三峡大坝中的地质问题
- 格式:docx
- 大小:14.66 KB
- 文档页数:2
长江三峡工程环境地质胡经国长江三峡水利枢纽工程,是举世瞩目的跨世纪巨型工程。
它具有巨大的防洪、发电、通航、供水、灌溉、水产和旅游以及发展库区经济等综合效益。
三峡工程的环境地质条件和环境地质问题如何,对于工程的安全稳定、正常运行和经济合理,对于其经济、社会和环境效益的发挥,都具有十分重要的意义。
本文拟根据公开发表的资料和研究成果,概略论述关于长江三峡工程的主要的环境地质条件和环境地质问题,供读者了解和研究参考。
一、长江三峡地区地壳稳定性长江三峡地区在大地构造上,属于扬子准地台内部的一个由出露的前震旦纪结晶基底构成的稳定地块。
其区域地壳稳定性良好。
尤其是在我国华南地区,这种地块对于筑坝建库,确实是一种得天独厚、不可多得的优越的环境地质条件。
在我国华北地台的古老基底上筑坝甚多,如大伙房、潘家口、岗南、下静游等坝址,筑坝建库以来一直都很安全稳定。
加拿大斯堪的纳维亚库坝,建在古老基底上,也很安全稳定。
在长江三峡地区古老地块周围,虽有一些弱活动性断裂,但是其近期的构造活动性和地震活动性都比较微弱。
巴东至宜昌剖面的地震和重磁探测成果表明,这一带未反应出有陡梯度的深大断裂存在。
在茅坪和秭归两处,分别进行的800米和500米深孔水压致裂地应力测定以及深孔电视和孔隙水压力测定成果,也进一步证明长江三峡地区属于稳定地块区。
二、长江三峡工程坝区环境地质三斗坪坝址是一个符合长江三峡工程整体要求的大坝坝址。
坝区面积为18.7平方公里。
坝基岩体为坚硬、完整的花岗岩岩体。
专家论证报告指出,三斗坪坝址“基岩完整,力学强度高,透水性弱,工程地质条件优越,适宜修建混凝土高坝”。
岩体结构研究是研究岩体工程地质性质的基础。
有关专家在三斗坪坝基和船闸岩体结构研究中,通过对具有典型意义的出露岩体结构面参数的实测,采用计算机网络模拟技术,分别建立了岩体结构面产状、间距、迹长概率模型,并利用该模型对坝基和船闸岩体的工程地质性质进行了评价。
该模拟计算成果表明,三斗坪坝基和船闸岩体完整性较好,质量好的和极好的岩体占到80%~90%以上,控制岩体强度和变形的、结构面的连续性系数大都小于15%。
高一(4)班袁艺峰为了三峡工程,中华民族经过了几代人、70余年的构想、勘测、设计、研究、论证。
1992年4月3日,第七届全国人民代表大会第五次会议审议并通过了《关于兴建长江三峡工程决议》。
从此,三峡工程由论证阶段走向了实施阶段。
1994年12月14日,三峡工程正式开工。
但是,三峡工程在施工中有很多棘手的问题,如移民、生态、文物、河道改造等。
其中,让我们来探讨一下水库诱发地震与库岸稳定的问题诱发地震(岩石圈在内力作用下突然发生破裂,地球内能以地震波的形式强烈释放出来,从而引起一定范围内地面振动的现象)研究对三峡水库分段进行评价的基本结论是:从坝址至庙河长16公里的结晶岩低山丘陵库段,岩体完整性好,历史和现今有感地震活动稀少,蓄水后不排除发生浅源小震,最大震级预计不大于里氏4级;自庙河至白帝城长142公里的碳酸盐岩峡谷库段,可能发生岩溶性的水库诱发地震,最大震级也不超过里氏4级;白帝城以上以砂岩、泥岩为主的库段,无大断裂通过,岩体透水性弱,不具备发生水库诱发地震的条件。
根据长期的地质勘测研究和水库诱发地震研究成果,三峡坝区和库区地壳稳定,均不孕育发生严重地震的地质背景。
三峡水库蓄水后,虽不排除发生水库诱发地震的可能性,但从高估计,影响到坝区的最高地震烈度不会超过VI度,不会影响按Vll度设防的主要建筑物的安全。
三峡水库库岸主要由坚硬岩石和半坚硬岩石构成,大的断层(地壳运动产生的强大压力或张力,超过了岩石所能承受的程度,岩体就会破裂,言悌发生破裂,并沿断裂面两侧岩块有明显的错位、移动)不多,新构造运动和地震活动也不强烈,因而库岸总体稳定性是好的。
但三峡河段岸坡在长江河床(被河流占有或从前被河流占有的沟槽)下切的过程中,在岸坡上发生一些崩塌和滑坡(斜波上的岩体或土体,在重力的作用下,沿一定的滑动面整体下滑的现象),属于河流发育过程重点正常自然现象。
历史上曾有发生,水库蓄水后也有可能继续发生。
经查明,库区岸坡分布有大于100万立方米的大型崩滑、危岩体共284个,总体积约30亿立方米。
三峡大坝的工程地质问题三峡大坝位于中国湖北省宜昌市境内,距下游葛洲坝水利枢纽工程38公里;是当今世界最大的水利发电工程——三峡水电站的主体工程、三峡大坝旅游区的核心景观、三峡水库的东端.三峡大坝工程包括主体建筑物及导流工程两部分,三峡工程大坝总长 2 309。
47 m ,由河床泄洪坝段及其左右两侧厂房坝段和两岸非溢流坝段等组成。
工程总投资为954.6亿人民币,于1994年12月14日正式动工修建,2006年5月20日全线修建成功。
三峡大坝的坝体为混凝土重力坝,最大坝高为183 m。
基础最大压应力达5MPa,要求基岩坚硬完整,具有足够的承载能力。
大坝下游水深达 60~70 m,因而要求对坝基有可靠的防渗降压措施,确保大坝稳定安全.为经济合理地做好坝基处理设计,先后开展了大量的地勘和科学试验工作,查明了工程地质问题,验证了设计方案及参数,为设计提供了丰富的资料。
三峡大坝的工程地质条件及存在的主要工程地质问题一、工程地质条件大坝基岩为震旦纪闪云斜长花岗岩,中间含多种岩脉,岩脉多与围岩紧密接触,基岩较为均一完整,力学强度高.基岩中的断层以陡中倾角斜穿坝基的NNW、NNE组为主,规模较大,呈压扭性,构造岩一般胶结良好,空间展布具疏密相间的等距性, 主要有: 两岸 F23、F9,河床F7、F4、F410~F413等;其次为陡中倾角的NE~NEE 组,规模相对较小,具有张扭性,构造岩一般胶结较差,少数呈松软状,风化强烈,主要有:左岸F215等; 缓倾角断层少见.裂隙走向与断层近一致,亦以陡中倾角的NNW、NNE组为主,多显压扭性; NNE、NWW组次之,多具张扭性;裂隙多闭合,长度一般 2~5 m,少数 10~ 20 m ;缓倾角裂隙不发育,多集中分布于左岸 F7附近及 F7和F23之间。
岩体自上而下分为全、强、弱、微四个风化带,全强风化带平均厚 15~ 30m,弱风化带平均厚 9~10 m。
岩体有沿陡倾角断裂构造面,局部加剧风化的特征,风化深度一般至微风化顶板以下10~30 m。
三峡工程对地质的影响举世瞩目的三峡工程,是迄今世界上最大的水利水电枢纽工程,具有防洪、发电、航运、供水等综合效益,但同时三峡工程对地质也产生了一定的负面影响,影响着人们的生活和社会经济的发展。
一、三峡工程与地震水库诱发地震由于水库地应力和构造地,应力叠加以及水库地震能量和构造地震能量叠加而诱发产生。
水库诱发地震因素复杂, 其形成机理及发生发展过程尚难准确控制, 发生时间、空间及强度更难预测预报。
主震发震时间一般与水库蓄水密切相关。
蓄水早期地震活动与库水位升降变化有较好的相关性。
较强地震活动高潮大多出现在第一、二个蓄水期的高水位季节、水位回落或低水位时。
但发震时间也无一定规律性,。
从国内外水库诱发地震统计资料看, 诱发地震的发生概率随着坝高、蓄水深度和库容的增大而明显增高。
由于水库诱发地震震源较浅, 与天然地震相比, 具有较高的地振动频率, 较高的地面峰值加速度和震中烈度; 但极震区范围很小, 烈度衰减较快。
三峡库区可划分为结晶岩、碳酸盐岩和碎屑岩三种主要岩类。
结晶岩类分布于库首黄陵结晶地块内,为前震旦系变质岩和侵入其间的花岗2闪长岩体, 岩体完整性好, 断层多已胶结, 岩体透水性微弱, 产生诱发地震的可能性很小。
碳酸盐岩分布于干流庙河至白帝城库段及乌江、嘉陵江、大宁河等支流中。
强岩溶化碳酸盐岩有利于诱发岩溶型地震。
碎屑岩主要分布于秭归、巴东、巫山等向斜及白帝城以西广大地区, 为中上三叠统和侏罗系的砂、泥岩, 不利于诱发水库地震。
三峡库区属弱震区。
水库附近曾经发生的最大地震为1979年秭归龙会观5. 1级地震, 距库边约6 km。
其岩性为碎屑岩类岩层, 蓄水后不易诱发地震。
综上所述, 三峡工程除了坝高和库容属有利于产生水库诱发地震的因子外, 其他条件均不利于诱发较强的构造型水库地震。
三峡水库已初步形成, 随着蓄水位逐步升高, 库容加大, 发生诱发地震的可能性也将加大。
必须加强对三峡水库诱发地震的研究、监测及预报, 预防地震及地质灾害, 确保工程建设及运行安全, 构建和谐社会, 确保长治久安。
长江三峡大坝的渗流问题研究长江三峡大坝是中国近年来最具代表性的工程之一,建设于20世纪90年代,位于湖北、重庆和四川之间的一带,是世界上最大的水利工程之一。
然而,随着大坝的建设和水库的充水,渗流问题逐渐凸显出来。
渗流是指水流通过大坝或堤坝的裂缝或孔洞进入周围土壤或岩石中的现象。
渗流问题对大坝的稳定性和安全性造成了潜在的威胁,因此需要对其进行深入的研究和分析。
一方面,大坝渗流问题的出现与地质条件有关。
长江三峡大坝所在地区为复杂的地质构造区,岩石中常常存在有裂缝和孔洞,这些不规则的构造对渗流起到了促进作用。
此外,地质条件还决定了地下水位的高低,高地下水位往往会加剧渗流问题的出现。
另一方面,大坝渗流问题与工程设计和施工中的缺陷密切相关。
首先,大坝的设计要充分考虑渗流的问题,包括渗流路径和量的计算,以及相关的渗流控制措施的提出。
然而,由于对地质条件和水文地质情况了解不足,设计过程中可能存在一些漏洞,导致渗流问题的出现。
其次,施工过程中的一些质量问题也可能导致渗流问题。
例如,施工中使用的材料质量不过关,施工工序不严格按照设计要求进行,都可能导致渗流问题的出现。
为了解决长江三峡大坝的渗流问题,首先需要对其进行全面的调查和研究。
这包括对地质条件、水文地质情况和大坝结构的详细调查分析,以了解存在的渗流问题的具体来源和规模。
同时,还需要研究渗流路径和量的计算方法,以及渗流现象对大坝安全性的影响。
基于这些研究结果,可以制定相应的渗流控制措施,包括大坝结构的增强和维护,渗流通道的封堵和改善,地下水位的调控等。
在实际施工中,还需要加强质量控制和施工工艺的规范,确保大坝的建设质量和稳定性。
在研究渗流问题过程中,还需要充分考虑环境保护和生态效益。
长江三峡地区是中国重要的生态保护区域之一,大坝渗流问题的解决需要兼顾到水库和周围环境的生态平衡。
因此,在渗流控制措施的制定和实施过程中,需要特别注意生态环境的保护和恢复。
总结而言,长江三峡大坝的渗流问题存在一定的复杂性和难度,解决这一问题需要对地质条件、工程设计和施工等方面进行综合研究和分析。
实习报告一、实习背景与目的随着我国经济的快速发展,水利工程作为国家基础设施建设的重要组成部分,其重要性日益凸显。
三峡大坝作为世界最大的水利枢纽工程,其规模和影响力在世界范围内都具有重要意义。
为了进一步提高我对水利工程的理解和实践能力,我参加了三峡大坝的工程地质实习。
本次实习的主要目的是了解三峡大坝的工程地质条件、工程地质问题及其处理方法,以提高我的工程地质知识和实际操作能力。
二、实习内容与过程在实习过程中,我主要通过参观、实地考察、听取讲解以及与工程技术人员的交流,了解了三峡大坝的工程地质情况。
1. 工程地质条件三峡大坝位于湖北省宜昌市境内,大坝基岩为震旦纪闪云斜长花岗岩,中间含多种岩脉,岩脉多与围岩紧密接触,基岩较为均一完整,力学强度高。
基岩中的断层以陡中倾角斜穿坝基的NNW、NNE组为主,规模较大,呈压扭性,构造岩一般胶结良好,空间展布具疏密相间的等距性。
2. 工程地质问题三峡大坝的工程地质问题主要表现在以下几个方面:(1)基础处理:大坝基础最大压应力达5MPa,要求基岩坚硬完整,具有足够的承载能力。
大坝下游水深达 60~70 m,因而要求对坝基有可靠的防渗降压措施,确保大坝稳定安全。
(2)岩脉接触问题:基岩中的岩脉与围岩紧密接触,可能导致岩脉破坏,影响大坝的稳定性。
(3)断层处理:大坝基岩中的断层对大坝稳定性构成威胁,需要采取相应的处理措施。
3. 工程地质处理方法针对上述工程地质问题,三峡大坝采取了以下处理方法:(1)基础处理:进行了大量的地勘和科学试验工作,查明了工程地质问题,验证了设计方案及参数,为设计提供了丰富的资料。
(2)岩脉处理:对岩脉与围岩接触部位进行了加固处理,以防止岩脉破坏。
(3)断层处理:对断层进行了加固处理,提高了大坝的稳定性。
三、实习收获与体会通过本次实习,我对三峡大坝的工程地质条件、工程地质问题及其处理方法有了更深入的了解,同时也提高了我的工程地质知识和实际操作能力。
三峡大坝中的地质问题
世界第一大的水电工程,位于西陵峡中段的湖北省宜昌市境内的三斗坪,距下游葛洲坝水利枢纽工程38公里。
三峡大坝工程包括主体建筑物工程及导流工程两部分,工程总投资为954.6亿元人民币。
于1994年12月14日正式动工修建,2006年5月20日全线建成。
这是一个创举,不过一件事物不能单纯的说它是好的,或是坏的,任何事物都有两面性,三峡大坝也一样,正所谓“福兮祸之所伏,获悉福之所倚”三峡大坝具有防洪,发电,航运,养殖,旅游,南水北调等好处,但也引发一些问题,我认为主要有两大方面。
一、生态、人文安全以及水坝能引发一些问题 1.生态安全以及水质问题大坝阻挡了淤
泥流向下游,使包括上海地区在内的长江入海口收缩,海洋的咸水正在倒灌入内陆。
据了解,三峡库区水质的好坏和变化,不仅取决于库区内的污染物排放和污染治理状况,同时也与上游来水的质量密切相关。
三峡库区上游流域面积大,接纳的城市生活污水和农村面源排放的氮磷污染物多,世界野生动物协会今春公布的一份报告称,通过大坝的水流速度正在加快,对下游的防洪大堤造成破坏。
未经处理的污水和化肥残留物被不断排入大坝水库,导致巨型水藻生长泛滥,并威胁到下游的水供应。
2.人文安全古今中外,水库大坝一直都是军事对抗中的主要打击目标,也是恐怖分子破坏和要挟的主要目标。
因为三峡大坝是静止不动在明处的固定目标,虽然这个坝的确很大,可能要五千万吨核弹正面摧毁,但是千里之堤毁于蚁穴,他和世界上的许多混凝土重力大坝的结构不同,水轮发电机的26条进水管,以及众多的泄洪管,泄沙管都是安装在大坝中。
此外,三峡大坝中还有三道深55米宽34米的横截大坝的槽(一道为升船机用,二道为船闸用),而这三道深槽都只用一层薄薄钢板控制,一旦这层钢板被炸毁,就可造成与溃坝一样的效应。
三峡大坝若全溃时,百余亿立方米库水短时间内下泄,坝址至沙市间沿岸,受洪水波直接冲击,灾害损失严重,造成极大地损失。
3.水坝能一起的一些问题①泥石流其中在2010年7月15日晚12点,一场突降特大暴雨引发的泥石流,将长江三峡左畔的湖北秭归县郭家坝镇“掀翻了天”:集镇的农贸市场被泥石流整体掩埋;一幢5层楼房的1-3层被淤泥填满;大街上到处“飘”着冰箱、洗衣机……据统计,此次泥石流灾害造成的直接经济损失达3663万余元,所幸未造成人员伤亡。
②崩塌、滑坡与危岩体整个三峡库区移民区共有崩塌、滑坡与危岩体2490处,其中有千将坪滑坡。
千将坪滑坡是135米蓄水后发生的,造成了13人死亡,11人失踪,19人受伤以及5736万元以上的经济损失。
③水土流失在库区移民迁建过程中大量土石方开挖,造成大面积地表岩土体裸露以及人工弃渣无序倒放,致使长江沿岸水土流失的局面更加严峻。
④浸没位于高程180到184米,长江边上的重庆市江北区洛碛镇以及拟围堤土开发、位于高程165到180米长江一级支流的开县河谷冲洪积平坝地区以及兴山县新址古夫镇部分地段
是三峡库区重点浸没地区。
⑤塌岸在1999年8月28日下午4点30分巫峡镇聚鹤街、登龙街一带产生了长约330米,向城区宽160米,面积53000平方米,体积53万立方米滑坡变形,造成巨大的社会恐慌和经济损失。
蓄水135米后,出现了云阳新县城等局部岸坡的塌岸事件。
除了以上还有水库诱发地震,人工高边坡的变形与破坏,地基不均匀沉陷,膨胀土以及岩溶洞穴和矿坑的塌陷问题等。
二、工程存在的弊端 1. 断裂构造问题坝区前震旦纪岩体在漫长的地质历史过程中,经受了多期构造运动,留下了以断裂构造为主体的多种构造形迹。
断裂构造是控制岩体工程地质条件最主要的因素,坝区的主要
工程地质问题均与断裂构造有关。
对断裂构造的分布、出露位置、规模、性状、工程特性及其对不同建筑物地基的影响的勘察研究始终是坝区工程地质工作
的重点。
坝区构造岩主要为角砾岩、碎裂岩、碎斑岩、碎粒岩、碎粉岩及少量初糜棱岩等,反映了断层从破裂、裂解至磨碎的脆性变形过程。
不同
方向构造岩由于形成的地质力学环境不同,工程特性有明显差别。
2.坝基深层抗滑稳定问题三峡工程坝基裂隙岩体中发育不同程度的缓倾角结构面(优势方向倾向下游),构成了对大坝抗滑稳定不利的地质条件。
其中大坝左厂1 号到5 号机坝段是坝址区缓倾角结构面发育程度最高的地段。
由于采取坝后式厂房布置方案,坝基下游形成坡度约54度,坡高67.8 米的临空面,因此,其坝基深层抗滑稳定问题十分突出,是三峡工程最为关键性的技术问题之一。
3. 船闸高边坡稳定与变形问题船闸边坡开挖后,形成巨大的临空面,使亿万年来岩体中所形成的原有应力平衡体系被急剧打破,产生一系列的岩体卸荷与变形问题,时效变形与变形总量能否控制在设计允许的范围内又成为了一大问题。
4. 地下电站主厂房围岩块体稳定问题开挖以来,地质人员结合三峡工程地下电站地质条件的特点,利用大型洞室仪测成像可视化地质编录技术和地下洞室三维块体自动搜索计算软件系统,形成了一套合理、快速、高效的施工地质工作流程,在整个施工过程中,做到实时跟踪、及时预报、定位定量累计预报了118 个块体,总体积15 万多平方米,为地下厂房加固提供了翔实资料和可靠的地质依据。