幂函数及其性质知识点总结经典讲义及配套练习
- 格式:docx
- 大小:68.91 KB
- 文档页数:4
幂函数知识点笔记总结一、基本概念1. 幂函数的定义幂函数是指以底数为自变量,指数为常数的函数,一般形式为 f(x) = a*x^n,其中a为常数,n为整数。
特殊情况下,指数可以是分数或负数。
2. 幂函数的图像特征当底数为正数且指数为正整数时,幂函数为增函数,图像从左下到右上逐渐上升;当底数为正数且指数为负整数时,幂函数为减函数,图像从左上到右下逐渐下降;当底数为负数且指数为奇数时,幂函数为增减函数,图像在原点对称;当底数为负数且指数为偶数时,幂函数为非定义域。
3. 幂函数的定义域和值域幂函数的定义域为实数集合R,值域取决于底数a的正负和指数n的奇偶性,可以是整个实数集合、正实数集合或负实数集合。
4. 幂函数的奇偶性当指数n为奇数时,幂函数为奇函数,具有原点对称性;当指数n为偶数时,幂函数为偶函数,具有y轴对称性。
二、函数性质1. 增减性当指数n为正数时,幂函数为增函数,图像从左下到右上逐渐上升;当指数n为负数时,幂函数为减函数,图像从左上到右下逐渐下降。
2. 奇偶性当指数n为奇数时,幂函数为奇函数,具有原点对称性;当指数n为偶数时,幂函数为偶函数,具有y轴对称性。
3. 定义域和值域幂函数的定义域为实数集合R,值域取决于底数a的正负和指数n的奇偶性。
4. 图像特征底数为正数且指数为正整数时,幂函数为增函数;底数为正数且指数为负整数时,幂函数为减函数;底数为负数且指数为奇数时,幂函数为增减函数;底数为负数且指数为偶数时,幂函数为非定义域。
5. 渐近线当底数a为正数且指数n为正数时,幂函数的渐近线为y=0(x轴);当底数a为正数且指数n为负数时,幂函数的渐近线为x=0(y轴);其他情况下,幂函数没有渐近线。
三、常见变形1. 幂函数的平移对于幂函数f(x) = a*x^n,当a>0时,平移y轴时,可以通过加减常数来实现;当a<0时,平移x轴时,也可以通过加减常数来实现。
2. 幂函数的伸缩对于幂函数 f(x) = a*x^n,当a>0时,伸缩x轴时,可以通过系数a来实现;当a<0时,伸缩y轴时,也可以通过系数a来实现。
引言:高中幂函数是高中数学中的重要部分,它在数学研究和实际问题中有着广泛的应用。
本文将对高中幂函数的知识点进行总结和整理,帮助学生完善对幂函数的理解和掌握。
概述:幂函数是指形如y=x^n的函数,其中n是常数。
幂函数的特点是具有单调性和奇偶性,其图象通常为一条曲线。
在研究幂函数时,需要掌握其定义、性质和应用。
正文:一、幂函数的定义1.1 幂函数的基本形式幂函数的基本形式是y=x^n,其中n是常数。
幂函数的定义域为所有实数,且n可以是正整数、负整数、零和有理数。
1.2 幂函数的图象当n为正奇数时,幂函数的图象在第一象限和第三象限上单调递增;当n为正偶数时,幂函数的图象在第一象限上单调递增,且具有对称轴y=0;当n为负数时,幂函数的图象在第一、三象限上单调递减。
1.3 幂函数的特殊情况当n=1时,幂函数变为一次函数;当n=0时,幂函数变为常数函数;当n为正无穷大时,幂函数趋向于正无穷大;当n为负无穷大时,幂函数趋向于零。
二、幂函数的性质2.1 幂函数的单调性幂函数在定义域上的单调性与n的值有关。
当n为正奇数时,幂函数是增函数;当n为正偶数时,在非负区间上是增函数,在负区间上是减函数;当n为负数时,在非负区间上是减函数,在负区间上是增函数。
2.2 幂函数的奇偶性幂函数的奇偶性与n的奇偶性有关。
当n为奇数时,幂函数是奇函数;当n为偶数时,幂函数是偶函数。
2.3 幂函数的零点当n为正奇数时,幂函数的零点为x=0;当n为正偶数时,幂函数的零点为x=0;当n为负奇数时,幂函数没有零点;当n为负偶数时,幂函数的零点为x=0。
三、幂函数的图象变换3.1 幂函数的平移幂函数的平移是指将幂函数的图象沿横轴或纵轴方向移动。
平移的方向和距离与平移的规律有关,具体可利用平移的公式进行计算。
3.2 幂函数的伸缩幂函数的伸缩是指将幂函数的图象进行纵向或横向的拉伸或压缩。
伸缩的方式和伸缩的规律有关,可利用伸缩的公式进行计算。
3.3 幂函数的翻折幂函数的翻折是指将幂函数的图象进行关于横轴或纵轴的翻折。
幂 函 数一、知识清单1.幂函数的概念:形如y x α=注意:幂函数与指数函数的区别. 2.幂函数的性质:(1)幂函数的图象都过点 (1,1) ; 任何幂函数都不过 四 象限;(2)当0α>时,幂函数在[0,)+∞上 递增 ; 当0α<时,幂函数在(0,)+∞上 递减 ;(3)画出α=1,2,3,-1,1/2时,幂函数的图像 二、典例回顾例1.已知函数()()2531m f x m m x --=--,当 m 为何值时,()f x 是幂函数,且是()0,+∞上的增函数;【变式训练】.幂函数223mm y x --=(m Z ∈)的图象与x 、y 轴都无交点,且关于原点对称,求m 值.例2.下列函数在(),0-∞上为减函数的是( ) A.13y x = B.2y x = C.3y x = D.2y x -=例3、(1)当01x <<时,()()()1222,,f x x g x x h x x -===的大小关系是( )A. ()()()h x g x f x <<B. ()()()h x f x g x <<C. ()()()g x h x f x <<D. ()()()f x g x h x << (2)当32x x >成立时,x 的取值范围是 ( )A x<1且x ≠0B 0<x<1C x>1D x<1 例4、当()+∞∈,1x 时,下列函数恒在x y =下方的偶函数是( ) A. 21x y = B. 2-=x y C. 2x y = D.1-=xy三、练习 A 组1、下列命题①幂函数的图象都经过点()()0,01,1和 ②幂函数的图象不可能在第四象限;③当0=n 时n x y =的图象是一条直线 ④幂函数n x y =,当0>n 时,是增函数;⑤幂函数n x y =当0<n 时在第一象限内函数值随x 的增大而减小。
根据幂指函数知识点及题型归纳总结
一、幂函数的性质:
1. 幂函数的定义:幂函数是指以变量 x 为底数,以常数 a 为指
数的函数,一般形式为 f(x) = a^x。
2. 幂函数的图像:幂函数的图像随着底数 a 的取值不同而有所
变化,底数 a 大于 1 时,函数图像上升趋势较为陡峭;底数 a 在 0
和 1 之间,函数图像下降趋势较为陡峭。
3. 幂函数的性质:幂函数具有对称性,即 f(x) = f(-x);a^x 的
值随 x 的变化而变化,当 x 增大时,a^x 增大,当 x 减小时,a^x
减小。
二、指数函数的性质:
1. 指数函数的定义:指数函数是指以变量 x 为指数的函数,一
般形式为 f(x) = a^x(a > 0,且a ≠ 1)。
2. 指数函数的图像:指数函数的图像具有与幂函数相反的特点,当底数 a 大于 1 时,函数图像上升趋势较为平缓;底数 a 在 0 和 1
之间,函数图像下降趋势较为平缓。
3. 指数函数的性质:指数函数的图像经过点 (0, 1);指数函数
具有增长态势,即随着 x 的增大,函数值也增大。
三、幂指函数的题型:
1. 计算幂指函数的值:根据给定的幂指函数和 x 的值,求出函数的值。
2. 求幂指函数的定义域:根据幂指函数的特点,确定该函数的定义域范围。
3. 求幂指函数的变化趋势:根据底数的取值范围和指数的正负性,确定函数的增减性和图像的走势。
4. 解幂指函数的方程:根据幂指函数的性质和方程的条件,求出满足方程的变量值。
以上是根据幂指函数的知识点及题型进行的归纳总结,希望能对您的学习和应试有所帮助。
自主梳理1.幂函数的概念形如________的函数叫做幂函数,其中____是自变量,____是常数. 2.幂函数的性质(1)五种常见幂函数的性质,列表如下: 定义域 值域 奇偶性 单调性 过定点y =x R R 奇 Z (1,1)y =x 2 R [0,+∞)偶 [0,+∞)Z (-∞,0][y =x 3R R 奇 ZY =x 12[0,+∞) [0,+∞) 非奇 非偶 [0,+∞)Z Y =x -1(-∞,0) ∪(0,+∞)(-∞,0) ∪(0,+∞)奇(-∞,0)[(0,+∞)[(2)所有幂函数在________上都有定义,并且图象都过点(1,1),且在第____象限无图象. (3)α>0时,幂函数的图象通过点____________,并且在区间(0,+∞)上是________,α<0时,幂函数在(0,+∞)上是减函数,图象______原点.1.已知幂函数y =f (x )的图像经过点⎝⎛⎭⎫4,12,则f (2)=( ) A.14 B .4C.22D. 2 2.下列函数中,其定义域与值域不同的函数是( ) A .y =x 12B .y =x -1 C .y =x 13D .y =x 23.已知f (x )=x 12,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b B .f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b <f (b )<f (a ) C .f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a D .f ⎝⎛⎭⎫1a <f (a )<f ⎝⎛⎭⎫1b <f (b )4.已知f (x )=x 2+bx +c 且f (-1)=f (3),则( ) A .f (-3)<c <f ⎝⎛⎭⎫52 B .f ⎝⎛⎭⎫52<c <f (-3) C .f ⎝⎛⎭⎫52<f (-3)<cD .c <f ⎝⎛⎭⎫52<f (-3)5.(2013·蚌埠二中调研)设二次函数f (x )=ax 2+bx +c ,如果f (x 1)=f (x 2)(x 1≠x 2),则f (x 1+x 2)=( )A .-b2aB .-baC .c D.4ac -b 24a6.若f (x )=x 2-x +a ,f (-m )<0,则f (m +1)的值( ) A .正数 B .负数 C .非负数D .与m 有关 7.对于函数y =x 2,y =x 12有下列说法:①两个函数都是幂函数;②两个函数在第一象限内都单调递增; ③它们的图像关于直线y =x 对称; ④两个函数都是偶函数; ⑤两个函数都经过点(0,0)、(1,1); ⑥两个函数的图像都是抛物线型. 其中正确的有________.8.(2012·北京西城二模)已知函数f (x )=x 2+bx +1是R 上的偶函数,则实数b =________,不等式f (x -1)<x 的解集为________.9.(2012·无锡联考)设函数f (x )=mx 2-mx -1,若f (x )<0的解集为R ,则实数m 的取值范围是________.10.如果幂函数f (x )=x -12p 2+p +32(p ∈Z)是偶函数.且在(0,+∞)上是增函数.求p的值,并写出相应的函数f (x )的解析式.11.已知二次函数f(x)的图像过点A(-1,0)、B(3,0)、C(1,-8).(1)求f(x)的解析式;(2)求f(x)在x∈[0,3]上的最值;(3)求不等式f(x)≥0的解集.12.设f(x)是定义在R上的偶函数,当0≤x≤2时,y=x,当x>2时,y=f(x)的图像是顶点为P(3,4),且过点A(2,2)的抛物线的一部分.(1)求函数f(x)在(-∞,-2)上的解析式;(2)在下面的直角坐标系中直接画出函数f(x)的草图;(3)写出函数f (x )的值域.1.已知y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈⎣⎡⎦⎤-2,-12时,n ≤f (x )≤m 恒成立,则m -n 的最小值为( )A.13B.12 C.34D .12.(2013·青岛质检)设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.3.(2012·滨州模拟)已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a=1,c=0,且|f(x)|≤1在区间(0,1]上恒成立,试求b的取值范围.答 案 课时跟踪检测(九)A 级1.选C 设f (x )=x α,因为图像过点⎝⎛⎭⎫4,12,代入解析式得:α=-12, ∴f (2)=2-12=22.2.选D 对A ,定义域、值域均为[0,+∞);对B ,定义域、值域均为(-∞,0)∪(0,+∞);对C ,定义域值域均为R ;对D ,定义域为R ,值域为[0,+∞).3.选C 因为函数f (x )=x 12在(0,+∞)上是增函数,又0<a <b <1b <1a ,故f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a . 4.选D 由已知可得二次函数图像关于直线x =1对称,又f (-3)=f (5),c =f (0)=f (2),二次函数在区间(1,+∞)上单调递增,故有f (-3)=f (5)>f ⎝⎛⎭⎫52>f (2)=f (0)=c .5.选C 由题意得:a ≠0,x 1+x 22=-b 2a ,x 1+x 2=-b a .得f (x 1+x 2)=f ⎝⎛⎭⎫-b a =a ·b 2a 2-b 2a +c =c .6.选B 法一:∵f (x )=x 2-x +a 的对称轴为x =12,而-m ,m +1关于12对称,∴f (m +1)=f (-m )<0.法二:∵f (-m )<0,∴m 2+m +a <0,∴f (m +1)=(m +1)2-(m +1)+a =m 2+m +a <0. 7.①②⑤⑥8.解析:因为f (x )=x 2+bx +1是R 上的偶函数,所以b =0,则f (x )=x 2+1,解不等式(x -1)2+1<x ,即x 2-3x +2<0得1<x <2.答案:0 {x |1<x <2}9.解析:若m =0,显然-1<0恒成立, 若m ≠0,则⎩⎨⎧m <0,Δ<0.∴-4<m <0.故所求范围为:-4<m≤0.答案:(-4,0]10.解:∵f(x)在(0,+∞)上是增函数,∴-12+p+32>0,2p即p2-2p-3<0.∴-1<p<3.又∵f(x)是偶函数且p∈Z,∴p=1,故f(x)=x2.11.解:(1)由题意可设f(x)=a(x+1)(x-3),将C(1,-8)代入得-8=a(1+1)(1-3),得a=2.即f(x)=2(x+1)(x-3)=2x2-4x-6.(2)f(x)=2(x-1)2-8,当x∈[0,3]时,由二次函数图像知,f(x)min=f(1)=-8,f(x)max=f(3)=0.(3)f(x)≥0的解集为{x|x≤-1,或x≥3}.12.解:(1)设顶点为P(3,4)且过点A(2,2)的抛物线的方程为y=a(x-3)2+4,将(2,2)代入可得a=-2,则y=-2(x-3)2+4,即x>2时,f(x)=-2x2+12x-14.当x<-2时,即-x>2.又f(x)为偶函数,f(x)=f(-x)=-2×(-x)2-12x-14,即f(x)=-2x2-12x-14.所以函数f(x)在(-∞,-2)上的解析式为f(x)=-2x2-12x-14.(2)函数f(x)的图像如图,(3)由图像可知,函数f (x )的值域为(-∞,4].B 级1.选D 当x <0时,-x >0,f (x )=f (-x )=(x +1)2, ∵x ∈⎣⎡⎦⎤-2,-12, ∴f (x )min =f (-1)=0,f (x )max =f (-2)=1, ∴m ≥1,n ≤0,m -n ≥1.2.解析:由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图像如图所示,结合图像可知,当x ∈[2,3]时,y =x 2-5x +4∈⎣⎡⎦⎤-94,-2,故当m ∈⎝⎛⎦⎤-94,-2时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图像有两个交点.答案:⎝⎛⎦⎤-94,-2 3.解:(1)由已知c =1,a -b +c =0,且-b2a =-1,解得a =1,b =2.则f (x )=(x +1)2.则F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.故F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意得f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b ≤1x -x且b ≥-1x-x 在(0,1]上恒成立.又当x ∈(0,1]时,1x -x 的最小值为0,-1x -x 的最大值为-2,故-2≤b ≤0.。
幂函数的性质(北京习题集)(教师版)一.选择题(共3小题)1.(2016春•西城区期末)函数12y x =的图象是( )A .B .C .D .2.(2012秋•西城区期中)下列是23y x =的图象的是( )A .B .C .D .3.(2019•西城区模拟)函数2y x -=在区间上1[2,2]的最大值是( )A .14B .1-C .4D .4-二.填空题(共5小题)4.(2011•顺庆区校级模拟)如图,给出幂函数n y x =在第一象限内的图象,n 取12,2±±四个值,则相应于曲线1C ,2C ,3C ,4C 的n 依次为 .5.(2019秋•海淀区校级期末)函数21()(5)m f x m m x +=--是幂函数,且为偶函数,则实数m 的值是 . 6.(2019秋•丰台区期末)已知{1α∈-,12,1,2,3},若幂函数()f x x α=在(0,)+∞上单调递减,则α= . 7.(2015秋•北京期末)当(0,)x ∈+∞时,幂函数253(1)m y m m x --=--为减函数,则实数m 的值为 . 8.(2012秋•西城区期中) 2.31.5与 3.21.5的大小关系是 2.31.5 3.21.5 (用“<”或“>”表示). 三.解答题(共1小题)9.(2014•海淀区校级模拟)已知幂函数223*()mm y x m N --=∈的图象关于y 轴对称,且在(0,)+∞上是减函数,求实数m 的值.幂函数的性质(北京习题集)(教师版)参考答案与试题解析一.选择题(共3小题)1.(2016春•西城区期末)函数12y x=的图象是()A.B.C.D.【分析】本题可利用排除法进行判定,根据函数定义域排除A、C,再根据图象恒过的定点(4,2)再排除B,得到正确答案.【解答】解:函数12y x=的定义域为[0,)+∞∴所求图象在第一象限,可排除A、C,再根据函数12y x=的图象横过(4,2),可排除B,故选:D.【点评】本题主要考查了幂函数的图象,以及图象恒过的特殊点,属于基础题.2.(2012秋•西城区期中)下列是23y x=的图象的是()A.B.C.D.【分析】本题可利用排除法进行判定,根据函数定义域排除C、D,再根据图象恒过的定点(8,4)再排除A,得到正确答案.【解答】解:函数23y x =的定义域为R ,∴所求图象在第一、二象限,可排除C 、D ,再根据函数23y x =的图象恒过(8,4),可排除A , 故选:B .【点评】本题主要考查了幂函数的图象,以及图象恒过的特殊点,属于基础题. 3.(2019•西城区模拟)函数2y x -=在区间上1[2,2]的最大值是( )A .14B .1-C .4D .4-【分析】先判断函数2y x -=在区间上1[2,2]的单调性,再求函数2y x -=在区间上1[2,2]的最大值.【解答】解:函数2y x -=在第一象限是减函数,∴函数2y x -=在区间1[2,2]上的最大值是211()()422f -==.故选:C .【点评】本题考查函数的性质的应用,解题时要注意幂函数单调性的应用. 二.填空题(共5小题)4.(2011•顺庆区校级模拟)如图,给出幂函数n y x =在第一象限内的图象,n 取12,2±±四个值,则相应于曲线1C ,2C ,3C ,4C 的n 依次为 112,,,222-- .【分析】做直线2x =,与四个函数图象从上到下的交点依次记为A 、B 、C 、D ,再求出2x =时四个函数值的大小,即可选出.【解答】解:做直线2x =,与四个函数图象从上到下的交点依次记为A 、B 、C 、D 而1122222222-->>>,从而相应于曲线1C ,2C ,3C ,4C 的n 依次为112,,,222--故答案为:112,,,222--【点评】本题考查幂函数的图象问题,属基本题.5.(2019秋•海淀区校级期末)函数21()(5)m f x m m x +=--是幂函数,且为偶函数,则实数m 的值是 3 .【分析】由函数()f x 是幂函数,且为偶函数,列方程求出m 的值. 【解答】解:由函数21()(5)m f x m m x +=--是幂函数, 得251m m --=,即260m m --=, 解得2m =-或3m =;又()f x 为偶函数,即1m +为偶数, 所以实数m 的值是3. 故答案为:3.【点评】本题考查了幂函数的定义与性质的应用问题,是基础题. 6.(2019秋•丰台区期末)已知{1α∈-,12,1,2,3},若幂函数()f x x α=在(0,)+∞上单调递减,则α= 1- . 【分析】利用幂函数的单调性求解.【解答】解:幂函数()f x x α=在(0,)+∞上单调递减,0α∴<, 1α∴=-,故答案为:1-.【点评】本题主要考查了幂函数的单调性,是基础题.7.(2015秋•北京期末)当(0,)x ∈+∞时,幂函数253(1)m y m m x --=--为减函数,则实数m 的值为 2 . 【分析】根据幂函数的定义得211m m --=解出m ,又因为函数为减函数舍去一个m 即可得到. 【解答】解:利用幂函数的定义得211m m --=,解得2m =,1m =-; 则幂函数解析式为13y x -=为减函数和2y x =为增函数,所以2m = 故答案为2【点评】考查学生利用幂函数的性质的能力.8.(2012秋•西城区期中) 2.31.5与 3.21.5的大小关系是 2.31.5 < 3.21.5 (用“<”或“>”表示). 【分析】本题中要比较的是两个同底的指数式,依据指数函数单调性验证大小即可. 【解答】解:对于 2.31.5与 3.21.5,考察指数函数 1.5x y =性质,它在R 是增函数, 由于2.3 3.2<, 知 2.3 3.21.5 1.5<, 故答案为:<.【点评】本题的考点是指数函数单调性的应用,考查用函数的单调性比较大小,用单调性比较大小是函数单调性的一个重要应用. 三.解答题(共1小题)9.(2014•海淀区校级模拟)已知幂函数223*()mm y x m N --=∈的图象关于y 轴对称,且在(0,)+∞上是减函数,求实数m 的值.【分析】由幂函数223*()mm y x m N --=∈在(0,)+∞上是减函数,知2230m m --<,由此能求出实数m 的值.【解答】解:幂函数223*()mm y x m N --=∈在(0,)+∞上是减函数,2230m m ∴--<,13m ∴-<<,又*m N ∈,0m ∴=,1,2, 又图象关于y 轴对称,当0m =时,3y x -=是奇函数,图象关于原点对称,故0m =不成立; 当1m =时,4y x -=是偶函数,图象关于y 轴对称,故1m =成立; 当2m =时,3y x -=是奇函数,图象关于原点对称,故2m =不成立; 1m ∴=.【点评】本题考查幂函数的图象及其与指数的关系,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.。
《幂函数》讲义一、幂函数的定义形如y =x^α(α 为常数)的函数,叫做幂函数。
其中x 是自变量,α 是常数。
需要注意的是,幂函数的系数必须为 1 ,例如 y = 2x^3 就不是幂函数,而 y = x^3 就是幂函数。
二、幂函数的图像1、当α > 0 时(1)当α 为整数时若α 为偶数,幂函数的图像在第一、二象限,关于 y 轴对称,在第一象限,函数单调递增;在第二象限,函数单调递减。
例如,y = x^2 的图像是一个开口向上的抛物线,顶点在原点,对称轴为 y 轴。
若α 为奇数,幂函数的图像在第一、三象限,关于原点对称,在第一象限,函数单调递增;在第三象限,函数单调递减。
比如,y =x^3 的图像是一个经过原点,穿过第一、三象限的曲线。
(2)当α 为分数时若α 的分子为奇数,分母为偶数,幂函数的图像在第一象限,函数单调递增。
若α 的分子为偶数,分母为奇数,幂函数的图像在第一象限,函数单调递增,且图像在 x 轴上方。
2、当α < 0 时幂函数的图像在第一、二象限,在第一象限,函数单调递减。
例如,y = x^(-1) ,也就是 y = 1/x ,其图像是双曲线,分布在第一、三象限。
三、幂函数的性质1、定义域当α 为整数时,定义域为 R;当α 为分数时,分母为偶数时,定义域为 0, +∞),分母为奇数时,定义域为 R。
2、值域与定义域和α 的取值有关。
3、奇偶性当α 为整数时,若α 为偶数,函数为偶函数;若α 为奇数,函数为奇函数。
当α 为分数时,需要根据具体情况判断奇偶性。
4、单调性当α > 0 时,函数在第一象限单调递增;当α < 0 时,函数在第一象限单调递减。
四、幂函数的应用1、在物理学中的应用例如在研究自由落体运动时,下落的距离与时间的关系可以用幂函数来表示。
2、在经济学中的应用如成本与产量的关系,可能符合幂函数的特征。
3、在数学建模中的应用通过建立幂函数模型来解决实际问题,如人口增长、资源消耗等。
高考数学复习幂函数定义与性质知识点讲解依据同学们的需求,查词典数学网编写老师整理了幂函数定义与性质知识点解说,欢迎大家关注!掌握幂函数的内部规律及实质是学好幂函数的重点所在,下面是中华考试网为大家整理的幂函数公式大全,希望对广大朋友有所帮助。
定义:形如 y=x^a(a 为常数 )的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:当 a 为不一样的数值时,幂函数的定义域的不一样状况以下:如果 a 为随意实数,则函数的定义域为大于0 的全部实数 ;假如a 为负数,则 x 一定不可以为 0,可是这时函数的定义域还一定根[ 据 q 的奇偶性来确立,即假如同时 q 为偶数,则 x 不可以小于0,这时函数的定义域为大于 0 的全部实数 ;假如同时 q 为奇数,则函数的定义域为不等于0 的全部实数。
当x 为不一样的数值时,幂函数的值域的不一样状况以下:在x 大于 0 时,函数的值域老是大于0 的实数。
在x 小于 0 时,则只有同时q 为奇数,函数的值域为非零的实数。
而只有 a 为正数, 0才进入函数的值域性质:关于 a 的取值为非零有理数,有必需分红几种状况来议论各自的特征:第一我们知道假如 a=p/q,q 和 p 都是整数,则 x^(p/q)=q 次根号(x 的 p 次方 ),假如 q 是奇数,函数的定义域是 R,假如q 是偶数,函数的定义域是[0 , +)。
当指数 n 是负整数时,设 a=-k ,则 x=1/(x^k) ,明显 x0,函数的定义域是 (-, 0)(0,+).所以能够看到x 所遇到的限制根源于两点,一是有可能作为分母而不可以是0,一是有可能在偶数次的根号下而不可以为负数,那么我们就能够知道:清除了为 0 与负数两种可能,即关于x0,则 a 能够是随意实数;单靠“死”记还不可以 ,还得“活”用 ,临时称之为“先死后活”吧。
让学生把一周看到或听到的新鲜事记下来 ,摒弃那些谎话套话空话 ,写出自己的真情实感 ,篇幅可长可短 ,并要求运用累积的成语、名言警语等 ,按期检查评论 ,选择优异篇目在班里朗诵或展出。
高一上必修二第四章《指数函数、对数函数与幂函数》知识点梳理§4.4 幂函数学习目标 1.了解幂函数的概念.2.掌握y =x α(α=-1,12,1,2,3)的图像与性质.3.理解和掌握幂函数在第一象限的分类特征,能运用数形结合的方法处理幂函数的有关问题.知识点一 幂函数的概念一般地,函数y =x α称为幂函数,其中x 是自变量,α是常数.提醒 幂函数中底数是自变量,而指数函数中指数为自变量.知识点二 幂函数的图像和性质1.幂函数的图像在同一平面直角坐标系中,幂函数y =x ,y =x 2,y =x 3,y =,y =x -1的图像如图.2.五个幂函数的性质y =xy =x 2y =x 3y =y =x -1定义域R R R [0,+∞){x |x ≠0}值域R [0,+∞)R [0,+∞){y |y ≠0}奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性在R 上是增函数在[0,+∞)上是增函数,在(-∞,0]上是减函数在R 上是增函数在[0,+∞)上是增函数在(0,+∞)上是减函数,在(-∞,0)上是减函数12x 12x公共点(1,1)1.y =-1x 是幂函数.( × )2.当x ∈(0,1)时,x 2>x 3.( √ )3.y =与y =定义域相同.( × )4.若y =x α在(0,+∞)上为增函数,则α>0.( √ )一、幂函数的概念例1 (1)(多选)下列函数为幂函数的是( )A .y =x 3 B .y =(12)xC .y =4x 2D .y =x答案 AD解析 B 项为指数函数,C 中的函数的系数不为1,AD 为幂函数.(2)已知y =(m 2+2m -2)+2n -3是幂函数,求m ,n 的值.解 由题意得Error!解得Error!或Error!所以m =-3或1,n =32.反思感悟 判断一个函数是否为幂函数的方法判断一个函数是否为幂函数的依据是该函数是否为y =x α(α为常数)的形式,即函数的解析式为一个幂的形式,且需满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.跟踪训练1 已知f (x )=ax 2a +1-b +1是幂函数,则a +b 等于( )A .2 B .1 C.12 D .0答案 A解析 因为f (x )=ax 2a +1-b +1是幂函数,所以a =1,-b +1=0,即a =1,b =1,则a +b =2.32x 64x 22m x二、幂函数的图像例2 如图所示,图中的曲线是幂函数y =x n 在第一象限的图像,已知n 取±2,±12四个值,则对应于c 1,c 2,c 3,c 4的n 依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-12答案 B解析 根据幂函数y =x n 的性质,故c 1的n =2,c 2的n =12,当n <0时,|n |越大,曲线越陡峭,所以曲线c 3的n =-12,曲线c 4的n =-2.反思感悟 解决幂函数图像问题应把握的两个原则(1)依据图像高低判断幂指数大小,相关结论为:在(0,1)上,指数越大,幂函数图像越靠近x 轴(简记为指大图低);在(1,+∞)上,指数越大,幂函数图像越远离x 轴(简记为指大图高).(2)依据图像确定幂指数α与0,1的大小关系,即根据幂函数在第一象限内的图像(类似于y =x -1 或y =或y =x 3)来判断.跟踪训练2 函数f (x )=的大致图像是( )答案 A解析 因为-12<0,所以f (x )在(0,+∞)上单调递减,排除选项B ,C ;又f (x )的定义域为(0,+∞),故排除选项D.三、比较幂值的大小12x 12x例3 比较下列各组数中两个数的大小:(1)(25)0.5与(13)0.5;(2)(-23)-1与(-35)-1;(3)与.解 (1)∵幂函数y =x 0.5在(0,+∞)上是单调递增的,又25>13,∴(25)0.5>(13)0.5.(2)∵幂函数y =x -1在(-∞,0)上是单调递减的,又-23<-35,∴(-23)-1>(-35)-1.(3)∵函数y 1=(23)x为R 上的减函数,又34>23,∴>.又∵函数y 2=在(0,+∞)上是增函数,且34>23,∴>,∴>.反思感悟 比较幂值大小的方法跟踪训练3 比较下列各组值的大小:(1),;(2),,1.42.解 (1)∵y =为R 上的偶函数,∴=.又函数y =为[0,+∞)上的增函数,且0.31<0.35,3423⎛⎫⎪⎝⎭2334⎛⎫⎪⎝⎭2323⎛⎫ ⎪⎝⎭3423⎛⎫ ⎪⎝⎭23x 2334⎛⎫⎪⎝⎭2323⎛⎫ ⎪⎝⎭2334⎛⎫ ⎪⎝⎭3423⎛⎫⎪⎝⎭()650.31-650.35121.2121.465x ()650.31-650.3165x∴<,即<.(2)∵y =在[0,+∞)上是增函数,且1.2<1.4,∴<.又∵y =1.4x 为增函数,且12<2,∴<1.42,∴<<1.42.幂函数性质的应用典例 已知幂函数y =x 3m -9 (m ∈N +)的图像关于y 轴对称且在(0,+∞)上单调递减,求满足的a 的取值范围.解 因为函数y =x 3m -9在(0,+∞)上单调递减,所以3m -9<0,解得m <3.又因为m ∈N +,所以m =1,2.因为函数的图像关于y 轴对称,所以3m -9为偶数,故m =1.则原不等式可化为.因为y =在(-∞,0),(0,+∞)上单调递减,所以a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a ,解得23<a <32或a <-1.故a 的取值范围是Error!.[素养提升] (1)幂函数y =x α中只有一个参数α,幂函数的所有性质都与α的取值有关,故可由α确定幂函数的定义域、值域、单调性、奇偶性,也可由这些性质去限制α的取值.(2)通过具体实例抽象出幂函数的概念和性质,并应用单调性求解,体现了数学中数学运算与直观想象的核心素养.650.31650.35()650.31-650.3512x 121.2121.4121.4121.2121.433(1)(32)m m a a --+<-1133(1)(32)a a --+<-13x-1.下列函数是幂函数的是( )A .y =5x B .y =x 5C .y =5x D .y =(x +1)3答案 B解析 函数y =5x 是指数函数,不是幂函数;函数y =5x 是正比例函数,不是幂函数;函数y =(x +1)3的底数不是自变量x ,不是幂函数;函数y =x 5是幂函数.2.幂函数y =x α(α∈R )的图像一定不经过( )A .第四象限 B .第三象限C .第二象限 D .第一象限答案 A解析 由幂函数的图像可知,其图像一定不经过第四象限.3.设α∈{-1,1,12,3},则使函数y =x α的定义域为R 且为奇函数的所有α值为( )A .1,3B .-1,1C .-1,3D .-1,1,3答案 A解析 可知当α=-1,1,3时,y =x α为奇函数,又因为y =x α的定义域为R ,则α=1,3.4.已知幂函数f (x )=kx α(k ∈R ,α∈R )的图像过点(12,2),则k +α等于( )A.12 B .1 C.32 D .2答案 A解析 ∵幂函数f (x )=kx α(k ∈R ,α∈R )的图像过点(12,2),∴k =1,f(12)=(12)α=2,即α=-12,∴k +α=12.5.已知f (x )=,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f(1a )<f(1b)B .f (1a )<f(1b )<f (b )<f (a )C .f (a )<f (b )<f (1b )<f(1a )D .f (1a )<f (a )<f(1b )<f (b )12x答案 C解析 因为函数f (x )=在(0,+∞)上是增函数,又0<a <b <1<1b <1a ,故f (a )<f (b )<f(1b )<f(1a).1.知识清单:(1)幂函数的概念.(2)幂函数的图像.(3)幂函数的性质及其应用.2.方法归纳:数形结合.3.常见误区:幂函数与指数函数的区别;幂函数的奇偶性.1.幂函数f (x )=x α的图像经过点(2,4),则f (-12)等于( )A.12B.14 C .-14 D .2答案 B解析 幂函数f (x )=x α的图像经过点(2,4),则2α=4,解得α=2;∴f (x )=x 2,∴f (-12)=(-12)2=14.2.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( )A .y =x -2 B .y =x -1C .y =x 2 D .y =答案 A解析 所给选项都是幂函数,其中y =x -2和y =x 2是偶函数,y =x -1和y =不是偶函数,故排除选项B ,D ,又y =x 2在区间(0,+∞)上单调递增,不合题意,y =x -2在区间(0,+∞)上单调递减,符合题意.3.设a =,b =,c =,则a ,b ,c 的大小关系是( )12x 13x13x 2535⎛⎫ ⎪⎝⎭3525⎛⎫⎪⎝⎭2525⎛⎫⎪⎝⎭A .a >c >bB .a >b >cC .c >a >bD .b >c >a答案 A解析 ∵y =(x >0)为增函数,又35>25,∴a >c .∵y =(25)x (x ∈R )为减函数,又25<35,∴c >b .∴a >c >b .4.在同一坐标系内,函数y =x a (a ≠0)和y =ax -1a的图像可能是( )答案 C解析 选项A 中,幂函数的指数a <0,则y =ax -1a 应为减函数,A 错误;选项B 中,幂函数的指数a >1,则y =ax -1a 应为增函数,B 错误;选项D 中,幂函数的指数a <0,则-1a >0,直线y =ax -1a在y 轴上的截距为正,D 错误.5.若幂函数f (x )的图像过点(2,2),则函数g (x )=f (x )-3的零点是( )A.3 B .9 C .(3,0) D .(9,0)答案 B解析 ∵幂函数f (x )=x α的图像过点(2,2),∴f (2)=2α=2,解得α=12,∴f (x )=,∴函数g (x )=f (x )-3=-3,由-3=0,得x =9.∴函数g (x )=f (x )-3的零点是9.6.已知幂函数f (x )=x α的部分对应值如表:x11225x 12x 12x 12xf (x )122则f (x )的单调递增区间是________.答案 [0,+∞)解析 因为f(12)=22,所以(12)α=22,即α=12,所以f (x )=的单调递增区间是[0,+∞).7.已知幂函数f (x )=x α(α∈R )的图像经过点(8,4),则不等式f (6x +3)≤9的解集为________.答案 [-5,4]解析 由题意知8α=4,故α=log 84=23,由于f (x )==x 2为R 上的偶函数且在(0,+∞)上递增,故f (6x +3)≤9即为f (6x +3)≤f (27),所以|6x +3|≤27,解得-5≤x ≤4.8.设a =,b =,c =,则a ,b ,c 从小到大的顺序是________.答案 b <a <c解析 由a =,b =,可利用幂函数的性质,得a >b ,可由指数函数的单调性得c >a ,∴b <a <c .9.已知幂函数f (x )=x α的图像过点P (2,14),试画出f (x )的图像并指出该函数的定义域与单调区间.解 因为f (x )=x α的图像过点P (2,14),所以f (2)=14,即2α=14,得α=-2,即f (x )=x -2,f (x )的图像如图所示,定义域为(-∞,0)∪(0,+∞),单调递减区间为(0,+∞),单调递增区间为(-∞,0).10.已知幂函数f (x )=x 9-3m (m ∈N +)的图像关于原点对称,且在R 上单调递增.(1)求f (x )的解析式;(2)求满足f (a +1)+f (3a -4)<0的a 的取值范围.解 (1)由幂函数f (x )=x 9-3m (m ∈N +)的图像关于原点对称,且在R上单调递增,可得9-3m >0,解得m <3,m ∈N +,可得m =1,2,12x 23x 2312⎛⎫⎪⎝⎭2315⎛⎫ ⎪⎝⎭1312⎛⎫⎪⎝⎭2312⎛⎫ ⎪⎝⎭2315⎛⎫⎪⎝⎭若m =1,则f (x )=x 6的图像不关于原点对称,舍去;若m =2,则f (x )=x 3的图像关于原点对称,且在R 上单调递增,成立.则f (x )=x 3.(2)由(1)可得f (x )是奇函数,且在R 上单调递增,由f (a +1)+f (3a -4)<0,可得f (a +1)<-f (3a -4)=f (4-3a ),即为a +1<4-3a ,解得a <34.11.若函数f (x )=(m +2)x a 是幂函数,且其图像过点(2,4),则函数g (x )= log a (x +m )的单调递增区间为( )A .(-2,+∞) B .(1,+∞)C .(-1,+∞) D .(2,+∞)答案 B解析 由题意得m +2=1,解得m =-1,则f (x )=x a ,将(2,4)代入函数的解析式得,2a =4,解得a =2,故g (x )=log a (x +m )=log 2(x -1),令x -1>0,解得x >1,故g (x )在(1,+∞)上单调递增.12.函数y =-1的图像关于x 轴对称的图像大致是( )答案 B解析 y =的图像位于第一象限且为增函数,所以函数图像是上升的,函数y =-1的图像可看作由y =的图像向下平移一个单位长度得到的(如选项A 中的图所示),将y =-1的图像关于x 轴对称后即为选项B.13.为了保证信息的安全传输,有一种密钥密码系统,其加密、解密原理为:发送方由明文到密文(加密),接收方由密文到明文(解密).现在加密密钥为y =x α(α为常数),如“4”通过加密后得到密文“2”.若接收方接到密文“3”,则解密后得到的明文是________.答案 9解析 由题意可知加密密钥y =x α(α为常数)是一个幂函数,所以要想求得解密后得到的明文,就必须先求出α的值.由题意,得2=4α,解得α=12,则y =.由=3,得x =9,即明文是9.14.已知幂函数f (x )=,若f (a +1)<f (10-2a ),则a 的取值范围是________.12x 12x 12x 12x 12x 12x 12x 12x答案 (3,5)解析 ∵f (x )==1x(x >0),易知f (x )在(0,+∞)上为减函数,又f (a +1)<f (10-2a ),∴Error!解得Error!∴3<a <5.15.幂函数y =x α,当α取不同的正数时,在区间[0,1]上它们的图像是一族美丽的曲线(如图).设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x α,y =x β的图像三等分,即有BM =MN =NA ,那么,αβ等于________.答案 1解析 由条件,得M (13,23),N (23,13),可得13=(23)α,23=(13)β,即α=13,β=23.所以αβ=13·23=lg 13lg 23·lg 23lg 13=1.16.已知幂函数g (x )过点(2,12),且f (x )=x 2+ag (x ).(1)求g (x )的解析式;(2)讨论函数f (x )的奇偶性,并说明理由.解 (1)设幂函数的解析式g (x )=x α(α为常数).因为幂函数g (x )过点(2,12),所以2α=12,解得α=-1,所以g (x )=1x.(2)由(1)得f (x )=x 2+a x.①当a =0时,f (x )=x 2.12x 23log 13log 23log 13log由于f(-x)=(-x)2=x2=f(x),可知f(x)为偶函数.②当a≠0时,由于f(-x)=(-x)2+a-x=x2-ax≠x2+ax=f(x),且f(-x)=(-x)2+a-x=x2-ax≠-(x2+a x)=-f(x),所以f(x)是非奇非偶函数.综上,①当a=0时,f(x)为偶函数;②当a≠0时,f(x)为非奇非偶函数.。
3.3 幂函数最新课程标准:通过具体实例,结合y =x ,y =1x,y =x 2,y =x ,y =x 3的图象,理解它们的变化规律,了解幂函数.知识点一 幂函数的概念一般地,函数y =x α叫做幂函数,其中x 是自变量,α是常数. 状元随笔 幂函数中底数是自变量,而指数函数中指数为自变量.知识点二 幂函数的图象与性质状元随笔 幂函数在区间(0,+∞)上,当α>0时,y =x α是增函数;当α<0时,y =x α是减函数.[教材解难]教材P 90思考通常可以先根据函数解析式求出函数的定义域,画出函数的图象;再利用图象和解析式,讨论函数的值域、单调性、奇偶性等问题. [基础自测]1.在函数y =1x4,y =3x 2,y =x 2+2x ,y =1中,幂函数的个数为( )A .0B .1C .2D .3解析:函数y =1x4=x -4为幂函数;函数y =3x 2中x 2的系数不是1,所以它不是幂函数;函数y =x 2+2x 不是y =x α(α是常数)的形式,所以它不是幂函数; 函数y =1与y =x 0=1(x ≠0)不相等,所以y =1不是幂函数. 答案:B2.幂函数f (x )的图象过点(3,39),则f (8)=( ) A .8 B .6 C .4 D .2解析:设幂函数f (x )=x α(α为常数),由函数的图象过点(3,39),可得39=3α,∴α=23,则幂函数f (x )=x 23,∴f (8)=823=4. 答案:C3.已知幂函数f (x )=(m 2-3m +3)x m +1为偶函数,则m =( )A .1B .2C .1或2D .3解析:∵幂函数f (x )=(m 2-3m +3)xm +1为偶函数,∴m 2-3m +3=1,即m 2-3m +2=0,解得m =1或m =2.当m =1时,幂函数f (x )=x 2为偶函数,满足条件.当m =2时,幂函数f (x )=x 3为奇函数,不满足条件.故选A.答案:A4.判断大小:0.20.2________0.30.2. 解析:因为函数y =x 0.2是增函数,又0.2<0.3, ∴0.20.2<0.30.2. 答案:<题型一 幂函数的概念[经典例题]例1 (1)下列函数:①y =x 3;②y =⎝ ⎛⎭⎪⎫12x ;③y =4x 2;④y =x 5+1;⑤y =(x -1)2;⑥y=x ;⑦y =a x(a >1).其中幂函数的个数为( ) A .1 B .2 C .3 D .4(2)若函数y =(m 2+2m -2)x m为幂函数且在第一象限为增函数,则m 的值为( ) A.1 B .-3 C .-1 D .3(3)已知幂函数f (x )的图象经过点⎝ ⎛⎭⎪⎫3,19,则f (4)=_____. 【解析】 (1)②⑦为指数函数,③中系数不是1,④中解析式为多项式,⑤中底数不是自变量本身,所以只有①⑥是幂函数.(2)因为函数y =(m 2+2m -2)x m为幂函数且在第一象限为增函数,所以⎩⎪⎨⎪⎧m 2+2m -2=1,m >0,所以m =1.(3)设f (x )=x α,所以19=3α,α=-2,所以f (4)=4-2=116.【答案】 (1)B (2)A (3)116(1)依据幂函数的定义逐个判断. (2)依据幂函数的定义列方程求m.(3)先设f(x)=x α,再将点(3,19)代入求α.方法归纳(1)幂函数的判断方法①幂函数同指数函数、对数函数一样,是一种“形式定义”的函数,也就是说必须完全具备形如y=xα(α∈R)的函数才是幂函数.②如果函数解析式以根式的形式给出,则要注意把根式化为分数指数幂的形式进行化简整理,再对照幂函数的定义进行判断.(2)求幂函数解析式的依据及常用方法①依据.若一个函数为幂函数,则该函数应具备幂函数解析式所具备的特征,这是解决与幂函数有关问题的隐含条件.②常用方法.设幂函数解析式为f(x)=xα,根据条件求出α.跟踪训练1 (1)给出下列函数:①y=1x3;②y=3x-2;③y=x4+x2;④y=3x5;⑤y=(x-1)2;⑥y=0.3x.其中是幂函数的有( )A.1个 B.2个C.3个 D.4个(2)函数f(x)=(m2-m-1)·x23m m+-是幂函数,且当x∈(0,+∞)时,f(x)是增函数,求f(x)的解析式.解析:(1)可以对照幂函数的定义进行判断.在所给出的六个函数中,只有y=1x3=x-3和y=3x5=x53符合幂函数的定义,是幂函数,其余四个都不是幂函数.(2)根据幂函数定义得m2-m-1=1,解得m=2或m=-1,当m=2时,f(x)=x3在(0,+∞)上是增函数,当m=-1时,f(x)=x-3在(0,+∞)上是减函数,不合要求.故f(x)=x3.答案:(1)B (2)f(x)=x3(1)利用幂函数定义判断.(2)由幂函数的系数为1,求m的值,然后逐一验证.题型二幂函数的图象及应用[经典例题]例2 幂函数y =x m ,y =x n ,y =x p ,y =x q的图象如图,则将m ,n ,p ,q 的大小关系用“<”连接起来结果是________.【解析】 过原点的指数α>0,不过原点的α<0,所以n <0,当x >1时,在直线y =x 上方的α>1,下方的α<1,所以p >1,0<m <1,0<q <1;x >1时,指数越大,图象越高,所以m >q ,综上所述n <q <m <p .【答案】 n <q <m <p依据α<0,0<α<1和α>1的幂函数图象的特征判断. 方法归纳解决幂函数图象问题应把握的两个原则(1)依据图象高低判断幂指数大小,相关结论为:在(0,1)上,指数越大,幂函数图象越靠近x 轴(简记为指大图低);在(1,+∞)上,指数越大,幂函数图象越远离x 轴(简记为指大图高).(2)依据图象确定幂指数α与0,1的大小关系,即根据幂函数在第一象限内的图象(类似于y =x -1或y =x 12或y =x 3)来判断.跟踪训练 2 当α∈⎩⎨⎧⎭⎬⎫-1,12,1,2,3时,幂函数y =x α的图象不可能经过第__________象限.解析:幂函数y =x -1,y =x ,y =x 3的图象经过第一、三象限;y =x 12的图象经过第一象限;y =x 2的图象经过第一、二象限.所以幂函数y =x α⎝ ⎛⎭⎪⎫α=-1,12,1,2,3的图象不可能经过第四象限. 答案:四要先回忆幂函数的五种常见类型的图象与性质特点. 题型三 幂函数的单调性质及应用[教材P 91例1] 例3 证明幂函数f (x )=x 是增函数. 【证明】 函数的定义域是[0,+∞). ∀x 1,x 2∈[0,+∞),且x 1<x 2,有f (x 1)-f (x 2)=x 1-x 2=(x 1-x 2)(x 1+x 2)x 1+x 2=x 1-x 2x 1+x 2.因为x 1-x 2<0,x 1+x 2>0,所以f (x 1)<f (x 2),即幂函数f (x )=x 是增函数. 利用定义法证明幂函数的单调性. 教材反思幂函数当α>0时在第一象限单调递增,当α<0时在第一象限单调递减.比较幂值的大小,关键在于构造适当的函数,若指数相同而底数不同,则考虑幂函数;若指数不同底数相同,则考虑指数函数;若底数不同,指数也不同,需引入中间量,利用幂函数与指数函数的单调性,也可以借助幂函数与指数函数的图象.跟踪训练3 比较下列各题中两个幂值的大小. (1)3.11.3与2.91.3;(2)⎝ ⎛⎭⎪⎫14 32-与⎝ ⎛⎭⎪⎫1332-; (3)⎝ ⎛⎭⎪⎫1213与⎝ ⎛⎭⎪⎫3214.解析:(1)函数y =x 1.3在(0,+∞)上为增函数,又因为3.1>2.9,所以3.11.3>2.91.3.(2)方法一 函数y =x32-在(0,+∞)上为减函数,又因为14<13,所以⎝ ⎛⎭⎪⎫1432->⎝ ⎛⎭⎪⎫1332-.方法二 ⎝ ⎛⎭⎪⎫1432-=432,⎝ ⎛⎭⎪⎫1332-=332.而函数y =x 32在(0,+∞)上单调递增,且4>3,所以432>332,即⎝ ⎛⎭⎪⎫1432->⎝ ⎛⎭⎪⎫1332-. (3)因为⎝ ⎛⎭⎪⎫1213<⎝ ⎛⎭⎪⎫120=1;而⎝ ⎛⎭⎪⎫3214>⎝ ⎛⎭⎪⎫320=1; 所以⎝ ⎛⎭⎪⎫1213<⎝ ⎛⎭⎪⎫3214.(1)利用函数y =x 1.3的单调性来判断.(2)利用函数y =x32-的单调性来判断.(3)找中间量判断.一、选择题1.下列结论正确的是( ) A .幂函数图象一定过原点B .当α<0时,幂函数y =x α是减函数 C .当α>1时,幂函数y =x α是增函数 D .函数y =x 2既是二次函数,也是幂函数解析:函数y =x -1的图象不过原点,故A 不正确;y =x -1在(-∞,0)及(0,+∞)上是减函数,故B 不正确;函数y =x 2在(-∞,0)上是减函数,在(0,+∞)上是增函数,故C 不正确.答案:D2.设α∈⎩⎨⎧⎭⎬⎫1,2,3,12,-1,则使函数y =x α的定义域为R 且函数y =x α为奇函数的所有α的值为( )A .-1,3B .-1,1C .1,3D .-1,1,3解析:y =x ,y =x 2,y =x 3,y =x 12,y =x -1是常见的五个幂函数,显然y =x α为奇函数时,α=-1,1,3,又函数的定义域为R ,所以α≠-1,故α=1,3.答案:C3.在下列四个图形中,y =x12-的图象大致是( )解析:函数y =x 12的定义域为(0,+∞),是减函数.故选D.答案:D4.函数y =x 35在[-1,1]上是( ) A .增函数且是奇函数 B .增函数且是偶函数 C .减函数且是奇函数 D .减函数且是偶函数解析:由幂函数的性质知,当α>0时,y =x α在第一象限内是增函数,所以y =x 35在(0,1]上是增函数.设f (x )=x 35,x ∈[-1,1],则f (-x )=(-x ) 35=-x 35=-f (x ),所以f (x )=x 35是奇函数.因为奇函数的图象关于原点对称,所以x ∈[-1,0)时,y =x 35也是增函数. 当x =0时,y =0,故y =x 35在[-1,1]上是增函数且是奇函数. 答案:A 二、填空题5.已知幂函数f (x )=x21m - (m ∈Z )的图象与x 轴,y 轴都无交点,且关于原点对称,则函数f (x )的解析式是________.解析:∵函数的图象与x 轴,y 轴都无交点, ∴m 2-1<0,解得-1<m <1; ∵图象关于原点对称,且m ∈Z , ∴m =0,∴f (x )=x -1. 答案:f (x )=x -16.已知2.4α>2.5α,则α的取值范围是________. 解析:∵0<2.4<2.5,而2.4α>2.5α, ∴y =x α在(0,+∞)上为减函数,故α<0. 答案:α<07.已知幂函数f (x )=x α的部分对应值如下表:则不等式f (|x |)≤2解析:由表中数据知22=⎝ ⎛⎭⎪⎫12α,∴α=12, ∴f (x )=x 12,∴|x |12≤2,即|x |≤4,故-4≤x ≤4. 答案:{x |-4≤x ≤4} 三、解答题8.已知函数f (x )=(m 2-m -1)x -5m -3,m 为何值时,f (x ):(1)是幂函数; (2)是正比例函数; (3)是反比例函数; (4)是二次函数.解析:(1)∵f (x )是幂函数, 故m 2-m -1=1,即m 2-m -2=0, 解得m =2或m =-1. (2)若f (x )是正比例函数, 则-5m -3=1,解得m =-45.此时m 2-m -1≠0,故m =-45.(3)若f (x )是反比例函数, 则-5m -3=-1,则m =-25,此时m 2-m -1≠0,故m =-25.(4)若f (x )是二次函数,则-5m -3=2, 即m =-1,此时m 2-m -1≠0,故m =-1. 9.比较下列各题中两个值的大小;(1)2.334,2.434;(2)(2)32-,(3)32-;(3)(-0.31)65,0.3565.解析:(1)∵y=x 34为[0,+∞)上的增函数,且2.3<2.4,∴2.334<2.434.(2)∵y=x32-为(0,+∞)上的减函数,且2<3,∴(2)32->(3)32-.(3)∵y=x 65为R上的偶函数,∴(-0.31)65=0.3165.又函数y=x 65为[0,+∞)上的增函数,且0.31<0.35,∴0.3165<0.3565,即(-0.31)65<0.3565.[尖子生题库]10.已知幂函数f(x)=x21()m m-+(m∈N*)经过点(2,2),试确定m的值,并求满足条件f(2-a)>f(a-1)的实数a的取值范围.解析:∵幂函数f(x)经过点(2,2),∴2=221()m m-+,即212=221()m m-+.∴m2+m=2.解得m=1或m=-2. 又∵m∈N*,∴m=1.∴f(x)=x 12,则函数的定义域为[0,+∞),并且在定义域上为增函数.由f(2-a)>f(a-1),11 得⎩⎪⎨⎪⎧ 2-a ≥0,a -1≥0,2-a >a -1,解得1≤a <32. ∴a 的取值范围为⎣⎢⎡⎭⎪⎫1,32.。
教学内容幂函数与二次函数教学目标了解幂函数与二次函数的形式重点幂函数与二次函数难点幂函数与二次函数教学准备教学过程幂函数与二次函数知识梳理1.幂函数(1)幂函数的定义形如y=xα的函数称为幂函数,其中x是自变量,α为常数.(2)常见的5种幂函数的图象2.二次函数(1)二次函数的定义形如f(x)=ax2+bx+c(a≠0)的函数叫做二次函数.(2)二次函数的三种常见解析式①一般式:f(x)=ax2+bx+c(a≠0);②顶点式:f(x)=a(x-m)2+n(a≠0),(m,n)为顶点坐标;③两根式:f(x)=a(x-x1)(x-x2)(a≠0)其中x1,x2分别是f(x)=0的两实根.教学效果分析教学过程(3)二次函数的图象和性质函数二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象a>0a<0定义域R R值域y∈⎣⎢⎡⎭⎪⎫4ac-b24a,+∞y∈⎝⎛⎦⎥⎤-∞,4ac-b24a对称轴x=-b2a顶点坐标⎝⎛⎭⎪⎫-b2a,4ac-b24a奇偶性b=0⇔y=ax2+bx+c(a≠0)是偶函数递增区间⎝⎛⎭⎪⎫-b2a,+∞⎝⎛⎭⎪⎫-∞,-b2a递减区间⎝⎛⎭⎪⎫-∞,-b2a⎝⎛⎭⎪⎫-b2a,+∞最值当x=-b2a时,y有最小值y min=4ac-b24a当x=-b2a时,y有最大值y max=4ac-b24a辨析感悟1.对幂函数的认识(1)函数f(x)=x2与函数f(x)=2x2都是幂函数.( )(2)幂函数的图象都经过点(1,1)和(0,0).( )(3)幂函数的图象不经过第四象限.( )2.对二次函数的理解(4)二次函数y=ax2+bx+c,x∈R,不可能是偶函数.( )(5)(教材习题改编)函数f(x)=12x2+4x+6,x∈[0,2]的最大值为16,最小值为-2.( )教学效果分析教学过程[感悟·提升]三个防范一是幂函数的图象最多出现在两个象限内,一定会经过第一象限,一定不经过第四象限,若与坐标轴相交,则交点一定是原点,但并不是都经过(0,0)点,如(2)、(3).二是二次函数的最值一定要注意区间的限制,不要盲目配方求得结论,如(5)中的最小值就忽略了函数的定义域.考点一幂函数的图象与性质的应用【例1】(1)(2014·济南模拟)已知幂函数y=f(x)的图象过点⎝⎛⎭⎪⎫12,22,则log4f(2)的值为________.(2)函数y=13x的图象是________.规律方法(1)幂函数解析式一定要设为y=xα(α为常数)的形式;(2)可以借助幂函数的图象理解函数的对称性、单调性;(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键.【训练1】比较下列各组数的大小:⑴121.1,120.9,1;⑵2322⎛⎫- ⎪⎝⎭,23107-⎛⎫- ⎪⎝⎭,()431.1-.教学效果分析教学过程考点二二次函数的图象与性质【例2】(2013·浙江七校模拟)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出下面四个结论:①b2>4ac;②2a-b=1;③a-b+c=0;④5a<b.其中正确的是________.规律方法解决二次函数的图象问题有以下两种方法:(1)排除法,抓住函数的特殊性质或特殊点;(2)讨论函数图象,依据图象特征,得到参数间的关系.【训练2】(2012·山东卷改编)设函数f(x)=1x,g(x)=-x2+bx,若y=f(x)的图象与y=g(x)的图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则x1+x2________0,y1+y2________0(比较大小).教学效果分析教学过程1.对于幂函数的图象的掌握只要抓住在第一象限内三条线分第一象限为六个区域,即x=1,y=1,y=x分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.2.二次函数的综合应用多涉及单调性与最值或二次方程根的分布问题,解决的主要思路是等价转化,多用到数形结合思想与分类讨论思想.3.对于与二次函数有关的不等式恒成立或存在问题注意等价转化思想的运用.答题模板2——二次函数在闭区间上的最值问题【典例】(12分)(经典题)求函数f(x)=-x(x-a)在x∈[-1,1]上的最大值.[反思感悟] (1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解题的关键是对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论.(2)部分学生易出现两点错误:①找不到分类的标准,无从入手;②书写格式不规范,漏掉结论答题模板第一步:配方,求对称轴.第二步:分类,将对称轴是否在给定区间上分类讨论.第三步:求最值.第四步:下结论.【自主体验】已知函数f(x)=-4x2+4ax-4a-a2在区间[0,1]内有一个最大值-5,求a的值.教学效果分析。
幂 函 数 复 习一、幂函数定义:形如)(R x y ∈=αα的函数称为幂函数,其中x 是自变量,α是常数。
注意:幂函数与指数函数有何不同?【思考·提示】 本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置. 观察图:归纳:幂函数图像在第一象限的分布情况如下:二、幂函数的性质归纳:幂函数在第一象限的性质:0>α,图像过定点(0,0)(1,1),在区间(+∞,0)上单调递增。
0<α,图像过定点(1,1),在区间(+∞,0)上单调递减.探究:整数m,n 的奇偶与幂函数nm x y =),,,(互质且n m Z n m ∈的定义域以及奇偶性有什么关系? 结果:形如nmx y =),,,(互质且n m Z n m ∈的幂函数的奇偶性(1)当m,n 都为奇数时,f (x)为奇函数,图象关于原点对称; (2)当m 为奇数n 为偶数时,f(x)为偶函数,图象关于y 轴对称;(3)当m 为偶数n 为奇数时,f(x )是非奇非偶函数,图象只在第一象限内. 三、幂函数的图像画法:关键先画第一象限,然后根据奇偶性和定义域画其它象限。
指数大于1,在第一象限为抛物线型(凹); 指数等于1,在第一象限为上升的射线;指数大于0小于1,在第一象限为抛物线型(凸); 指数等于0,在第一象限为水平的射线; 指数小于0,在第一象限为双曲线型; 四、规律方法总结:1、幂函数)1,0(==ααx y 的图像:2、幂函数),,,,(互质q p Z q p p qx y ∈==αα的图像:3、比较幂形式的两个数的大小,一般的思路是: (1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小. 题型一:幂函数解析式特征例1。
下列函数是幂函数的是( ) A .y=xxB 。
幂函数知识点及题型归纳总结知识点精讲一、幂函数的定义一般地,函数()y x R αα=∈叫做幂函数,其中x 是自变量,α是常数.注:判断一个函数是否为幂函数,关键是看其系数是否为1,底数是否为变量x .二、幂函数的图像幂函数的图像一定会出现在第一象限内,一定不会出现在第四项县内,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图像如果与坐标轴相交,则交点一定是原点. 当11,2,3,,12α=-时,在同一坐标系内的函数图像如图2-18所示.三、幂函数的性质当0α>时,幂函数y x α=在(0,)+∞上是增函数,当1α>时,函数图像是向下凸的;当01α<<时,图像是向上凸的,恒过点(0,0)(1,1)和;当0α<时,幂函数y x α=在(0,)+∞上是减函数.幂函数y x α=的图像恒过点(1,1).题型归纳及思路提示题型1 幂函数的定义及其图像思路提示确定幂函数y x α=的定义域,当α为分数时,可转化为根式考虑,是否为偶次根式,或为则被开方式非负.当0α≤时,底数是非零的.例2.68函数2223()(1)a a f x a a x --=--为幂函数(a 为常数),且在(0,)+∞上是减函数,则a =______. 分析根据幂函数的定义及单调性求解a .解析依题意,得2211230a a a a ⎧--=⎪⎨--<⎪⎩,解得2a =. 变式1 函数32204(42)(1)y mx x m x mx -=++++-+的定义域为R ,求实数m 的取值范围.变式2 幂函数()y f x =的图像经过点1(2,)8--,则满足()27f x =的x 的值是______.. 变式3 设11,1,,32a ⎧⎫∈-⎨⎬⎩⎭,则使函数y x α=为奇函数且定义域为R 的所有α的值为( ) .1,3A .1,1B - .1,3C - .1,1,3D -题型2 幂函数性质的综合应用思路提示紧扣幂函数y x α=的定义、图像、性质,特别注意它的单调性在不等式中的作用,这里注意α为奇数时,x α为奇函数,α为偶数时,x α为偶函数.例2.69已知幂函数223()()m m f x x m Z --=∈为偶函数,且在区间(0,)+∞上是减函数.(1)求函数()f x 的解析式;(2)求满足33(1)(32)mma a --+<-的a 的取值范围.分析利用函数()f x 在区间(0,)+∞上是减函数且为偶函数求m ,从而得到()f x 的解析式.解析(1)因为幂函数在区间(0,)+∞上是减函数,所以2230m m --<得 13,m m Z -<<∈又,当0m =时,2233m m --=-;当1m =时,2234m m --=-;当2m =时,2233m m --=-.又因为()f x 为偶函数,所以4()f x x -=.(2)由1m =得1133(1)(32)a a --+<-. 即113311132a a ⎛⎫⎛⎫< ⎪ ⎪+-⎝⎭⎝⎭又13y x =在R 上单调递增,故11132a a <+-,整理得 (1)(32)(23)0a a a +--<,解得23132a a <-<<或,如图所示.故a 的取值范围为23(,1)(,)32-∞-. 评注突破点为由单调性得m 的取值范围,进而验证满足偶函数的值,若从偶函数的条件入手,则不易向下转化.分类讨论时,确定分类标准,做到不重不漏.变式1 已知函数2()f x x =,设函数[]()()(21)()1g x qf f x q f x =-+-+,问是否存在实数(0)q q <,使()g x 在区间(],4-∞-上是减函数,且在区间(4,0)-上是增函数?若存在,求出q ;若不存在,请说明理由.最有效训练题1.下列函数中,既是偶函数又在(,0)-∞上是增函数的是( )43.A y x =32.B y x = 2.C y x -= 14.D y x = 2.幂函数2232()m m y x m Z --=∈的图像如图2-20所示,则m 的值为( ).1A .2B .3C.4D3.幂函数()f x 的图像经过点11(,)42A ,则它在点A 处的切线方程为( ) .4410A x y ++= .4410B x y -+= .20C x y -=.20D x y += 4.若幂函数()f x 的图像经过点13,9⎛⎫⎪⎝⎭则其定义域为( ){}.,0A x x R x ∈> {}.,0B x x R x ∈< {}.,0C x x R x ∈≠ .D R 5.设232555322,,555a b c ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则,,a b c 的大小关系是( ) .Aa c b >>.B a b c >> .C c a b >> .Db c a >> 6.设1112,1,,,,1,2,3232a ⎧⎫∈---⎨⎬⎩⎭,则使y x α=为奇函数且在(0,)+∞上单调递减的α值的个数为( ) .1A .2B .3C .4D7.已知幂函数()y f x =的图像过点(2,2),则(8)f 的值为_______.8.已知幂函数265()()m m f x x m Z -+=∈为奇函数,且在区间(0,)+∞上是减函数,则()f x 的解析式为32 231- 图 2-19_______.9.已知函数12()f x x =,且(21)(3)f x f x -<,则x 的取值范围是_______.10.设函数()1()f x x Q αα=+∈的定义域为[][],,b a a b --,其中0a b <<,若函数()f x 在区间[],a b 上的最大值为6,最小值为3,则()f x 在[],b a --上的最大值与最小值的和为_______.11.已知函数12()f x x =,给出下列命题:①若1()1x f x >>则;②若120x x <<,则2121()()f x f x x x ->-;③若120x x <<,则2112()()x f x x f x <;④若120x x <<,则1212()()22f x f x x x f ++⎛⎫< ⎪⎝⎭. 其中,所有正确命题的序号是_______.12.点在幂函数()f x 的图像上,点12,4⎛⎫- ⎪⎝⎭在幂函数()g x 的图像上,问当x 为何值时有: (1)()()(2)()()(3)()()f xg x f x g x f x g x >=<。
幂函数(1)幂函数的定义: 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限. ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴. ④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q pα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qpy x =是奇函数,若p 为奇数q 为偶数时,则qpy x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数. ⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.幂函数练习题一、选择题:1.下列函数中既是偶函数又是(,)-∞0上是增函数的是 ( )A .y x =43B .y x =32C .y x =-2D .y x =-142.函数2-=x y 在区间]2,21[上的最大值是( )A .41B .1-C .4D .4- 3.下列所给出的函数中,是幂函数的是( )A .3x y -=B .3-=xy C .32x y = D .13-=x y 4.函数34x y =的图象是( )A .B .C .D . 5.下列命题中准确的是 ( ) A .当0=α时函数αx y =的图象是一条直线 B .幂函数的图象都经过(0,0)和(1,1)点C .若幂函数αx y =是奇函数,则αx y =是定义域上的增函数 D .幂函数的图象不可能出现在第四象限 6.函数3x y =和31x y =图象满足( )A .关于原点对称B .关于x 轴对称C .关于y 轴对称D .关于直线x y =对称 7. 函数R x x x y ∈=|,|,满足( )A .是奇函数又是减函数B .是偶函数又是增函数C .是奇函数又是增函数D .是偶函数又是减函数8.如图1—9所示,幂函数αx y =在第一象限的图象,比较1,,,,,04321αααα的大小( )A .102431<<<<<ααααB .104321<<<<<ααααC .134210αααα<<<<<D .142310αααα<<<<<1α3α4α2α二、填空题:. 1.函数y x =-32的定义域是 .2.1()()f x f x -幂函数的图象过点(,则的解析式是.3.942--=a ax y 是偶函数,且在),0(+∞是减函数,则整数a 的值是 .4.函数2422-+=x x y 的单调递减区间是 .三、解答题:解答应写出文字说明.证明过程或演算步骤 1.比较下列各组中两个值大小 (1)060720880896116115353..(.)(.).与;()与--2.求证:幂函数3x y =在R 上为奇函数且为增函数.3.下面六个幂函数的图象如图所示,试建立函数与图象之间的对应关系..6543212132323123---======x y x y x y x y x y x y );();()(;);();()((A ) (B ) (C ) (D ) (E ) (F )巩固训练 一、选择题1.已知集合{}{}2,2,1==N M ,则N M 等于( ) A .{}2,1 B .{}1 C .{}2 D .22.下列函数中,值域是()+∞,0的函数是( ) A .3x y = B .4x y = C .2-=x y D .31-=xy3.函数11-=x y 的定义域是( ) A .()+∞,1 B .[)+∞,1 C .()1,∞- D . ()()+∞∞-,11, 4.二次函数12+-=x y 的单调递减区间是( )A .(]0,∞-B .[)+∞,1C .(]1,-∞-D .[)+∞,0 5.函数3)(x x f -=的图象( )A .关于直线x y =对称B .关于x 轴对称C .关于原点对称D .关于y 轴对称 6.幂函数)(Q n x y n∈=的图象一定经过点( )A .()0,0B .()1,1C .()1,1--D .()1,0 7.已知{}512,>-==x x A R I ,则A =( )A .{}3≤x xB .{}2-≥x xC .{}32≤≤-xD .{}32≤≤-x x 8.若一元二次不等式0122<--px x 的解集是{}q x x <<-2,则p 的值是( ) A .不能确定 B .4 C .-4 D .8 10.函数)1(1≥--=x x y 的反函数是( ) A .)(12R x x y ∈+= B .)0(12>+=x x y C .)0(12≤+=x x y D .)0(12≤+-=x x y11.已知)(x f 是定义在R 上的偶函数,且在[)+∞,0上单调递减,则( ) A .)10()()3(f f f <-<-π B .)3()()10(-<-<f f f π C .)10()3()(f f f <-<-π D .)()3()10(π-<-<f f f 12.已知点()1,2+-b b a 与()b a 2,2+-关于直线x y =对称,则这两点之间的距离是( )A .不能确定B .314C .213D .21713.若不等式012<--kx kx 的解集是R ,则k 的取值范围是( ) A .04<<-k B .04≤<-k C .4-<k 或0>k D .4-<k 或0≥k 14.已知)(x f 是奇函数,当0>x 时,其解析式1)(3++=x x x f ,则当0<x 时,)(x f 的解析式是( )A .13-+x x B .13---x x C .13+-x x D .13+--x x 二、填空题15.设函数)(x f 的定义域是{}10≤≤x x ,则)12(-x f 的定义域是___________ 18.已知幂函数)(x f 的图象经过()2,2 ,则)9(f =___________19.已知函数m x x f a+=)(的图象经过点()3,1 ,又其反函数图象经过点()2,10,则)(x f 的解析式为___________20.已知奇函数)(x f 在区间[]5,2上是减函数,且最小值为5-,则)(x f 在区间[]2,5--上的最大值是___________ 21.满足条件{}{}3,2,12,1⊆⊆M 的集合M的个数是___________个.22.函数x y --=11的反函数的值域是___________ 三、解答题23.已知{}⎭⎬⎫⎩⎨⎧>-=≤--=2,0822m m x x B x x x A ,若φ=B A ,求m 的取值范围。
幂函数知识点总结幂函数是高中数学中的一个重要概念,它在数学的各个领域中都有着广泛的应用。
从初中开始,我们就接触到了简单的幂函数,随着学习的深入,我们逐渐掌握了更多关于幂函数的知识。
在本文中,我们将对幂函数的相关概念、性质和应用进行总结和探讨。
1. 幂函数的定义和表示方式幂函数是指以一个常数为底数,自变量为指数的函数。
一般表示为:f(x) = a^x,其中a为常数,x为自变量,f(x)为函数值。
2. 幂函数的基本性质2.1 幂函数的奇偶性与增减性:当底数a为正数且不等于1时,幂函数f(x) = a^x在定义域内是奇函数;当底数a为负数时,幂函数f(x) = a^x是偶函数。
当底数a大于1时,幂函数是增函数,当底数a在(0,1)之间时,幂函数是减函数。
2.2 幂函数的单调性:当底数大于1时,幂函数是递增的;当底数小于1时,幂函数是递减的。
2.3 幂函数的相关性质:a^0=1,a^1=a,a^m * a^n = a^(m+n),(a^m)^n = a^(m*n),(a^m)/(a^n)=a^(m-n),(a/b)^n=a^n/b^n。
3. 幂函数图像和特征幂函数的图像具有一些独特的特征,这在解析题或者问题求解时具有重要意义。
3.1 幂函数的渐近线:当底数大于1时,幂函数的图像在y轴上有一个水平渐近线;当底数小于1时,幂函数的图像在x轴上有一个水平渐近线。
3.2 幂函数的特殊点:当底数大于1时,幂函数的图像经过点(0,1);当底数小于1时,幂函数的图像经过点(0,1)和点(1,a)。
3.3 幂函数的拐点:当幂函数的底数a大于1时,图像经过点(1,a)并且有一个拐点;当底数a小于1时,图像经过点(1,a)但没有拐点。
4. 幂函数的应用幂函数在实际问题的解决中有着广泛的应用,以下是一些典型的应用场景:4.1 音乐和声音强度的计算:声音的强度与音源与听者距离的幂函数关系密切,通过对幂函数的建模和计算,可以获得声音强度的变化规律。
幂函数及其性质
相关知识点:
1.幂函数的定义
一般地,函数y =x α叫做幂函数,其中x 是自变量,α是常数. 2.幂函数的性质
(1). 恒过点(1,1),且不过第四象限.
(2). 当α>0时,幂函数在(0,+∞)上都是增函数;当α<0时,幂函数在(0,+∞)上都是减函数.
( 3). 在第一象限内,直线x =1的右侧,图象由上到下,相应的指数由大变小. (4).当α为偶数,y =x α是偶函数;当α为奇数,y =x α是奇函数。
基础训练:
1. 下列函数是幂函数的是( )
A .y =5x
B .y =x 5
C .y =5x
D .y =(x +1)3
2.已知函数y =(m 2+2m -2)x m +
2+2n -3是幂函数,则m=________,n=_________. 3.已知幂函数f (x )=x α
的图象经过点(9,3),则f (100)=________. 4. 下列幂函数在(-∞,0)上为减函数的是( )
A .y =x
B .y =x 2
C .y =x 3
D .y =x 12
5. 下列函数中,定义域为R 的是( )
A .y =x -2
B .y =x 12
C .y =x 2
D .y =x -
1 6. 函数y =x 53
的图象大致是( )
7. 下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( )
A .y =x -2
B .y =x
-1
C .y =x 2
D .y =x 1
3
8. 函数y =x -
2在区间[12
,2]上的值域为________.
9. 设α∈{-1,1,12,3},则使y =x α
的定义域为R 且为奇函数的所有α的值组成的
集合为________.
例题精析:
例1.如图,图中曲线是幂函数y =x α
在第一象限的大致图象.已知α取-2,-12,12,
2四个值,则相应于曲线C 1,C 2,C 3,C 4的α的值依次为______________
变式训练:
幂函数y =x
-1
及直线y =x ,y =1,x =1将平面直角坐标系的第一象限分成八个“卦
限”:①、②、③、④、⑤、⑥、⑦、⑧(如图所示),那么幂函数y =x 12
的图象经过的“卦限”是___________.
例2.比较下列各组数的大小:
(1)3-52和3.1-52; (2)-8-78和-(19
)7
8;
(3)(-23)-23和(-π6)-23; (4)4.125,3.8-23和(-1.9)-3
5
.
变式训练:
用“>”或“<”填空:
(1)(23)12________(34)12
;(2)(-23)-1________(-35)-1;(3)(-2.1)3
7________(-2.2)-37
.
例3已知幂函数f (x )=(t 3-t +1)x 1
2(1-4t -t 2)是偶函数,且在(0,+∞)上为增函数,求
函数解析式.
变式训练:
若函数f (x )=(m 2-m -1)x -m +1
是幂函数,且在x ∈(0,+∞)上是减函数,求实数m 的
取值范围.
课后作业:
1. 若幂函数f (x )的图象经过点(2,14),则f (1
2
)=________.
2.设α∈{-1,1,12,3},则使幂函数y =x α
的定义域为R 的所有α的值为_________.
3. 幂函数y =f (x )的图象经过点(2,1
8),则满足f (x )=-27的x 值等于________.
4. 函数y =a x -2(a >0且a ≠1,-1≤x ≤1)的值域是[-5
3,1],则实数a =__________
5. 比较下列各组中两个值的大小:
(1)1.53
5
与1.635
; (2)0.61.3与0.71.3; (3)3.5-23与5.3-23; (4)0.18-0.3与0.15-
0.3.
6. 设a =(25)35,b =(25)25
,c =(35)25,则a ,b ,c 的大小关系是_______________
7. 已知函数y =x 2
3
. (1)求定义域; (2)判断奇偶性;
(3)已知该函数在第一象限的图象如图所示,试补全图象,并由 图象确定单调区间.
8.已知幂函数y =x 3m -
9(m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数值随x 的增大而减小,求满足(a +1)-m 3<(3-2a )-m
3
的a 的取值范围.
9. 点(2,2)与点(-2,-1
2)分别在幂函数f (x ),g (x )的图象上,问当x 为何值时,有
(1)f (x )>g (x );(2)f (x )=g (x );(3)f (x )<g (x )?。