2018届高考数学理科全国通用一轮总复习习题:第二章 函数、导数及其应用 课时提升作业 十一 2-8 含答案
- 格式:doc
- 大小:390.24 KB
- 文档页数:8
(全国通用)2018高考数学一轮复习第2章函数、导数及其应用热点探究训练1 导数应用中的高考热点问题教师用书文新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用)2018高考数学一轮复习第2章函数、导数及其应用热点探究训练1 导数应用中的高考热点问题教师用书文新人教A版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用)2018高考数学一轮复习第2章函数、导数及其应用热点探究训练1 导数应用中的高考热点问题教师用书文新人教A版的全部内容。
热点探究训练(一)导数应用中的高考热点问题1.(2015·重庆高考)设函数f(x)=错误!(a∈R).(1)若f(x)在x=0处取得极值,确定a的值,并求此时曲线y=f(x)在点(1,f(1))处的切线方程;(2)若f(x)在[3,+∞)上为减函数,求a的取值范围.[解](1)对f(x)求导得f′(x)=6x+a e x-3x2+ax e xe x2=错误!。
2分因为f(x)在x=0处取得极值,所以f′(0)=0,即a=0.当a=0时,f(x)=错误!,f′(x)=错误!,故f(1)=错误!,f′(1)=错误!,从而f(x)在点(1,f(1))处的切线方程为y-错误!=错误!(x-1),化简得3x-e y=0.5分(2)由(1)知f′(x)=错误!,令g(x)=-3x2+(6-a)x+a,由g(x)=0解得x1=错误!,x2=错误!.7分当x<x1时,g(x)〈0,即f′(x)〈0,故f(x)为减函数;当x1〈x〈x2时,g(x)〉0,即f′(x)>0,故f(x)为增函数;当x>x2时,g(x)〈0,即f′(x)〈0,故f(x)为减函数。
2018年高考数学一轮复习 第二章 函数、导数及其应用 课时达标16导数与函数的综合问题 理[解密考纲]本考点主要以基本初等函数为载体,综合应用函数、导数、方程、不等式等知识,常考查恒成立问题、存在性问题或者与实际问题相结合讨论最优解等问题,综合性较强,常作为压轴题出现.三种题型均有出现,以解答题为主,难度较大.1.已知函数f (x )=x 2-ax -a ln x (a ∈R ). (1)若函数f (x )在x =1处取得极值,求a 的值; (2)在(1)的条件下,求证:f (x )≥-x 33+5x 22-4x +116.解析:(1)f ′(x )=2x -a -ax,由题意可得f ′(1)=0,解得a =1.经检验,a =1时f (x )在x =1处取得极值,所以a =1.(2)由(1)知,f (x )=x 2-x -ln x ,令g (x )=f (x )-⎝ ⎛⎭⎪⎫-x 33+5x22-4x +116=x 33-3x 22+3x-ln x -116,由g ′(x )=x 2-3x +3-1x =x 3-1x -3(x -1)= x -13x(x >0),可知g (x )在(0,1)上是减函数,在(1,+∞)上是增函数,∴g (x )min =g (1)=13-32+3-116=0,∴当x >0时,g (x )≥g (1)=0,于是f (x )≥-x 33+5x 22-4x +116.2.设函数f (x )=x 2+ln(x +1),其中b ≠0.证明:对于任意的x 1,x 2∈[1,+∞),且x 1≠x 2,都有f x 1 -f x 2 x 1-x 2>52.证明:f (x )=x 2+ln(x +1),令h (x )=f (x )-52x =x 2+ln(x +1)-52x (x ≥1),h ′(x )=2x +1x +1-52=4x +3 x -12 x +1,当x ≥1时,h ′(x )≥0,所以函数h (x )在[1,+∞)上是增函数. 由已知,不妨设1≤x 1<x 2,则h (x 1)<h (x 2), f (x 1)-52x 1<f (x 2)-52x 2,即f x 1 -f x 2 x 1-x 2>52.3.(2015·北京卷)设函数f (x )=x 22-k ln x ,k >0.(1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.解析:(1)由f (x )=x 22-k ln x (k >0),得x >0且f ′(x )=x -k x =x 2-kx.由f ′(x )=0,解得x =k (负值舍去).f (x )与f ′(x )在区间(0,+∞)上的情况如下:所以,f (x )单调递增区间是(k ,+∞).f (x )在x =k 处取得极小值f (k )=k 1-ln k2.(2)证明:由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k 1-ln k2,因为f (x )存在零点,所以k 1-ln k 2≤0,从而k ≥e.当k =e 时,f (x )在区间(1,e)上单调递减,且f (e)=0, 所以x =e 是f (x )在区间(1,e]上的唯一零点.当k >e 时,f (x )在区间(1,e]上单调递减,且f (1)=12>0,f (e)=e -k2<0,所以f (x )在区间(1,e]上仅有一个零点.综上可知,若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.4.(2017·河南新乡调研)已知函数f (x )=x -(a +1)ln x -a x (a ∈R ),g (x )=12x 2+ex-x e x.(1)当x ∈[1,e]时,求f (x )的最小值;(2)当a <1时,若存在x 1∈[e ,e 2],使得对任意的x 2∈[-2,0],f (x 1)<g (x 2)恒成立,求a 的取值范围.解析:(1)f (x )的定义域为(0,+∞),f ′(x )= x -1 x -ax2. ①当a ≤1时,x ∈[1,e],f ′(x )≥0,f (x )为增函数, 则f (x )min =f (1)=1-a .②当1<a <e 时,x ∈[1,a ]时,f ′(x )≤0,f (x )为减函数;x ∈[a ,e]时,f ′(x )≥0,f (x )为增函数,则f (x )min =f (a )=a -(a +1)ln a -1.③当a ≥e 时,x ∈[1,e]时,f ′(x )≤0,f (x )在[1,e]上为减函数,则f (x )min =f (e)=e -(a +1)-ae.综上,当a ≤1时,f (x )min =1-a ; 当1<a <e 时,f (x )min =a -(a +1)ln a -1; 当a ≥e 时,f (x )min =e -(a +1)-ae.(2)由题意知:f (x )(x ∈[e ,e 2])的最小值小于g (x )(x ∈[-2,0])的最小值.由(1)知f (x )在[e ,e 2]上单调递增,f (x )min =f (e)=e -(a +1)-ae,g ′(x )=(1-e x )x .x ∈[-2,0]时,g ′(x )≤0,则g (x )为减函数.所以g (x )min =g (0)=1.所以e -(a +1)-ae <1,即a >e 2-2ee +1.所以a 的取值范围为⎝ ⎛⎭⎪⎫e 2-2e e +1,1.5.(2016·辽宁调研)已知函数f (x )=ax -ln x ,x ∈(0,e],g (x )=ln xx,其中e 是自然对数的底数,a ∈R .(1)当a =1时,求f (x )的极值,并证明|f (x )|>g (x )+12恒成立;(2)是否存在实数a ,使f (x )的最小值为3?若存在,求出a 的值,若不存在,请说明理由.解析:(1)当a =1时,f (x )=x -ln x ,∴f ′(x )=1-1x =x -1x,∴当0<x <1时,f ′(x )<0,此时f (x )单调递减;当1<x ≤e 时,f ′(x )>0,此时f (x )单调递增.∴f (x )的极小值为f (1)=1,∴f (x )在(0,e]上的最小值为1. 令h (x )=g (x )+12=ln x x +12,则h ′(x )=1-ln x x 2,当0<x <e 时,h ′(x )>0,则h (x )在(0,e]上单调递增, ∴h (x )max =h (e)=1e +12<12+12=1=f (x )min .∴|f (x )|>g (x )+12恒成立.(2)假设存在实数a ,使f (x )=ax -ln x ,x ∈(0,e],有最小值3,f ′(x )=a -1x =ax -1x.①当a ≤0时,f (x )在(0,e]上单调递减,f (x )min =f (e)=a e -1=3,∴a =4e(舍去),∴a ≤0时,不存在实数a 使f (x )的最小值为3.②当0<1a<e 时,f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递减,在⎝ ⎛⎦⎥⎤1a ,e 上单调递增,∴f (x )min =f ⎝ ⎛⎭⎪⎫1a =1+ln a =3,∴a =e 2,满足条件.③当1a ≥e 时,f (x )在(0,e]上单调递减,f (x )min =f (e)=a e -1=3,∴a =4e (舍去),∴1a≥e 时,不存在实数a 使f (x )的最小值为3.综上,存在实数a =e 2,使得当x ∈(0,e]时,f (x )有最小值3.6.某商店经销一种奥运纪念品,每件产品成本为30元,且每卖出一件产品,需向税务部门上交a 元(a 为常数,2≤a ≤5)的税收,设每件产品的日售价为x 元(35≤x ≤41),根据市场调查,日销售量与e x(e 为自然对数的底数)成反比,已知每件产品的日售价为40元时,日销售量为10件.(1)求商店的日利润L (x )元与每件产品的日售价x 元的函数关系式; (2)当每件产品的日售价为多少元时该商店的日利润L (x )最大,说明理由. 解析:(1)设日销售量为k e x 件,则ke 40=10,∴k =10e 40.则日销售量为10e40e x 件,每件利润为(x -30-a )元,则日利润L (x )=10e 40·x -30-aex(35≤x ≤41).(2)L ′(x )=10e 40·31+a -x ex(35≤x ≤41). ①当2≤a ≤4时,33≤31+a ≤35,L ′(x )≤0,L (x )在[35,41]上是减函数.∴当x =35时,L (x )的最大值为10(5-a )e 5.②当4<a ≤5时,35<31+a ≤36,由L ′(x )=0得x =a +31, 当x ∈(35,a +31)时,L ′(x )>0,L (x )在(35,a +31)上是增函数. 当x ∈(a +31,41]时,L ′(x )<0,L (x )在(a +31,41]上是减函数. ∴当x =a +31时,L (x )的最大值为10e9-a.综上可知,当2≤a ≤4时,日售价为35元可使日利润L (x )最大,当4<a ≤5时,日售价为a +31元可使日利润L (x )最大.7.已知函数f (x )=x 3+x ,∀m ∈[-2,2],f (mx -2)+f (x )<0恒成立,求实数x 的取值范围.解析:∵f ′(x )=3x 2+1>0恒成立,∴f (x )在R 上为增函数.又f (-x )=-f (x ),故f (x )为奇函数,由f (mx -2)+f (x )<0,得f (mx -2)<-f (x )=f (-x ), ∴mx -2<-x 即xm +x -2<0对∀m ∈[-2,2]恒成立. 记g (m )=xm +x -2,m ∈[-2,2],则⎩⎪⎨⎪⎧g -2 =-2x +x -2<0,g 2 =2x +x -2<0,解得-2<x <23,即x ∈⎝⎛⎭⎪⎫-2,23. 8.(2015·全国卷Ⅱ)设函数f (x )=e mx+x 2-mx .(1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e-1,求m 的取值范围. 解析:(1)证明:f ′(x )=m (e mx-1)+2x .若m ≥0,则当x ∈(-∞,0)时,e mx-1≤0,f ′(x )<0; 当x ∈(0,+∞)时,e mx-1≥0,f ′(x )>0.若m <0,则当x ∈(-∞,0)时,e mx-1>0,f ′(x )<0; 当x ∈(0,+∞)时,e mx-1<0,f ′(x )>0.所以,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)由(1)知,对任意的m ,f (x )在[-1,0]单调递减,在[0,1]单调递增,故f (x )在x =0处取最小值.所以对于任意x 1,x 2∈[-1,1],|f (x 1)-f (x 2)|≤e -1的充要条件是⎩⎪⎨⎪⎧f 1 -f 0 ≤e-1,f -1 -f 0 ≤e-1,即⎩⎪⎨⎪⎧e m-m ≤e-1,e -m+m ≤e-1.①设函数g (t )=e t-t -e +1,则g ′(t )=e t-1. 当t <0时,g ′(t )<0;当t >0时,g ′(t )>0. 故g (t )在(-∞,0)单调递减,在(0,+∞)单调递增. 又g (1)=0,g (-1)=e -1+2-e <0, 故当t ∈[-1,1]时,g (t )≤0.当m ∈[-1,1]时,g (m )≤0,g (-m )≤0,即①式成立; 当m >1时,由g (t )的单调性,g (m )>0,即e m-m >e -1; 当m <-1时,g (-m )>0,即e -m+m >e -1.综上,m的取值范围是[-1,1].。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时提升作业十一函数与方程(25分钟60分)一、选择题(每小题5分,共25分)1.若函数f(x)=ax+b有一个零点是2,那么函数g(x)=bx2-ax的零点是( )A.0,2B.0,错误!未找到引用源。
C.0,-错误!未找到引用源。
D.2,-错误!未找到引用源。
【解析】选C.由题意知2a+b=0,即b=-2a.令g(x)=bx2-ax=0得x=0或x=错误!未找到引用源。
=-错误!未找到引用源。
.2.(2016·成都模拟)若函数f(x)的零点与g(x)=4x+2x-2的零点之差的绝对值不超过0.25,则f(x)可以是( )A.f(x)=8x-2B.f(x)=(x+1)2C.f(x)=e x-1D.f(x)=ln错误!未找到引用源。
【解析】选A.因为g(0)=-1<0,g错误!未找到引用源。
=1>0,所以g(0)·g错误!未找到引用源。
<0,所以g(x)的零点在错误!未找到引用源。
内,因为f(x)=8x-2的零点为错误!未找到引用源。
,故选A.3.函数f(x)=错误!未找到引用源。
-cosx在上的零点个数为( )A.4B.5C.6D.7【解析】选C.由f(x)=xcosx2=0,得x=0或cosx2=0.又x∈,所以x2∈.由于cos错误!未找到引用源。
=0(k∈Z),而在错误!未找到引用源。
+kπ(k∈Z)的所有取值中,只有错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
满足在内,故零点个数为1+5=6.4.已知三个函数f(x)=2x+x,g(x)=x-2,h(x)=log2x+x的零点依次为a,b,c,则( )A.a<b<cB.a<c<bC.b<a<cD.c<a<b【解析】选B.由于f(-1)=错误!未找到引用源。
-1=-错误!未找到引用源。
<0,f(0)=1>0,且f(x)为R上的增函数.故f(x)=2x+x的零点a∈(-1,0).因为g(2)=0,所以g(x)的零点b=2;因为h错误!未找到引用源。
=-1+错误!未找到引用源。
=-错误!未找到引用源。
<0,h(1)=1>0, 且h(x)为(0,+∞)上的增函数,所以h(x)的零点c∈错误!未找到引用源。
,因此a<c<b.【一题多解】本题还可以采用如下方法:选B.由f(x)=0得2x=-x;由h(x)=0得log2x=-x,作出函数y=2x,y=log2x和y=-x的图象(如图).由图象易知a<0,0<c<1,而b=2,故a<c<b.5.(2016·烟台模拟)已知函数f(x)=错误!未找到引用源。
(a∈R),若函数f(x)在R上有两个零点,则a的取值范围是( )A.(-∞,-1)B.(-∞,-1]C.【解题提示】由x>0时有一解,得出2x-a=0在(-∞,0]上有解,从而确定a的取值范围.【解析】选D.因为当x>0时,f(x)=2x-1,由f(x)=0得x=错误!未找到引用源。
.所以要使f(x)在R上有两个零点,则必须2x-a=0在(-∞,0]上有解.又当x∈(-∞,0]时,2x∈(0,1].故所求a的取值范围是(0,1].二、填空题(每小题5分,共15分)6.(2016·潍坊模拟)已知函数f(x)=错误!未找到引用源。
x3-bx2+c(b,c为常数),当x=2时,函数f(x)取得极值,若函数f(x)只有三个零点,则实数c的取值范围是.【解析】因为f(x)=错误!未找到引用源。
x3-bx2+c,所以f′(x)=x2-2bx,当x=2时,f(x)取得极值,得b=1,所以f′(x)=x2-2x=x(x-2),则f(x)在(-∞,0),(2,+∞)上单调递增,在(0,2)上单调递减,其大致图象如图所示则错误!未找到引用源。
解得0<c<错误!未找到引用源。
.答案:错误!未找到引用源。
7.已知函数f(x)=错误!未找到引用源。
若函数g(x)=f(x)-m有3个零点,则实数m的取值范围是.【解析】画出f(x)=错误!未找到引用源。
的图象,如图.由于函数g(x)=f(x)-m有3个零点,结合图象得:0<m<1,即m∈(0,1).答案:(0,1)8.已知函数f(x)=log a x+x-b(a>0,且a≠1),当2<a<3<b<4时,函数f(x)的零点x0∈(n,n+1),n ∈N*,则n= .【解析】在平面直角坐标系中分别作出y=log2x,y=log3x及y=3-x,y=4-x的图象,如图所示,显然所有可能的交点构成图中的阴影区域(不含边界),其中各点的横坐标均落于(2,3)之内,又因为x0∈(n,n+1),n∈N*,故n=2.答案:2三、解答题(每小题10分,共20分)9.已知函数f(x)=4x+m·2x+1有且仅有一个零点,(1)求m的取值范围.(2)求函数的零点.【解析】(1)因为f(x)=4x+m·2x+1有且仅有一个零点,即方程(2x)2+m·2x+1=0仅有一个实根.设2x=t(t>0),则t2+mt+1=0.当Δ=0时,即m2-4=0,所以m=-2时,t=1;m=2时,t=-1(不合题意,舍去).所以2x=1,x=0符合题意.当Δ>0时,即m>2或m<-2时,t2+mt+1=0有两正或两负根,即f(x)有两个零点或没有零点.所以这种情况不符合题意.综上可知:当m=-2时,f(x)有唯一零点.(2)由(1)可知,该函数的零点为x=0.10.(2016·安庆模拟)已知二次函数f(x)=x2-16x+q+3.(1)若函数在区间上存在零点,求实数q的取值范围.(2)是否存在常数t(t≥0),当x∈时,f(x)的值域为区间D,且区间D的长度为12-t(视区间的长度为b-a).【解析】(1)因为函数f(x)=x2-16x+q+3的对称轴是x=8,所以f(x)在区间上是减函数.因为函数在区间上存在零点,则必有错误!未找到引用源。
即错误!未找到引用源。
所以-20≤q≤12.(2)因为0≤t<10,f(x)在区间上是减函数,在区间上是增函数,且对称轴是x=8.①当0≤t≤6时,在区间上,f(t)最大,f(8)最小,所以f(t)-f(8)=12-t,即t2-15t+52=0,解得t=错误!未找到引用源。
,所以t=错误!未找到引用源。
;②当6<t≤8时,在区间上,f(10)最大,f(8)最小,所以f(10)-f(8)=12-t,解得t=8;③当8<t<10时,在区间上,f(10)最大,f(t)最小,所以f(10)-f(t)=12-t,即t2-17t+72=0,解得t=8,9,所以t=9.综上可知,存在常数t=错误!未找到引用源。
,8,9满足条件.(20分钟40分)1.(5分)(2015·天津模拟)函数f(x)=|tanx|,则函数y=f(x)+log4x-1与x轴的交点个数是( )A.1B.2C.3D.4【解析】选C.函数y=f(x)+log4x-1与x轴的交点个数为方程f(x)+log4x-1=0的解的个数,即方程f(x)=-log4x+1解的个数,也即函数y=f(x),y=-log4x+1的图象交点个数,作出两个函数图象可知,它们有3个交点.2.(5分)(2016·聊城模拟)若f(x)=错误!未找到引用源。
且关于x的方程f(x)=a恰有三个互不相等的实数根x1,x2,x3,则x1x2x3的取值范围是( )A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
【解析】选A.f(x)=错误!未找到引用源。
如图所示,当x>0时,f(x)=-x2+x=-错误!未找到引用源。
+错误!未找到引用源。
≤错误!未找到引用源。
.当x≤0时,f(x)=-2x≥0,当直线y=a与曲线y=f(x)有三个公共点时,0<a<错误!未找到引用源。
,设x1<x2<x3,则x2x3=a,且x1=-错误!未找到引用源。
,所以x1x2x3=-错误!未找到引用源。
∈错误!未找到引用源。
.3.(5分)已知f(x)是定义在R上且周期为3的函数,当x∈上有10个零点(互不相同),则实数a的取值范围是.【解析】作出函数y=f(x)在上的图象,f(-3)=f (-2)=f(-1)=f(0)=f(1)=f(2)=f(3)=f(4)=错误!未找到引用源。
,观察图象可得0<a<错误!未找到引用源。
.答案:错误!未找到引用源。
4.(12分)(2016·泰安模拟)已知二次函数f(x)的最小值为-4,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R}.(1)求函数f(x)的解析式.(2)求函数g(x)=错误!未找到引用源。
-4lnx的零点个数.【解析】(1)因为f(x)是二次函数,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R}, 所以f(x)=a(x+1)(x-3)=ax2-2ax-3a,且a>0.所以f(x)min=f(1)=-4a=-4,a=1.故函数f(x)的解析式为f(x)=x2-2x-3.(2)因为g(x)=错误!未找到引用源。
-4lnx=x-错误!未找到引用源。
-4lnx-2(x>0),所以g′(x)=1+错误!未找到引用源。
-错误!未找到引用源。
=错误!未找到引用源。
.令g′(x)=0,得x1=1,x2=3.当x变化时,g′(x),g(x)的取值变化情况如下:当0<x≤3时,g(x)≤g(1)=-4<0.又因为g(x)在(3,+∞)上单调递增,因而g(x)在(3,+∞)上只有1个零点.故g(x)在(0,+∞)上只有1个零点.5.(13分)已知函数f(x)=-x2+2ex+m-1,g(x)=x+错误!未找到引用源。
(x>0).(1)若y=g(x)-m有零点,求m的取值范围.(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.【解析】(1)因为g(x)=x+错误!未找到引用源。
≥2错误!未找到引用源。
=2e,等号成立的条件是x=e,故g(x)的值域是[2e,+∞),因而只需m≥2e,则y=g(x)-m就有零点.【一题多解】本题还可以采用以下方法:作出g(x)=x+错误!未找到引用源。