高考数学创新题解题策略
- 格式:docx
- 大小:29.83 KB
- 文档页数:2
压轴题高分策略之集合新定义数学思维的创新是思维品质最高层次,以集合为背景的创新问题是近几年高考命题创新型试题的一个热点,此类题目常常以“问题"为核心,以“探究”为途径,以“发现"为目的,以集合为依托,考查考生理解问题、解决创新问题的能力.常见的命题形式有新概念、新法则、新运算等,这类试题中集合只是基本的依托.一、定义新概念创新集合新定义问题是通过重新定义相应的集合,对集合的知识加以深入地创新,结合原有集合的相关知识和相应数学知识,来解决新定义的集合创新问题.【典例1】【2017四川省成都市高三摸底】设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足:(1)T={f(x)|x ∈S};(2)对任意x1,x2∈S,当x1<x2时,恒有f(x1)<f(x2),那么称这两个集合“保序同构”.以下集合对不是“保序同构"的是() A.A=N*,B=N B.A={x|-1≤x≤3},B={x|x=-8或0<x≤10}C.A={x|0<x<1},B=R D.A=Z,B=Q【答案】D【典例2】【2017届宁夏银川一中高三月考理科数学】已知集合M={},若对于任意,存在,使得成立,则称集合M是“垂直对点集”.给出下列四个集合:①M={}; ②M={};③M={};④M={}.其中是“垂直对点集”的序号是()A.①②B.②③C.①④D.②④【答案】D【解析】试题分析:由题意得,对于①中是以轴为渐近线的双曲线,渐进性的夹角是,所以在同一支上,任意,不存在,不满足垂直对点集的定义;在另一支上对任意,不存在,所以不满足“垂直对点集”的定义;对于②,对于任意,存在,使得成立,满足“垂直对点集"的定义,所以正确;对于③中,取点,曲线上不存在另外的点,使得两点与原点的连线互相垂直,所以不满足“垂直对点集"的定义;对于④中,如下图中直角始终存在,对于任意,存在,使得成立,满足“垂直对点集”的定义.考点:新定义的概念及其应用.【易错点拨】本题主要考查了“垂直度点集"的定义,属于中档试题,利用对于任意对于任意,存在,使得成立,是解答本题的关键,同时注意存在与任意的区别是本题的一个易错点.【典例3】【2017重庆市第八中学高三月考】定集合A,若对于任意a,b∈A,有a+b∈A,且a-b∈A,则称集合A为闭集合,给出如下三个结论: ①集合A={-4,-2,0,2,4}为闭集合;②集合A={n|n=3k,k∈Z}为闭集合;③若集合A1,A2为闭集合,则A1∪A2为闭集合.其中正确结论的序号是__________.【答案】②【审题指导】(1)准确转化:解决新定义问题时,一定要读懂新定义的本质含义,紧扣题目所给定义,结合题目的要求进行恰当转化,切忌同已有概念或定义相混淆.(2)方法选取:对于新定义问题,可恰当选用特例法、筛选法、一般逻辑推理等方法,并结合集合的相关性质求解.(3)遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质.按新定义的要求,“照章办事",逐条分析、验证、运算,使问题得以解决.对于选择题,可以结合选项通过验证,用排除、对比、特值等方法求解。
高考数学:如何利用数学题型与答题策略一、近年高考数学命题的中心是数学思想方法,考试命题有四个基本点1。
在基础中考能力,这主要体现在选择题和填空题。
2。
在综合中考能力,主要体现在后三道大题。
3。
在应用中考能力,在选择填空中,会出现一、二道大众数学的题目,在大题中有一道应用题。
4。
在新型题中考能力。
这四考能力,围绕的中心就是考查数学思想方法。
二、题型特点1。
选择题(1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强。
试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,绝不标新立异。
(2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容。
在高考的数学选择题中,定量型的试题所占的比重很大。
而且,许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴涵了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。
(3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。
作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在。
绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力,思辨性的要求充满题目的字里行间。
(4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它辨证统一起来。
这个特色在高中数学中已经得到充分的显露。
因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是:几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。
因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。
(5)解法多样化:与其他学科比较,一题多解的现象在数学中表现突出。
2024年新高考数学备考策略2024年新高考数学备考策略随着高考改革的不断深入,2024年新高考数学将成为考生们面临的重要挑战。
为了取得优异的成绩,考生们需要掌握一些有效的备考策略。
本文将结合历年高考数学试题的特点,为考生们提供一些实用的备考建议。
一、明确备考重点高考数学考查的知识点涉及面广,难度较大。
因此,考生在备考时要明确备考重点,把握考试的核心内容。
例如,函数、数列、三角函数、立体几何等知识点是高考数学的必考内容,考生需要在备考过程中重点复习。
二、制定备考计划制定合理的备考计划是取得好成绩的关键。
考生要根据不同科目的难易程度和自己的学习进度,制定出详细的学习计划。
在制定计划时,要充分考虑时间和进度,确保在考试前全面掌握知识点,并有足够的时间进行模拟考试和查漏补缺。
三、提高解题能力高考数学对考生的解题能力有很高的要求。
因此,考生在备考过程中要注重提高解题能力,掌握各种解题方法和技巧。
例如,解题时可以采用分析法、综合法、反证法等不同的方法,还可以借助图像、表格等形式来帮助理解题意。
同时,考生还要多做练习题,熟悉各种题型,提高解题速度和准确性。
四、注重错题整理错题整理是备考过程中非常重要的一环。
通过整理错题,可以发现自己的薄弱环节,及时进行纠正和强化。
考生可以将做错的题目进行分类整理,分析出错的原因,并在后续的学习中加以强化。
同时,考生还要定期复习错题集,巩固学习成果。
五、模拟考试测试模拟考试是检验考生备考成果的有效手段。
在备考过程中,考生要积极参加模拟考试,了解自己的考试水平和暴露出的问题。
在模拟考试后,要及时总结反思,针对不足进行强化训练。
此外,考生还要注意控制模拟考试的次数和时间,避免过度疲劳。
六、调整心态高考数学备考是一个长期而复杂的过程,考生在备考过程中可能会遇到挫折和瓶颈。
因此,考生要学会调整自己的心态,保持积极乐观的态度。
遇到困难时,可以寻求老师、同学或家长的帮助,共同解决问题。
考生要保持充足的睡眠和合理的饮食,保持良好的身体状态,以应对备考过程中的挑战。
高考数学答题策略与技巧一、历年高考数学试卷的启发1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。
假如前问是证明,即使可不能证明结论,该结论在后问中也能够使用。
因此,我们也要考虑结论的独立性;3.注意题目中的小括号括起来的部分,那往往是解题的关键;二、答题策略选择1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。
一样来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。
因此,关于不同的学生来说,有的简单题目也可能是自己的难题,因此题目的难易只能由自己确定。
一样来说,小题摸索1分钟还没有建立解答方案,则应采取“临时性舍弃”,把自己可做的题目做完再回头解答;2.选择题有其专门的解答方法,第一重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。
切记不要“小题大做”。
注意解答题按步骤给分,依照题目的已知条件与问题的联系写出可能用到的公式、方法、或是判定。
尽管不能完全解答,然而也要把自己的方法与做法写到答卷上。
多写可不能扣分,写了就可能得分。
三、答题思想方法1.函数或方程或不等式的题目,先直截了当摸索后建立三者的联系。
第一考虑定义域,其次使用“三合一定理”。
2.假如在方程或是不等式中显现超越式,优先选择数形结合的思想方法;3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有阻碍到的不变的性质。
如所过的定点,二次函数的对称轴或是……;4.选择与填空中显现不等式的题目,优选专门值法;5.求参数的取值范畴,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题或是它的反面,能够转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.求曲线方程的题目,假如明白曲线的形状,则可选择待定系数法,假如不明白曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的专门点);9.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范畴;11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种专门数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何第一问假如是为建系服务的,一定用传统做法完成,假如不是,能够从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练把握它们之间的三角函数值的转化;锥体体积的运算注意系数1/3,而三角形面积的运算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”制造直角三角形解题;13.导数的题目常规的一样不难,但要注意解题的层次与步骤,假如要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该舍弃;重视几何意义的应用,注意点是否在曲线上;14.概率的题目假如出解答题,应该先设事件,然后写出使用公式的理由,因此要注意步骤的多少决定解答的详略;假如有分布列,则概率和为1是检验正确与否的重要途径;15.三选二的三题中,极坐标与参数方程注意转化的方法,不等式题目注意柯西与绝对值的几何意义,平面几何重视与圆有关的知积,必要时能够测量;16.遇到复杂的式子能够用换元法,使用换元法必须注意新元的取值范畴,有勾股定理型的已知,可使用三角换元来完成;17.注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;18.绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;19.与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;20.关于中心对称问题,只需使用中点坐标公式就能够,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
高考数学中的染色问题的解题策略安徽省太湖县牛镇高中 黄军华近几年来,数学高考以能力立意来命题,每年都出现一批立意独特、情景新颖脱俗的有关染色问题的试题。
染色问题常以生活实际为背景,其背景公平,突出了数学思维能力和学习潜能的考查,是高考的热点素材之一,但是学生解答并不理想,症结在哪里呢?(1)对问题的背景不熟悉,染色问题情景生动有趣,虽然源于生活实际,但学生的阅历浅,从未见过,更无具体模式可套,因此倍觉破题困难;(2)不能正确地选好分类标准和优化分类顺序;(3)不能正确地将染色问题模型化、构造转化为熟悉的数学问题。
针对染色问题的特点和学生解答染色问题时存在的问题,下面本文将从两方面入手谈谈染色问题的常用解题策略。
1、选好分类标准,优化分类顺序的策略分类讨论是一种重要的数学思想方法,当问题所给对象不能进行统一研究时,就需要对研究的对象进行分类,将整体问题划分为局部问题,把复杂问题转化为单一问题,然后分而治之、各个击破,最后综合各类的结果得到整个问题的解答。
因此,采用分类策略解答染色问题时,我们可以从三个方面入手考虑:1.1从确定染色顺序入手 根据染色问题的要求,先确定好区域的染色顺序,对各个区域分步染色,再由乘法原理计算出染色的种数,是处理这类问题最基本的方法。
例1 如图(1)所示,用五种不同的颜色分别为A 、B 、C 、D 、E 五部分染色,相邻区域不能用同一种颜色,但同一种颜色可以反复使用,也可不使用,求符合这种要求的不同染色方法的种数。
分析:按照分步计数原理,先为A 染色共有5种,再为B 染色有4种(不能与A 同色),接着为C 染色有3种(不与A 、B同色),同理依次为D 、E 染色各有3种,所以不同染色方法的种数为5×4×33=540(种)1.2从使用颜色的种类入手 按照染色问题中的题设要求,从使用了多少种颜色分类讨论入手,分别计算出各种情形的种类,再用分类计数原理求出不同的染色方法的种数。
数列创新题的基本类型及求解策略高考创新题,始终是高考试题中最为亮丽的风景线.这类问题着重考查观看发觉,类比转化以及运用数学学问,分析和解决数学问题的力气.当然数列创新题是高考创新题重点考查的一种类型.下举例谈谈数列创新题的基本类型及求解策略. 一、创新定义型例1.已知数列{}n a 满足1log (2)n n a n +=+(n *∈N ),定义使123k a a a a ⋅⋅⋅⋅为整数的数叫做企盼数,则区间[1,2005]内全部的企盼数的和M =________.解:∵1log (2)n n a n +=+(n *∈N ),∴1232312......log 3log 4log (2)log (2)k k a a a a k k +=⋅⋅⋅+=+.要使2log (2)k +为正整数,可设1()22n k n ++=,即1()22n k n +=-(n *∈N ).令11222005n +-≤≤⇒19n ≤≤(n *∈N ).则区间[1,2005]内全部企盼数的和9912341011()(22)(22)(22)(22) (22)n n n M k n +====-=-+-+-++-∑∑29234102(21)(222.......2)2918205621-=+++++⨯=-=-,∴2056M =.评析:精确 理解企盼数的定义是求解关键.解题时应将阅读信息与所学学问结合起来,侧重考查信息加工力气.二、性质探求型例2.已知数列{}n a 满足31,2,3,4,5,67n n n n a a n +=⎧=⎨-⎩≥,则2005a =______.解:由3n n a a +=-,7n ≥知,63n n n a a a ++=-=.从而当n ≥6时,有6n n a a +=,于是知20053346111a a a ⨯+===.评析:本题主要通过对数列形式的挖掘得出数列特有的性质,从而达到化归转化解决问题的目的.其中性质探求是关键.三、学问关联型例3.设是椭圆22176x y +=的右焦点,且椭圆上至少有21个不同的点(1,2,3,)i P i =,使123,,,PF PF PF 组成公差为的等差数列,则的取值范围为_______.解析:由椭圆其次定义知eii iPF PP ='e i i iPF PP '⇒=,这些线段长度的最小值为右焦点到右顶点的距离即11FP =,最大值为右焦点到左顶点的距离即211PF =+,故若公差0d >,11(1)n d +=-+-,∴2121n d >+≥,∴1010d <≤.同理,若公差0d <,则可求得1010d -<≤. 评析: 本题很好地将数列与椭圆的有关性质结合在一起,形式新颖,内容深遂,有确定的难度,可见命题设计者的良苦认真.解决的关键是确定该数列的最大项、最小项,然后依据数列的通项公求出公差的取值范围. 四、类比联想型例4.若数列{}()n a n *∈N 是等差数列,则有数列123nn a a a a b n ++++=()n *∈N 也是等差数列;类比上述性质,相应地:若数列{}n c 是等比数列,且0n c >,则有数列n d =_______也是等比数列.解析:由已知“等差数列前n 项的算术平均值是等差数列”可类比联想“等比数列前n 项的几何平均值也应当是等比数列”不难得到3n nd c =也是等比数列.评析:本题只须由已知条件的特征从形式和结构上对比猜想不难挖掘问题的突破口. 五、规律发觉型例5.将自然数1,2,3,4,排成数陈(如右图),在处转第一个弯,在转其次个弯,在转第三个弯,….,则第2005个转弯处的数为____________. 21―22 ―23―24―25-26| | 20 7 ― 8 ―9 ―10 27 | | | 19 6 1 ―2 11 …… | | | | 18 5 ― 4 ―3 12 | | 17―16 ―15―14 ―13解:观看由起每一个转弯时递增的数字可发觉为“1,1,2,2,3,3,4,4,”.故在第2005个转弯处的数为:12(1231002)10031006010++++++=.评析:本题求解的关键是对图表转弯处数字特征规律的发觉.具体解题时需要较强的观看力气及快速探求规律的力气.因此,它在高考中具有较强的选拔功能. 六、图表信息型例6.下表给出一个“等差数阵”:。
高中数学“新定义”题型的解题策略1.明确“新定义”题型的本质与特点“新定义” 题型中所说的“新定义”本质上是相对考纲、课本而言,在题目中定义了中学数学中没有学过的一些新观点、新运算、新符号,可是这种题型已在多年的高考甚至中考取出现,某种程度上讲“新定义”题其实不是完整创新的题型,而是考生很常有的一种题型。
能够通过平常的教课及模拟训练让学生喜爱上这种较有特点的数学情形题,假如学生的情绪不紧张,好多“新定义”题是能够水到渠成的,在解题中真实的阻碍是理解与运算、信息的迁徙能力。
“新定义”题型内容新奇,题目中经常陪伴有“定义” “称”“规定”“记”等字眼,而题目一般都是用抽象简短的语言给出新的定义,没有过多的解说说明,要修业生自己认真推测、领会和理解定义的含义。
而“新定义”题学习新定义的时间短,阅读后就要求立刻独立运用它解决有关问题,对学生的心理素质和思想矫捷性要求较高。
2.“新定义”题型解题步骤解题时能够分这样几步:(1)对新定义进行信息提取,明确新定义的名称和符号。
(2)细细品尝新定义的观点、法例,对新定义所提取的信息进行加工,探究解决方法,有时能够追求邻近知识点,明确它们的共同点和不一样点。
(3)对定义中提取的知识进行变换,有效的输出,此中对定义信息的提取和化归是解题的重点,也是解题的难点。
假如是新定义的运算、法例,直接依据运算法例计算即可;假如新定义的性质,一般就要判断性质的合用性,可否利用定义的外延,可用特值清除等方法。
3.“新定义”题型的讲评建议(1)经过熟习的例子增强学生对这种题目的兴趣,也能够提升他们的解题信心。
(2)增强审题能力的培育。
此刻学生的阅读能力差,因此在平常的教课中必定要训练学生的阅读、审题能力,如数学中常有的应当题就是对学生阅读能力的考察。
(3)拓宽学生的视线。
能够借助“新定义”题或是纲领内有关的知识点拓宽学生的视线,固然“新定义”题特点是题目新奇较难猜想,但本质上高考取也有好多重复出现的例子。
高考数学创新题解题策略
:
高考数学创新题解题策略
毕业论文
创新推动着人类社会的不断进步,创新题在高考数学中能很好地把优
秀考生和普通考生区分开来.数学创新试题相比于传统试题来说, 具有
以下鲜明的特点: 背景新颖, 内涵深刻, 设问方式灵活,要求考生进
行细致观察、认真分析、合理类比、准确归纳后才能实现, 它是以问
题为核心, 以探究为途径、以发现为目的, 考查考生创新意识和创新
能力的有效题型. 本文对高考数学创新试题的六种题型进行解析及揭
秘其解题策略.
1. 新型定义型试题
新型定义型试题背景新颖、构思巧妙,主要通过定义一个新概念或约
定一种新运算,或给定一个新模型来创设新的问题情境,要求考生在
阅读理解的基础上,依据题中提供的信息,联系所学的知识和方法,
实现信息的迁移,从而顺利地解决问题,能有效地区分考生的思维品
质和学习潜力.
例1. 已知集合M?哿R,若实数x0满足:?坌t>0,?埚x∈M,0<x-x0A.
②③ B. ①④ C. ①③ D. ①③④
分析:本题新定义“聚点”,结合集合、简易逻辑及不等式知识进行
综合考查,考生只需依据新的定义概念,结合绝对值不等式知识,对
定义进行验证,即可解决问题.
解析:对于集合①0,■,■,…,若取t=■,则不存在x∈■|n∈N,满足0<x-0<■,即不存在x∈m,使得0<x-0<t,从而0不是集合
■|n∈n的聚点;集合②除去0这个实数,很明显,对任意的t,都存
在x=■(实际上任意比t小的数都可以),使得0<x-x0=■■,也就
是说t>■,那么取x=■,有0<x-0 例2. 对于非空集合A、B,定义运算:A?茌B={x|x∈A∪B,x?埸A∩B},已知两个开区间M=(a,b)、
P=(c,d),其中a、b、c、d满足a+b<c+d,ab=cdA (a,b)∪(c,d) B (a,c)∪(b,d)
代写论文
C (a,d)∪(b,c)
D (c,a)∪(d,b)
分析:本题以集合、不等式为背景,定义一个运算,关键对A?茌B中
的元素x∈A∪B,x?埸A∩B有透彻理解,转化为学过的集合知识,进
行知识迁移,已知条件中对于非空集合A、B,定义运算:A?茌
B={x|x∈A∪B,x?埸A∩B},可知M?茌P={x|x∈M∪P,x?埸M∩P},
而两个开区间M=(a,b)、P=(c,d)也可以看作两个集合
M={x|a<x<b},n={x|c<x解析:设ab=cd=t(t<0),则a<0<b,c<0<d.构造函数f(x)=x2-(a+b)x+t,g(x)=x2-(c+d)x+t,则a、b
为方程f(x)=x2-(a+b)x+t=0的两个根,c、d为方程g(x)=x2-(c+d)x+t=0的两个根.因为f(c)=c2-(a+b)c+cd=c[(c+d)-
(a+b)]<0,因为a、b为方程f(x)=x2-(a+b)x+t=0的两个根,
f(a)=f(b)=0,而f(c)<0,故由二次函数图像可知,c在(a,b)之间,所以a<c<b,而c<0<d,故a<c<d;同样可以证得:c<b<d,所以
a<c<b解题策略:(1)对新定义进行信息提取,明确新定义的名称和
符号;(2)细细品味新定义的概念、法则,对新定义所提取的信息进
行加工,探求解决方法,有时可以寻找相近知识点,明确它们的共同
点和不同点;(3)对新定义中提取的知识进行转换,有效的输出,其
中对定义信息中的提取和化归转化是解题的关键,也是解题的难点.如
果是新定义的运算、法则,直接按照运算法则计算即可;若是新定义
的性质,一般就要判断性质的适用性,能否利用定义外延;也可用特
殊值排除等方法.。