材料成型工艺
- 格式:doc
- 大小:2.32 MB
- 文档页数:12
材料成型工艺材料成型工艺是制备各种产品的关键步骤之一。
通过合理选择和应用不同的成型工艺,可以使原材料得以变形和固化,最终得到各种形状的制品。
本文将对材料成型工艺进行探讨,包括其定义、分类、应用以及未来发展方向。
一、定义材料成型工艺是将原材料进行物理或化学变化以实现形状、尺寸和性能的转变的过程。
它涉及到多种工艺手段,如挤压、注塑、压铸、锻造等。
不同的材料和产品需要采用不同的成型工艺来满足其特定的需求。
二、分类根据材料的性质和成型方式的不同,材料成型工艺可以分为热成型和冷成型两大类。
1. 热成型热成型是指在制备过程中需要加热原材料使其达到易变形状态的成型工艺。
其中,锻造是最常见的热成型工艺,它通过在高温下对金属进行力量变形,从而改变其形状和内部组织结构。
此外,还有热挤压、热压缩等热成型工艺被广泛应用于金属、陶瓷等材料的制备过程中。
2. 冷成型冷成型是指在常温下通过机械力量对原材料进行成型的工艺。
注塑、挤压、压铸等冷成型工艺被广泛应用于塑料、橡胶等非金属材料和一些金属材料的制备过程中。
这些工艺可以将原材料加工成各种形状的制品,例如注塑成型可以制备出各种塑料制品,挤压成型可以制备出各种型材等。
三、应用材料成型工艺广泛应用于工业生产中的各个领域,包括汽车制造、电子产品、建筑材料、医疗器械等。
不同的产品对材料的成型要求不同,因此需要选择合适的工艺来满足需求。
1. 汽车制造汽车是材料成型工艺的重要应用领域之一。
汽车的车身、发动机、内饰等都需要通过成型工艺来实现制造。
例如,汽车车身常采用冷成型工艺,如压铸、冲压、注塑等;而发动机零部件则常使用热成型工艺,如锻造、炭化等。
2. 电子产品电子产品的制造离不开材料成型工艺。
电子元件常采用微成型工艺制备,如电路板的印制、集成电路的封装等。
这些工艺要求高精度、高质量的成型,以满足电子产品的需求。
3. 建筑材料建筑材料的成型工艺对于房屋的稳定性和美观度起着重要作用。
例如,水泥制品常采用模压成型工艺,如砖块、管道等;金属材料则可通过锻压、挤压等工艺制备成各种型材。
材料成型原理及工艺材料成型是指将原料通过一定的工艺过程,使其获得所需形状的过程。
在材料成型中,最常见的方式包括热成型、冷成型和粉末冶金成型等。
这些成型工艺的原理和应用在各个领域都有广泛的应用。
热成型是指通过加热材料使其软化并塑性变形以达到所需形状的一种成型方法。
主要包括热压成型、热拉伸成型、热挤压成型等。
其原理是通过加热使材料达到一定的软化点或熔点,然后通过外力施加,使材料塑性变形并成型。
热成型适用于塑料、玻璃、金属等材料的成型,并且可以制造复杂形状的产品。
冷成型是通过机械力作用在室温下进行的成型方法。
冷成型主要包括挤压成型、压铸成型、冷轧成型等。
其中,冷挤压是常见的一种冷成型方式,主要应用于金属材料的成型。
其原理是通过施加机械力,使材料在室温下产生塑性变形,并达到所需形状。
具有高精度、高效率的特点。
粉末冶金成型是一种将粉末材料在一定温度下进行成型的方法。
其主要过程包括压制和烧结两个过程。
首先将粉末材料经过一定的工艺处理得到一定的物理性质,然后该粉末被用来制造一种新型的成型工艺。
原理是通过压制使粉末粒子结合,并在一定的温度下进行烧结,最终得到所需形状的产品。
其优点是可以制造复杂形状的产品,同时可以利用废料进行再利用。
在材料成型过程中,还有一些辅助工艺和辅助设备的应用,以实现更好的成型效果。
例如模具是实现材料成型的重要工具,通过对模具进行设计和制造,可以获得不同形状和尺寸的产品。
在热成型过程中,需要控制加热温度、保持时间、冷却速率等参数,以确保产品的质量。
在冷成型过程中,需要选择合适的冷却介质和冷却方式,以使产品达到所需的硬度和强度。
在粉末冶金成型过程中,需要控制压制力、压制时间和烧结温度等参数,以实现产品的致密度和力学性能。
总结起来,材料成型的原理和工艺非常丰富多样,根据不同材料和产品的要求选择合适的成型方式可以实现高效率、高质量的制造。
随着科技的进步和工艺的改进,材料成型在各个行业的应用也越来越广泛。
成型工艺的名词解释1. 引言成型工艺是指将材料经过一系列的工艺操作,通过特定的方法使其达到所需形状和尺寸的过程。
成型工艺广泛应用于制造业,是实现产品设计和生产的关键环节。
本文将对常见的成型工艺进行解释和介绍,包括注塑成型、压铸成型、挤压成型、热缩成型等。
2. 注塑成型注塑成型是一种将熔化的塑料注入到模具中,并在冷却后取出所需形状的成型工艺。
这种成型工艺常用于制造塑料制品,如塑料零件、容器和玩具等。
注塑成型具有生产效率高、制品精度高、成本相对较低等优点,因此在工业生产中得到广泛应用。
3. 压铸成型压铸成型是利用压力将熔融金属注入到模具中,冷却后取出所需形状的成型工艺。
这种成型工艺适用于制造金属制品,如汽车零件、家电外壳和工具等。
压铸成型具有生产效率高、制品强度高、尺寸精度高等特点,是制造高精度零部件的重要工艺之一。
4. 挤压成型挤压成型是通过将熔融的材料推入模具中,然后在冷却后获得所需形状的成型工艺。
这种成型工艺适用于制造具有连续性形状的材料,如管材、线材和各种型材等。
挤压成型具有生产效率高、制品尺寸稳定、成本相对较低等优势,常用于塑料、金属和橡胶等材料的成型。
5. 热缩成型热缩成型是利用热能将材料软化或熔化后,通过外加压力使其填充到模具中,并在冷却后取出所需形状的成型工艺。
这种成型工艺广泛应用于制造塑料制品,如塑料瓶、包装箱和容器等。
热缩成型具有快速、高效、成本低的特点,适用于大批量生产。
6. 流延成型流延成型是通过将熔化的材料涂敷到平板上,然后通过拉伸和冷却使其变为所需形状的成型工艺。
这种成型工艺常用于制造薄膜、纤维和片材等产品,如塑料薄膜、复合膜和涂层材料等。
流延成型具有制品尺寸稳定、生产过程简单、成本低等优势,适合大规模生产。
7. 旋转成型旋转成型是通过将熔化的材料注入到模具中,然后通过旋转模具使材料均匀附着在模具表面,并在冷却后取出所需形状的成型工艺。
这种成型工艺适用于制造中空的产品,如塑料水箱、玩具和装饰品等。
成型工艺分为哪几类成型工艺是制造工程中的重要环节,用于将材料加工成所需的形状和尺寸。
根据不同的工艺特点和操作方法,常见的成型工艺可以分为以下几类:1.塑料成型工艺塑料成型工艺是将熔融态的塑料通过一定的方法和工具形成所需的产品形状的工艺过程。
常见的塑料成型工艺包括注塑成型、挤出成型、吹塑成型、压缩成型等。
注塑成型是将熔化的塑料注入模具中,冷却后得到固态产品;挤出成型是将塑料熔化后通过挤出机挤出成型;吹塑成型是通过将熔化的塑料吹进模具中形成空心产品;压缩成型是将熔化的塑料放入模具,通过加压和冷却形成产品。
2.金属成型工艺金属成型工艺是将金属材料通过力的作用,使其发生塑性变形以得到所需形状和尺寸的工艺过程。
常见的金属成型工艺包括锻造、轧制、拉伸、冲压等。
锻造是将金属加热至一定温度后施加力使其变形成型;轧制是通过辊轧对金属进行塑性变形;拉伸是将金属材料拉伸至所需长度和形状;冲压是利用冲压模具对金属材料进行冲击和变形。
3.真空成型工艺真空成型工艺是利用真空态下的热塑性材料,将其加热软化后通过负压将其吸附成型于模具上的工艺过程。
常见的真空成型工艺包括真空吸塑成型、真空热成型等。
真空吸塑成型是将塑料片材加热至软化状态,然后用真空将其吸附在模具上形成所需形状;真空热成型是将热塑性材料加热至它的软化点,然后用真空将其吸附在模具上形成产品。
4.橡胶成型工艺橡胶成型工艺是将橡胶材料加工成所需形状和尺寸的工艺过程。
常见的橡胶成型工艺包括压模成型、浇注成型、挤出成型等。
压模成型是将橡胶材料放置于模具中,通过压力和加热使其发生塑性变形;浇注成型是将橡胶液体倒入模具中,通过固化形成所需的产品;挤出成型是将橡胶熔化后通过挤出机挤出成型。
5.粉末冶金工艺粉末冶金工艺是利用金属或非金属粉末为原料,通过成型、烧结和后处理等工艺,制备出具有一定形状和性能的产品。
常见的粉末冶金工艺包括压制成型、烧结、热处理等。
压制成型是将粉末填充至模具中,通过压力使其形成一定形状;烧结是将成型后的粉末在高温下加热使其颗粒间发生结合;热处理是对烧结后的产品进行热处理,改变其结构和性能。
材料的成型工艺性是什么材料的成型工艺性指的是材料在制备和加工过程中的可塑性和可加工性。
不同材料在成型工艺性方面的表现各不相同,主要取决于其化学和物理性质,如材料的结构、组成、硬度、熔点、熔化性能和可变形性等。
材料的成型工艺性对于制备产品的形状、尺寸、性能和质量有着重要的影响。
常见的材料成型工艺包括挤压、拉伸、成型、模压、注塑、压铸、锻压、铸造、复合加工等。
挤压工艺是将高温软化的材料通过模具挤出,形成均匀连续的截面形状,通常适用于金属和塑料等材料的加工。
它的主要特点是可以制备形状复杂、尺寸稳定、表面光滑的产品。
拉伸工艺主要适用于金属和塑料等材料,通过拉伸和应力处理使材料产生塑性变形,达到所需形状和尺寸的加工要求。
拉伸工艺可以制备出高强度、高韧性和高精度的材料产品。
成型工艺是指将金属或非金属材料加热到软化温度后,通过压力使材料填充模具空腔,冷却后形成所需产品形状和尺寸。
成型工艺适用于不同形状和尺寸的产品制备,如塑料制品、玻璃纤维制品和橡胶制品等。
模压工艺是指将预先加热软化的材料放在模具中,经过高温和高压条件下,使材料在模具中硬化成型的一种成型方法。
模压工艺适用于制备复杂、高精度和高强度要求的产品。
注塑工艺是将预先加热软化的塑料通过注射机注入模具中,经过高温和高压条件下使材料快速冷却硬化成型。
注塑工艺适用于制备各种塑料制品,如家电外壳、餐具、玩具等。
压铸工艺是将金属或合金加热至熔点后,通过注射机将液态金属注入模具中,经过冷却和固化后形成所需产品。
压铸工艺适用于制备尺寸精确、表面光滑的金属制品。
锻压工艺是将金属材料放在模具中,通过施加外力使材料发生塑性变形,达到所需形状和尺寸的加工要求,适用于制备高强度和高精度的金属制品。
铸造工艺是将液态金属或合金倒入预先制备好的模具中,经过冷却和固化后形成所需产品形状和尺寸的一种制造方法。
铸造工艺适用于制备大型、复杂形状和尺寸的金属制品。
复合加工工艺是将两种或多种材料进行复合加工,通过化学或物理方法使材料在成型过程中相互融合、吸附或粘合,形成多种材料组合的产品。
材料成型工艺技术材料成型工艺技术是指将材料通过一定的工艺方法,经过加工、成形、塑造等过程,使其达到特定的形状和性能要求的一种技术。
这种技术可以广泛应用于各个行业,如汽车、航空、电子、家电等领域。
材料成型工艺技术的发展,为各个行业提供了更多的可能性和选择。
材料成型工艺技术主要包括压力成型、热成型、造型、粉末冶金等多种方法。
其中,压力成型是一种将材料放入模具中,在给定的条件下施加一定的压力,使材料在模具内成型的方法。
这种方法适用于加工金属、塑料、陶瓷等材料。
压力成型工艺技术具有成形精度高、表面光洁度好等特点,被广泛应用于制造各种零部件。
热成型是一种通过加热材料使其变软,然后通过外界力的作用使其变形的方法。
这种方法适用于加工塑料、橡胶等材料。
热成型工艺技术能够使材料保持一定的形状稳定性,并且在加工过程中能够消除材料内部的应力,提高产品的性能。
造型是一种通过模板、模具等工具对材料进行塑造的方法。
这种方法适用于加工陶瓷、玻璃等材料。
造型工艺技术能够使材料呈现出各种复杂的形状,满足设计师的要求,并且能够提高生产效率。
粉末冶金是一种通过将金属粉末进行成型、烧结等处理,制造出具有特定形状和性能的材料的方法。
这种方法适用于生产精密零部件、高温合金等材料。
粉末冶金工艺技术能够扩大材料的应用范围,提高产品的性能。
在材料成型工艺技术中,工艺参数的控制是非常重要的。
工艺参数包括温度、压力、速度等多个方面。
通过合理控制这些参数,可以使成型产品具有更好的性能。
材料成型工艺技术的发展,对于提高产品质量、降低产品成本、增加产品种类等方面具有重要作用。
随着科技的不断进步,材料成型工艺技术也在不断创新和发展,为各行各业的发展提供更多的机会和挑战。
材料成型工艺基础
材料成型工艺是指将原材料通过一系列工艺加工操作,变成形状和尺寸符合要求、性能稳定的零件或产品的过程。
常见的材料成型工艺有:
1. 热压成型:将材料加热至一定温度,然后放入模具中进行压制成型。
常见的热压成型工艺有热挤压、热拉伸、热压铸等。
2. 冷压成型:将材料放入模具中进行压制成型,常见的冷压成型工艺有冷挤压、冷拉伸等。
3. 注塑成型:将熔化的塑料注入模具中,通过加压和冷却固化成型。
常见的注塑成型工艺有射出成型、吹塑成型、挤出成型等。
4. 粉末冶金成型:将粉末材料放入模具中,在高压下压制成型,通过烧结或烤模固化成型。
常见的粉末冶金成型工艺有烧结成型、热等静压成型、烤模成型等。
5. 造型成型:将液态、半固态或塑性的材料通过造型工具或手工造型进行成型。
常见的造型成型工艺有砂型铸造、蜡型铸造、压铸等。
以上是常见的材料成型工艺,每种工艺都有各自的特点和适用范围,应根据材料的性质、需求和经济性等因素选择适合的工艺。
材料成型工艺的概念材料成型工艺是指将原材料通过加工加热、压力施加和形状调控等方式,使其在一定条件下发生形变和变形,最终得到所需形状、尺寸和性能的工艺过程。
它是材料加工过程中不可或缺的一部分,广泛应用于工业生产中的各个领域,如航空航天、汽车制造、电子产品、建筑材料等。
材料成型工艺的核心任务是使原材料达到工程要求,并使成品具备所需的性能。
它一般包括以下几个主要步骤:原料准备、成型加工、成型模具设计与制造、工艺参数的选择与优化等。
首先,原料准备是材料成型工艺的基础,它包括原材料的选择、配比以及必要的预处理。
原材料的选择要考虑到其物理性质、化学性质、热性能等因素,以保证最终成品的质量和性能。
配比的合理性对于成型工艺的顺利进行也非常重要。
某些情况下,需要对原材料进行预处理,如洗涤、干燥、粉碎等,以提高其适应成型工艺的能力。
其次,成型加工是材料成型工艺的核心环节,它是将原材料通过机械、物理或化学手段改变其形状的过程。
常见的成型加工方式包括压力成型、热成型、注塑成型等。
压力成型是指通过施加外力使原材料变形,如铸造、锻造、挤压等。
热成型是指利用加热使原材料软化或熔化,通过模具或模具一体化设备将其成形,如吹塑、热压缩、热成型等。
注塑成型是指将熔融的塑料材料注入到模具中,在冷却固化后得到所需形状和尺寸的制品。
除了上述方式,还有很多其他的成型加工方式,如剪切、拉伸等。
第三,成型模具设计与制造是材料成型工艺中至关重要的环节。
模具是实现产品成形的关键工具,在成型加工过程中起着至关重要的作用。
模具的设计要求高度精准,能够准确实现产品的形状、尺寸和表面质量要求,同时要考虑到生产效率、模具寿命等因素。
模具的制造则需要一定的专业技术和机械设备支持,包括数控机床、电火花、线切割等。
最后,工艺参数的选择与优化是材料成型工艺的重要环节。
根据成型材料的性质,结合产品的要求和设备的条件,选择合适的工艺参数对成型工艺的稳定性和成品的质量有着至关重要的影响。
材料成型工艺课程设计一、教学目标本课程旨在让学生掌握材料成型工艺的基本知识、原理和应用,培养学生的实践能力和创新精神。
通过本课程的学习,学生应达到以下目标:1.知识目标:•了解材料成型工艺的分类、特点和应用领域。
•掌握材料成型工艺的基本原理和方法。
•熟悉常见材料的成型性能和成型工艺参数。
2.技能目标:•能够分析材料成型过程中出现的问题,并提出解决方案。
•具备一定的材料成型工艺设计和优化能力。
•能够运用所学知识进行材料成型工艺的实验操作和数据分析。
3.情感态度价值观目标:•培养学生的科学精神,提高对材料科学和工程实践的兴趣。
•培养学生的团队合作意识和沟通能力,增强集体荣誉感。
•培养学生对创新和实践的积极态度,提高解决问题的能力。
二、教学内容本课程的教学内容主要包括以下几个方面:1.材料成型工艺概述:介绍材料成型工艺的分类、特点和应用领域,让学生对材料成型工艺有一个整体的认识。
2.材料成型工艺原理:讲解材料成型工艺的基本原理,包括塑性变形、弹性变形、断裂等,使学生了解材料成型过程中的物理现象。
3.材料成型工艺方法:介绍常见的材料成型工艺方法,如铸造、锻造、焊接、热处理等,让学生掌握各种成型工艺的实施方法和注意事项。
4.材料成型性能及工艺参数:分析常见材料的成型性能,如塑性、韧性、硬度等,讲解成型工艺参数的选择和调整方法。
5.材料成型工艺实例分析:通过案例分析,使学生了解材料成型工艺在工程实际中的应用,培养学生的实践能力。
本课程采用多种教学方法,以激发学生的学习兴趣和主动性:1.讲授法:讲解材料成型工艺的基本概念、原理和工艺方法,使学生掌握相关知识。
2.讨论法:学生进行课堂讨论,培养学生的思考能力和团队合作意识。
3.案例分析法:分析实际工程案例,让学生了解材料成型工艺在实际中的应用和解决问题的方式。
4.实验法:安排材料成型工艺实验,让学生动手操作,培养学生的实践能力和实验技能。
四、教学资源为了支持教学内容和教学方法的实施,我们将使用以下教学资源:1.教材:选用权威、实用的教材,为学生提供系统、全面的知识体系。
第一次1、试说明材料成形工艺的作用。
2、分析材料成形工艺特点,并分析不同材料成形工艺中的共性技术有哪些3、论述材料成形工艺的发展趋势。
第二次1.浇注系统的基本类型有哪些各有何特点根据金属液注入型腔的不同方式,浇注系统可分为顶注式、底注式、侧注式和联合注入式4种类型。
1)顶注式浇注系统,就是指金属液从型腔顶部注入,如图1-14所示。
其优点是能使金属液由型腔下部向浇注系统部分顺序凝固,获得组织致密的铸件。
缺点是浇注时金属液容易产生飞溅、涡流,易卷入气体和夹杂物,容易使铸件产生夹渣和气孔。
2)底注式浇注系统,就是金属液平稳地从型壳的下部注入,型腔中的气体能自由地从上部逸出,有良好的出气排渣作用,浇出的铸件表面光洁,如图1-15所示。
这种形式尤其适用于浇注铜、铝等非铁合金铸件。
其缺点是底部与顶部的金属液温差大,不利于顺序凝固,需增设冒口。
3)侧注式浇注系统,就是金属液由铸型型腔侧面水平或倾斜注入,如图1-16所示。
这种方式对型壳的冲击以及排气性能都比顶注要好,整体型壳的温差比底注式小,铸件补缩效果好。
而且一根直浇道可焊多个熔模,是一种应用广泛且工艺成品率较高的浇注方式。
4)联合注入式浇注系统,就是指同时兼有上述方式中的几种,如图1-17所示。
但其结构组成复杂,仅用于尺寸较大且热节分散的精铸件。
2.什么是缩孔和缩松形成条件有何异同铸件在凝固过程中,由于合金的液态收缩和凝固收缩,往往在铸件最后凝固的部位出现孔洞。
容积大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。
1、缩孔缩孔的孔洞大而集中,缩孔的形状不规则,孔壁粗糙。
缩孔有出现在铸件外部和铸件内部两种,分别称为外缩孔和内缩孔。
外缩孔是指因金属液的凝固收缩而在铸件的外部或顶部形成的缩孔,一般在铸件上部呈漏斗状。
当铸件壁厚很厚时,有时出现在侧面或凹角处。
根据铸件的形状有所不同,漏斗状的下端有的较浅,有的一直深到铸件的内部。
一般来说,产生外缩孔的铸件其内部是致密的。
内缩孔是铸件凝固收缩时,在铸件内部产生的缩孔。
内缩孔呈不规则的粗糙孔壁,并且有凝固时产生的树枝状晶,一般为暗黑色或褐色。
内缩孔不限于铸件内部,有时在壁厚急变的拐弯处产生内缩孔,与表面相近,这时,内缩孔与外缩孔就难以区别了。
2、缩松缩松是铸件断面上出现的分散而细小的缩孔,有时借助放大镜才能发现。
铸件有缩松缺陷的部位,在气密性试验时,可能产生渗漏。
缩松的孔洞多而小,似海绵状,常出现在铸件最后凝固的部位,如在缩孔的下方或铸件截面的中央(轴线缩松)。
当铸件呈同时凝固时,特别是糊状凝固的金属(如球墨铸铁等),容易生成分散的孔洞,即缩松。
3.冒口和冷铁的作用是什么在铸件厚壁处和热节部位(即铸件上热量集中,内接圆直径较大的部位)设置冒口,是防止缩孔、缩松的有效措施。
冒口的尺寸应保证冒口比它要补缩的部位凝固得晚,并有足够的金属液供给。
采用“顺序凝固原则”,在铸件上建立一个从远离冒口的部分到冒口之间逐渐递靠近冒口的部位后凝固,冒口本身最后凝固,冷铁是用以增加铸件某一局部的冷却速度而安放在铸型内的金属激冷物。
冷铁可以帮助消除缩松,加冷铁是改变原有凝固顺序,先从冷铁处凝固,致使最后凝固处在内浇道处最好。
第三次1.简单介绍常用的特种铸造2.铸造工艺设计有哪些内容铸造工艺设计涉及零件本身工艺设计,浇注系统的设计,补缩系统的设计,出气孔的设计,激冷系统的设计,特种铸造工艺设计等。
3为什么要设分型面基本原则是什么模具分型面的设计是一个重要的设计内容,分型面选择合理,模具结构简单,塑件容易成型,并且塑件质量高。
如果分型面选择不合理,模具结构变得复杂,塑件成型困难,并且塑件质量差基本原则:。
1、为了便于塑件起模,分型面一般使塑件在开模时留在下模或动模上,且分型面应选在塑件外形的最大轮廓处。
2、选择分型面时,应尽量只采用一个与开模方向垂直的分型面,并尽量避免侧向抽芯与侧向分型。
3、对于有同轴度要求的塑件,模具设计时应将有同轴度要求的部分设计在同一模板内。
4、分型面的选择应有利于防止溢料。
当塑件在分型面上的投影面积接近于注射机的最大面积时,就有可能产生溢料。
5、分型面的选择应有利于排气。
为此,一般分型面应与熔体流动的末端重合。
第四次1.冷、热锻件图的作用及两者的关系为使零件适应锻造工艺要求而设计的图。
它是在零件图的基础上加上机械加工余量和锻造公差绘制的。
锻件图分为冷锻件图和热锻件图。
通常所说的锻件图是指冷锻件图。
冷锻件图是编制锻造工艺规程、验收锻件、设计检验夹具及机械加工卡具的依据。
热锻件图是在冷锻件图的基础上加上热胀量而设计的,它是设计、制造锻造模具及切边模的依据。
锻件图设计要考虑锻件加工余量及锻造公差、确定分模位置即分模面、模锻斜度、锻件圆角半径以及冲孔连皮等问题。
相同点:都是锻造工艺成型,产品又可以找在分模线,分模线上下有拔模角度,都有制造公差标示,产品名称。
材料,重量,要求热处理硬度等。
不同点:冷锻大部分属于精密锻造,制造公差小,拔模度角小,表面质量好,有些会有表面粗糙度要求,最好的效果是做到锻件零切削,直接使用,同样成品热锻和冷锻制造,冷锻用料最省以上。
2开式模锻的飞边槽的作用1.阻流作用即封闭住模膛,锻造时阻止金属外流,以保证充满模膛。
2.容纳多余金属。
由于毛坯尺寸和模膛尺寸的偏差及使用过程中的磨损,很难使金属毛坯的体积与模膛容积恰好相等;为了充满模膛,实践中必须使毛坯尺寸具有比模膛容积大的体积。
模锻时,多余的金属排向飞边槽形成飞边,这就可以防止由于充不满而产生废品。
3.飞边槽具有缓冲器作用,可减弱上模的打击,以防止模具的压塌和崩坯。
飞边槽的基本结构形式,飞边槽的结构分为桥部和仓部两部分。
桥部较为扁平,它的主要作用是阻流,同时有利于模锻后对飞边的切除。
3 分流降压腔的作用及设计原则第五次1.板料冲压性能指标有哪些试述冲压过程中搭边的作用冲压性能指标1)压碎值指按规定的方法测得石料抵抗压碎的能力,也是集料强度的相对指标,用以鉴定集料品质。
压碎值是对石料的标准试样在标准条件下进行加荷,测试石料被压碎后,标准筛上筛余质量的百分率。
2)磨光值( PSV )反映石料抵抗轮胎磨光作用能力的指标。
该值越大,表明集料的抗磨光性能越好。
采用加速磨光机磨光石料,并用摆式磨擦系数测定仪浊得的磨光后集料的磨擦系数。
3)冲击值( LSV )反映石料抵抗冲击荷载的能力。
该值越小,表明集料的抗冲击性能越好。
由于路表集料直接承受车轮荷载的冲击作用,这一指标对道路表层用集料非常重要。
4)磨耗值( AAV )确定石料抵抗表面磨损的能力,适用于对路面抗滑表层所用集料抵抗车轮磨耗值。
该值越小,表明集料的抗磨耗能力越好。
搭边的作用1)补偿定位误差,防止由于条料的宽度误差、送料步距误差、送料歪斜误差等原因而冲裁出残缺的废品。
2)还应保持条料有一定的强度和刚度,保证送料的顺利进行,从而提高制件质量,沿整个封闭轮廓线冲裁,使受力平衡,提高模具寿命和工件断面质量。
搭边是废料,从节省材料出发,搭边值应愈小愈好。
但过小的搭边容易挤进凹模,增加刃口磨损,降低模具寿命,并且也影响冲裁件的剪切表面质量。
一般来说,搭边值是由经验确定的。
2.普通冲裁分哪几个阶段冲裁断面分哪几个部分影响断面质量的主要因素是什么冲裁时板料的分离过程大致可分为三个阶段,分别是1:弹性变形,2:塑性变形,3:开裂分离。
2.减少弯曲回弹的措施有哪些第六次1.焊接电弧的主要物理过程是什么有哪几个区电弧是一种气体放电现象,它是带电粒子通过两电极之间气体空间的一种导电过程。
电弧有三个部分构成:阴极区、阳极区、弧柱区。
2电阻焊的本质是什么最大特点是什么电阻焊的本质:焊接电弧能有效而简便地把电能转换成焊接过程所需要的热能和机械能。
最大特点:熔核形成时,始终被塑性环包围,熔化金属与空气隔绝,冶金过程简单。
3钎焊接头形成的基本条件是什么第七次1. 简述埋弧焊焊缝形状参数的影响因素影响埋弧焊焊缝形状和尺寸的焊接工艺参数有焊接电流、电弧电压、焊接速度和焊丝直径等。
2试述金属焊接性,其影响因素有哪些金属材料在一定的焊接条件下,形成符合使用要求的完整的焊接接头的能力。
影响焊接性的主要因素是金属材料的化学成分和组织,但也与焊接工艺因素和使用条件密切相关。
研究焊接性对改进金属材料的焊接性能、研制新型焊接材料和促进焊接技术进步有着重要的意义。
3常用焊接方法有哪些焊接方法的选择原则氩弧焊 - 气焊 - 电焊 - 埋弧自动焊 - 气体保护焊 - 手工电弧焊第八次1.什么是塑料其有何优点写出五种热塑性塑料的名称及代号塑料是以单体为原料,通过加聚或缩聚反应聚合而成的高分子化合物(macromolecules),可以自由改变成分及形体样式,由合成树脂及填料、增塑剂、稳定剂、润滑剂、色料等添加剂组成。
优点:1.大部分塑料的抗腐蚀能力强,不与酸、碱反应。
2.塑料制造成本低。
3.耐用、防水、质轻。
4.容易被塑制成不同形状。
5.是良好的绝缘体。
6.塑料可以用于制备燃料油和燃料气,这样可以降低原油消耗。
五种热塑性塑料的名称及代号:聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、聚甲醛,聚碳酸酪,聚酰胺、丙烯酸类塑料、其它聚烯烃及其共聚物、聚讽、聚苯醚,氯化聚醚等都是热塑性塑料。
2.塑料收缩性如何表示影响因素有哪些塑料自模具中取出冷却到室温后,发生尺寸收缩的特性称收缩性。
由于这种收缩不仅是树脂本身的热胀冷缩造成的,而且还与各种成型因素有关,因此成型后塑件的收缩称为成型收缩。
影响收缩率的主要因素包括:1.塑料品种2.塑件结构3.模具结构4.成型工艺3. 简述热塑性塑料的注塑成型工艺过程注射成型工艺:将干燥好的塑料颗粒或粉料从料斗加入到塑料注射成型机的料筒内,经加热熔融塑化,然后经柱塞(或螺杆)把熔融塑料在高压下注入温度较低的模具内,冷却定型后打开模具即得相应的制品。
注射成型是一个连续的过程,这一过程实际上可分为原料干燥、加料、塑料熔融、注射、保压、制件冷却、制件脱模、制件修整等几个步骤。
第九次1、什么是粉末冶金与生产陶瓷有相似的地方,均属于粉末烧结技术,因此,一系列粉末冶金新技术也可用材料的发展中起着举足轻重的作用。
2、粉末冶金成形技术中粉末的制备方法有哪几种并对其中一种进行详细描述。
从过程的实质来看,现有制粉方法大体上可归纳为两大类,即机械法和物理化学法。
机械法是将原材料机械的粉碎,而化学成分基本上不发生变化的工艺过程;物理化学法是借助化学的或物理的作用,改变原料的化学成分或聚集状态而获得粉末的工艺过程,粉末的生产方法很多从工业规模而言,应用最广泛的汉斯还原法、雾化法和电解法有些方法如气相沉液态使金属与合金或者金属化合物转变成粉末方法包括:(1)从液态金属与合金制取与合金粉末的有雾化法(2)从金属盐溶液置换和还原制取金属合金以及包覆粉末的有置换法、溶液氢还原法;从金属熔盐中沉淀制取金属粉末的有熔盐陈定法;从辅助金属浴中析出制取金属化合物粉末的有金属浴法。