即在ABC ∆中,已知AB c =,BC a =,CA b =,则有2222cos a b c bc A =+-, 2222cos b c a ca B =+-, 2222cos c a b ab C =+-.二、定理证明为了叙述的方便与统一,我们证明以下问题即可:在ABC ∆中,已知AB c =,AC b =,及角A ,求证:2222cos a b c bc A =+-. 证法一:如图1,在ABC ∆中,由CB AB AC =-可得:()()CB CB AB AC AB AC ⋅=-⋅-222AB AC AB AC =+-⋅222cos b c bc A =+-即,2222cos a b c bc A =+-.证法二:本方法要注意对A ∠进行讨论.(1)当A ∠是直角时,由22222222cos 2cos90b c bc A b c bc b c a +-=+-︒=+=知结论成立. (2)当A ∠是锐角时,如图2-1,过点C 作CD AB ⊥,交AB 于点D ,则在Rt ACD ∆中,cos AD b A =,sin CD b A =.从而,cos BD AB AD c b A =-=-.在Rt BCD ∆中,由勾股定理可得: 222BC BD CD =+22(cos )(sin )c b A b A =-+222cos c cb A b =-+即,2222cos a b c bc A =+-.说明:图2-1中只对B ∠是锐角时符合,而B ∠还可以是直角或钝角.若B ∠是直角,图中的图1CAB图2-1DCAB点D 就与点B 重合;若B ∠是钝角,图中的点D 就在AB 的延长线上.(3)当A ∠是钝角时,如图2-2,过点C 作CD AB ⊥,交BA 延长线于点D ,则 在Rt ACD ∆中,cos()cos AD b A b A π=-=-,sin()sin CD b A b A π=-=.从而,cos BD AB AD c b A =+=-.在Rt BCD ∆中,由勾股定理可得:222BC BD CD =+22(cos )(sin )c b A b A =-+222cos c cb A b =-+即,2222cos a b c bc A =+-.综上(1),(2),(3)可知,均有2222cos a b c bc A =+-成立. 证法三:过点A 作AD BC ⊥,交BC 于点D ,则在Rt ABD ∆中,sin BD c α=,cos ADc α=.在Rt ACD ∆中,sin CD b β=,cos ADbβ=.由cos cos()cos cos sin sin A αβαβαβ=+=-可得:2cos AD AD BD CD AD BD CDA c b c b bc-⋅=⋅-⋅=2222AD BD CD bc -⋅=222222c BD b CD BD CD bc -+--⋅=222()2b c BD CD bc +-+=2222b c a bc+-=整理可得2222cos a b c bc A =+-. 证法四:在ABC ∆中,由正弦定理可得sin sin sin sin()a b c cA B C A B ===+. 从而有sin sin b A a B =,………………………………………………………………①sin sin()sin cos cos sin c A a A B a A B a A B =+=+. …………………………②将①带入②,整理可得cos cos a B c b A =-.…………………………………………③ 将①,③平方相加可得22222(cos )(sin )2cos a c b A b A b c bc A =-+=+-.图2-2DBACβα图3DBAC即,2222cos a b c bc A =+-.证法五:建立平面直角坐标系(如图4),则由题意可得点(0,0)A ,(,0)B c ,(cos ,sin )C b A b A ,再由两点间距离公式可得2a =22(cos )(sin )c b A b A -+222cos c cb A b =-+.即,2222cos a b c bc A =+-.证法六:在ABC ∆中,由正弦定理可得2sin a R A =,2sin b R B =,2sin c R C =. 于是,222224sin 4sin ()a R A R B C ==+222224(sin cos cos sin 2sin sin cos cos )R B C B C B C B C =++ 222224(sin sin 2sin sin 2sin sin cos cos )R B C B C B C B C =+-+ 2224(sin sin 2sin sin cos())R B C B C B C =+++ 2224(sin sin 2sin sin cos )R B C B C A =+-22(2sin )(2sin )2(2sin )(2sin )cos R B R C R B R B A =+-222cos b c bc A =+-即,结论成立.证法七:在ABC ∆中,由正弦定理可得2sin a R A =,2sin b R B =,2sin c R C =. 于是,2222cos a b c bc A =+-22222224sin 4sin 4sin 8sin sin cos R A R B R C R B C A ⇔=+-2222sin 2sin 2sin 4sin sin cos A B C B C A ⇔=+- 22sin 2cos 2cos 24sin sin cos A B C B C A ⇔=-+-222cos 22cos()cos()4sin sin cos A B C B C B C A ⇔-=-+--由于cos()cos()cos B C A A π+=-=-,因此2cos cos()cos()2sin sin cos A B C B C B C A ⇔=+-+cos cos()2sin sin A B C B C ⇔=--+cos cos cos sin sin cos()A B C B C B C ⇔=-+=-+. 这,显然成立.xy图4BA(O)C即,结论成立.证法八:如图5,以点C 为圆心,以CA b =为半径作C ,直线BC 与C 交于点,D E ,延长AB 交C 于F ,延长AC 交C 于G .则由作图过程知2cos AF b A =, 故2cos BF b A c =-.由相交弦定理可得:BA BF BD BE ⋅=⋅, 即,(2cos )()()c b A c b a b a ⋅-=+⋅-, 整理可得:2222cos a b c bc A =+-.证法九:如图6,过C 作CD ∥AB ,交ABC ∆的外接圆于D ,则AD BC a ==,BD AC b ==.分别过,C D 作AB 的垂线,垂足分别为,E F ,则cos AE BF b A ==,故2cos CD c b A =-.由托勒密定理可得AD BC AB CD AC BD ⋅=⋅+⋅, 即,(2cos )a a c c b A b b ⋅=⋅-+⋅.整理可得:2222cos a b c bc A =+-.证法十:由图7-1和图7-2可得2a =22(cos )(sin )c b A b A -+, 整理可得:2222cos a b c bc A =+-.bcosA absinAc-bcosAac-bcosAbsinA图7-2图7-1DE DABCC B余弦定理的证明方法还有很多,比如可以用物理方法证明、可以构造相似三角形证明、可以利用图形面积证明等.感兴趣的读者可以到图书馆或互联网中进行查询.bac2bcosA-cb-a bb图5GDE FCAB c b aa 图6F EDCBA。
余弦定理简介全文共四篇示例,供读者参考第一篇示例:余弦定理是解决三角形中角和边的关系的重要定理,它是三角学中的基本知识之一。
余弦定理可以帮助我们求解不规则三角形中的各种边长和角度。
在学习三角学和解决实际问题中,余弦定理起着至关重要的作用。
余弦定理的表述为:在一个三角形ABC中,设角A的对边为a,角B的对边为b,角C的对边为c,则有以下公式成立:c^2 = a^2 + b^2 - 2ab * cosCc是角C的对边,a和b分别是角A和角B的对边,cosC是角C 的余弦值。
余弦定理的推导过程可以通过几何运算和三角函数的知识来得到。
假设在三角形ABC中,将角C分成两个小角α和β,利用三角形内角和为180°的性质,我们可以得到:α + β = C根据三角函数的性质,我们知道:cos(α+β) = cosCcos(α+β) = cosαcosβ - sinαsinβ再根据余弦定理的定义,我们有:c = a cosβ + b cosα联立以上两个方程,我们可以得到余弦定理的表达式,即:这就是余弦定理的推导过程,通过操纵和变换三角函数的关系,我们可以得到这个关键性质的定理。
余弦定理在解决三角形中的各种问题时能够提供很大的帮助。
通过利用余弦定理,我们可以求解未知边长和角度,进而解决实际问题。
在测量不规则三角形的边长时,我们可以利用余弦定理来计算,而不必通过复杂的几何推导。
在航海、建筑等领域,余弦定理也都有着广泛的应用。
在高中数学教学中,余弦定理是一个必须掌握的基础知识。
它不仅可以帮助学生理解三角形内角和为180°的性质,还可以锻炼学生的逻辑思维和解决问题的能力。
通过练习余弦定理的应用,学生可以提高自己的数学能力和思维能力。
余弦定理是三角学中一个重要的定理,它在解决不规则三角形中的各种问题时起着至关重要的作用。
通过学习和掌握余弦定理,我们可以更好地理解三角形的性质,提高自己的数学水平,并应用到实际生活中去。
最新正弦定理余弦定理说课稿优秀5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!最新正弦定理余弦定理说课稿优秀5篇作为一位无私奉献的人·民教师,通常会被要求编写说课稿,说课稿有助于教学取得成功、提高教学质量。
余弦定理公式一、引言余弦定理是解决三角形中的边长或角度关系问题的重要工具。
在数学和物理领域广泛应用,特别是在解决三角形的非直角问题以及相关定理的证明过程中。
本文将对余弦定理的定义、推导过程以及实际应用进行详细介绍。
二、余弦定理的定义余弦定理是三角学中的一个定理,用于计算三角形的边长、角度或判断三角形的形状。
余弦定理的表达式如下:c^2 = a^2 + b^2 - 2abcosC其中,a、b为三角形中的两边,c为斜边,C为斜边对应的角。
三、余弦定理的推导过程余弦定理的推导过程并不复杂。
首先,我们需要设想一个任意的三角形ABC,其中a、b为两条边,C是它们的夹角。
假设c是它们的斜边,我们需要找到c的表达式。
根据正余弦的定义,我们可以得到以下等式:cosA = Adjacent / HypotenusecosB = Opposite / Hypotenuse将这两个等式改写为:Hypotenuse = Adjacent / cosA (1)Hypotenuse = Opposite / cosB (2)我们可以将(1)和(2)两个等式相等:Adjacent / cosA = Opposite / cosB进一步改写为:cosB / cosA = Adjacent / Opposite根据三角公式sinA = 1 / cscA 和 sinB = 1 / cscB,可以将cosB / cosA转换为sinB / sinA:sinB / sinA = Adjacent / Opposite将A和B两个角度的角替换为C, sinA和sinB替换为a和b,可以得到余弦定理的表达式:c^2 = a^2 + b^2 - 2abcosC这就是余弦定理的最终表达式。
四、余弦定理的实际应用1. 计算三角形的边长:通过已知两边和它们夹角的大小,可以利用余弦定理计算第三边的长度。
这对于求解航海、测量不可达距离等问题非常有用。
数学正弦定理余弦定理公式正弦定理和余弦定理是数学中用于解决三角形相关问题的重要定理。
它们可以帮助我们求解不完全信息的三角形,包括边长和角度等。
本文将分别介绍正弦定理和余弦定理的公式及应用。
一、正弦定理:正弦定理是指在任意三角形ABC中,三角形的三条边与其对应的角度之间存在一个关系。
假设三角形的边长分别为a、b、c,对应的角度分别为A、B、C,则正弦定理的公式为:a/sinA = b/sinB = c/sinC正弦定理的应用非常广泛,可以用于求解未知角度或边长。
例如,已知一个三角形的两条边长和它们之间的夹角,可以利用正弦定理求解第三条边长。
另外,如果已知三角形的一个角度和它对应的边长,也可以利用正弦定理求解其他未知边长或角度。
二、余弦定理:余弦定理是指在任意三角形ABC中,三角形的三条边与其对应的角度之间存在一个关系。
假设三角形的边长分别为a、b、c,对应的角度分别为A、B、C,则余弦定理的公式为:c² = a² + b² - 2ab * cosC余弦定理的应用也非常广泛,可以用于求解未知角度或边长。
例如,已知一个三角形的三条边长,可以利用余弦定理求解任意一个角度。
另外,如果已知三角形的两条边长和它们夹角的余弦值,也可以利用余弦定理求解第三条边长或其他未知角度。
三、正弦定理和余弦定理的应用举例:1. 已知一个三角形的两条边长分别为a和b,夹角为C,求第三条边长c。
根据正弦定理可得:c/sinC = a/sinA = b/sinB根据已知条件代入公式即可求解出c的值。
2. 已知一个三角形的两条边长分别为a和b,夹角为C,求角度A 和角度B。
根据正弦定理可得:a/sinA = b/sinB = c/sinC根据已知条件代入公式即可求解出角度A和角度B的值。
3. 已知一个三角形的三个角度A、B、C,求边长a、b、c。
根据正弦定理可得:a/sinA = b/sinB = c/sinC根据已知条件代入公式即可求解出边长a、b、c的值。
三角形余弦定理公式大全三角形余弦定理是解决三角形相关问题时常用的定理之一。
它能帮助我们在已知两边和夹角的情况下求解第三边的长度,或者在已知三边长度时求解夹角的大小。
下面将介绍一些常见的三角形余弦定理公式。
公式1:已知两边及夹角,求解第三边长度对于一个三角形ABC,已知边AB和AC的长度分别为a和b,夹角∠BAC的大小为θ,我们可以根据三角形余弦定理计算边BC的长度c:c² = a² + b² - 2abcosθ公式2:已知三边长度,求解夹角的大小如果我们已知三角形ABC的边长a、b和c,请根据三角形余弦定理计算∠BAC的大小θ:cosθ = (b² + c² - a²) / (2bc)cosθ = (a² + c² - b²) / (2ac)cosθ = (a² + b² - c²) / (2ab)公式3:正弦函数与余弦函数的关系在三角形中,正弦函数与余弦函数有着密切的关系。
根据正弦函数的定义,我们可以将余弦函数表示为正弦函数的倒数:sinθ = √(1 - cos²θ)cosθ = √(1 - sin²θ)公式4:应用示例假设一个三角形ABC,已知边AB和BC的长度分别为12cm和8cm,夹角∠ABC的大小为60°,我们可以使用公式1来计算边AC的长度:AC² = AB² + BC² - 2 × AB × BC × cos∠ABCAC² = (12)² + (8)² - 2 × 12 × 8 × cos60°AC² = 144 + 64 - 2 × 12 × 8 × 0.5AC² = 208 - 96AC² = 112AC ≈ √112AC ≈ 10.58cm通过计算,我们得知边AC的长度约为10.58cm。
余弦定理公式大全余弦定理是三角形中一个重要的几何定理,它可以通过三个边的长度来计算出三个角的大小。
余弦定理的公式包含了三个版本,根据给定的已知条件来选择相应的公式。
第一个版本的余弦定理是用于计算三角形的边长的。
假设有一个三角形ABC,其中边长分别为a,b和c,对应的顶点角度为A,B和C。
那么可以使用以下公式计算出任意边长:c² = a² + b² - 2ab cos(C)a² = b² + c² - 2bc cos(A)b² = a² + c² - 2ac cos(B)这些公式可以根据已知的两个边长和它们之间的夹角来计算第三个边长。
第二个版本的余弦定理是用于计算三角形的角度的。
假设有一个三角形ABC,其中边长分别为a,b和c,对应的顶点角度为A,B和C。
那么可以使用以下公式计算出任意角度的值:cos(A) = (b² + c² - a²) / 2bccos(B) = (a² + c² - b²) / 2accos(C) = (a² + b² - c²) / 2ab这些公式可以根据已知的三个边长来计算出相应的角度。
第三个版本的余弦定理是用于计算三角形的面积的。
假设有一个三角形ABC,其中边长分别为a,b和c,对应的顶点角度为A,B和C。
那么可以使用以下公式计算出三角形的面积:Area = (1/2)ab sin(C)Area = (1/2)bc sin(A)Area = (1/2)ac sin(B)这些公式可以根据已知的两个边长和它们之间的夹角来计算三角形的面积。
余弦定理是解决三角形相关问题的重要工具,可以计算未知长度、未知角度以及三角形的面积。
这些公式的推导过程可以使用几何或者代数方法来完成,可以在几何相关的书籍、教材以及网上的数学资源中找到相关的推导过程。
三角形余弦定理公式是cosA=(b²+c²-a²)/2bc,cosA=邻边比斜边。
对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。
余弦定理,欧氏平面几何学基本定理。
余弦定理是描述三角形中三边长度与一个角的余弦值关系的数学定理,是勾股定理在一般三角形情形下的推广,勾股定理是余弦定理的特例。
余弦定理是揭示三角形边角关系的重要定理。
拓展知识
判定定理,两根判别法。
若记m,c1,c2为c的两值为正根的个数,c1为c的表达式中根号前取加号的值,c2为c的表达式中根号前取减号的值。
①若m(c1,c2)=2,则有两解。
②若m(c1,c2)=1,则有一解。
③若m(c1,c2)=0,则有零解即无解。
注意:若c1等于c2且c1或c2大于0,此种情况算到第二种情况,即一解。
余弦定理公式及变形公式好的,以下是为您生成的关于“余弦定理公式及变形公式”的文章:在咱们学习数学的这趟奇妙旅程中,余弦定理就像是一把神奇的钥匙,能帮咱们打开好多难题的大门。
先来说说余弦定理的基本公式吧,对于一个三角形,假设三条边分别是a、b、c,对应的角分别是A、B、C,那么余弦定理的公式就是:a² = b² + c² - 2bc·cosA,b² = a² + c² - 2ac·cosB,c² = a² + b² - 2ab·cosC。
就拿我之前给学生讲题的时候遇到的一个例子来说。
有一次,课堂上我出了这样一道题:一个三角形,两条边分别是 3 和 4,它们夹角的余弦值是 1/8 ,让大家求第三条边。
同学们一开始都有点懵,不知道从哪儿下手。
我就引导他们,这时候余弦定理就派上用场啦!根据余弦定理 a² = b² + c² - 2bc·cosA,咱们把数值代入进去,就得到 a² = 3² + 4² - 2×3×4×(1/8) ,经过计算,就能得出 a 的值。
再来说说余弦定理的变形公式。
通过基本公式进行一些推导和变换,咱们能得到好多有用的变形。
比如 cosA = (b² + c² - a²) / (2bc),cosB = (a² + c² - b²) / (2ac),cosC = (a² + b² - c²) / (2ab) 。
这些变形公式在解题的时候可好用啦。
有一回,我带学生们做练习题,有一道题是只知道三角形的三条边的长度,让求其中一个角的余弦值。
这时候,用变形公式就能轻松解决。
直接把边的长度代入变形公式,就能算出角的余弦值。