实验一 遥感数字图像处理基础实验报告(班级-学号-姓名)
- 格式:doc
- 大小:40.00 KB
- 文档页数:3
遥感数字图像处理教程实习报告《数字图像处理》课程实习报告( 2011 - 2012学年第 1 学期)专业班级:地信09-1班姓名:梁二鹏学号:310905030114指导老师:刘春国----------------------------------------------实习成绩:教师评语:教师签名:年月日实习一:图像彩色合成实习一、实验目的在学习遥感数字图像彩色合成基础上,应用所学知识,基于遥感图像处理软件ENVI进行遥感数字图像彩色合成。
二、实验内容彩色合成:利用TM图像can_tmr.img,实现灰度图像的密度分割、多波段图像的真彩色合成、假彩色合成和标准假彩色合成。
三、实验步骤1、显示灰度图像主要步骤:1、打开ENVI4.7,单击FILE菜单,在下拉菜单中选择open image file 选项,然后在弹出的对话框中选择can_tmr.img文件,单击打开。
2、在可用波段列表对话框中,选中某一波段图像,选中gray scale单选按钮,单击LOAD BAND按钮,显示一幅灰度图像。
3、在可用波段列表对话框中,选择其他某一波段图像,进行显示。
4、利用可用波段列表中的display按钮,同时有多个窗口显示多个波段图像。
5、链接显示。
利用图像窗口tool菜单下的link子菜单link display实现多图像的链接显示。
如图所示:红色方框。
6、使用tool菜单下的Cursor Location/value和pixel Locator功能在确定像素的值和位置。
2、伪彩色合成的主要步骤:1、打开ENVI4.7,单击FILE菜单,在下拉菜单中选择open image file 选项,然后在弹出的对话框中选择can_tmr.img 文件,单击打开。
2、在可用波段列表对话框中,选中gray scale单选按钮,单击LOAD BAND 按钮3、在#1 TM BAND1:CAN_TMR.IMG对话框中,单击菜单栏上的OVERLAY 菜单,在下拉菜单中选择DENSITY SLICE…按钮,在弹出的对话框中选择任意一个波段名称,4、在弹出的对话框中显示系统默认的密度分割,通过定义MIN和max的值可以定义需要分割的密度范围,通过EDIT RANGE ,deleted range,clear ranges 三个按钮可以对默认的分割进行修改,待修改完毕后,单击APPLY按钮,即可显示修改后的效果。
(1)以多波段组合方式将GeoTIFF格式的白银市TM原始数据转换为ENVI Standard 格式:利用Basic Tools/Layer Stacking弹出对话框然后Import File,弹出对话框,导入GeoTIFF格式的TM原始数据,选择波段1、2、3、4、5和7,点击OK,利用Choose选择输出路径及文件名,同时可以利用Reorder Files对输入的文件根据自己的需要进行调换顺序,点击OK输出ENVI Standard格式的数据。
(2)查询并记录影像文件的基本信息、投影信息,以及各个波段直方图信息,然后编辑头文件:利用Basic Tools/Resize Data弹出对话框里面选择要查看的影像,左边会出现其基本信息,如图所示:也有投影信息,既可以用来看单波段的也可以看合成后整个影像的信息。
在对话框下,合成影像的名字上右击,选择Quick Statistics弹出对话框,在此对话框中点击SelectPlo下拉菜单,选择单波段或者多波段的直方图,相应的对话框中会出现直方图(在结果与分析中记录),还可以右击选择edit修改横、纵坐标的单位。
同样的在合成影像的名字上右击,选择Edit Head,弹出对话框然后点击Edit Attributes/Band Name弹出对话框,选中波段输入修改后名字,点击OK即可进行波段名字的修改。
点击Edit Attributes/Wavelengths弹出进行相应的波长的修改。
(3)在View视窗中,利用影像缩小、放大、漫游工具识别影像中的土地利用/土地覆盖类型:可以结合当地的google earth上高分辨率的遥感影像,进行识别,利用Viewer视窗下Tools/SPEAR/Google Earth/Jump to Location可以在google earth上显示View主视窗中相应选中地物对应的位置。
(4)利用Viewer视窗打开影像,分别选取4、3、2和7、4、2波段组合进行假彩色合成,观察实习内容中所要求地物的色调变化:利用File/Open Image File,选择第1步合成的ENVI Standard 格式的数据,弹出对话框,在其中选择RGB Color,将R、G、B分别设为4、3、2波段,点击LoadBand,在Viewer#1中出现了4、3、2波段组合的假彩色图像,再在此窗口中,点击Display/New Display,弹出Viewer#2,选择RGB Color,将R、G、B分别设为7、4、2波段,点击Load Band,在Viewer#2中出现了7、4、2波段组合的假彩色图像,在Viewer窗口中右击选择LinkDisplays,弹出对话框,点击OK,可以把两个窗口中同一位置进行连接起来,即其中一个窗口放大、缩小、漫游到某个位置,另外一个也跟着漫游到其相对应的位置。
《遥感数字图像处理基础》课程实验报告课程名称:遥感数字图像处理实验题目:遥感数字图像处理基础主要实验内容一、遥感数字图像的基本统计特征分析要求:以“L7ETM+_121-032_123457”为数据源,统计各波段图像的数据区间、均值、标准差以及波段相关系矩阵,并进行图像频数直方图分析及各波段散点图分析。
1.各波段图像的数据区间、均值、标准差及其各自的物理意义数据空间:像元的DN值的取值范围均值:像元DN值的算术平均值,物理意义:地物的平均辐射强度标准差:物理意义:地物之间辐射特性差异2.波段相关系数矩阵3.各波段图像频数直方图4.散点图(包括ETM+2-3、ETM+2-4、ETM+2-7的散点图)ETM+2-31.水体2.居民地3.植被ETM+2-4水体居民地植被ETM+2-7 1.水体居民地植被二、遥感数字图像的彩色合成显示要求:以“L7ETM+_121-032_123457”为数据源,选择其中三个波段进行彩色合成。
1.彩色合成波段的选择依据根据波段的色彩,选7波段,4波段,3波段分别为红。
绿。
蓝。
颜色就接近于真彩色。
2.彩色合成结果三、遥感数字图像地物波谱特性分析要求:以“L7ETM+_121-032_123457”为数据源,进行典型地物(水体、植被、居民地)的波谱特性分析(要标注典型地物像元点的空间位置及其波谱特性曲线,并简要说明其波谱特征)。
1.水体波谱特性分析从波段1到波段6,水体的DN值逐渐减小,反射率逐渐降低。
2.植被波谱特性分析在4波段近红外,反射率出现峰值。
3.居民地波谱特性分析居民地的波普特性,跟建筑物的建筑材料有较大关系。
基本要求与说明:1.实验原理部分文字阐述要简洁明了,可附相应公式、图解;2.实验步骤与方法请尽量详细叙述,如果有必要请附相应图形、图像;3.表格大小和所列条目数可以根据实际情况进行调整与增删。
©吉林大学地球探测科学与技术学院遥感教研室制表。
遥感图像处理实验报告遥感图像处理实习报告姓名:学号:联系方式:日期:一、实习要求(一)掌握使用ENVI进行各种图像基本操作;(二)熟练运用ENVI中工具进行图像图像校正、裁剪拼接、融合及图像增强处理;二、实习操作过程与实现结果(一)辐射校正及大气校正1、辐射校正(1)选择File->open,选择Landset8武汉数据中的‘’文件。
(2)选择T oolbox->Radiometric Correction->Radiometric Calibration工具,选择要校正的‘LC8LGN00_MTL_MultiSpectral’多光谱数据,设置定标参数(存储格式:BIL;单位转换“Scale Factor”的设置,单击Apply FLAASH Settings得到相应的参数),得到辐射定标后的结果。
2、大气校正(1)选择Toolbox->Radiometric Correction->Atmospheric Correction Module->FLAASH Atmospheric Correction工具;打开工具后设置参数:在FLAASH Atmospheric Correction Module Input Parameters 面板中如图设置各项参数;点击apply运行大气校正。
(2)大气校正运行结果(二)图像裁剪与拼接1、15米全色波段图像裁剪拼接(1)选择File->open,选择‘县界.shp’‘LC8LGN00_MTL’及‘LC8LGN00_MTL’文件。
(2)选择Toolbox->Regions of Interest->Subset Date from ROIs 工具;双击打开后input file面板选择38区段15米分辨率文件,input ROIs面板选择‘县界’文件。
点击‘OK’,38区段文件裁剪后如图。
(3)重复(2)中工具选择步骤;双击打开后在input file 面板选择39区段15米分辨率文件,在input ROIs面板选择‘县界’文件。
辽宁工程技术大学《数字图像处理》上机实习报告教学单位辽宁工程技术大学专业摄影测量与遥感实习名称遥感数字图像处理班级测绘研11-3班学生姓名路聚峰学号*********指导教师孙华生实习1 读取BIP 、BIL、BSQ文件一、实验目的用Matlab读取BIP 、BIL、BSQ文件,并将结果显示出来。
遥感图像包括多个波段,有多种存储格式,但基本的通用格式有3种,即BSQ、BIL和BIP格式。
通过这三种格式,遥感图像处理系统可以对不同传感器获取的图像数据进行转换。
BSQ是像素按波段顺序依次排列的数据格式。
BIL 格式中,像素先以行为单位块,在每个块内,按照波段顺序排列像素。
BIP格式中,以像素为核心,像素的各个波段数据保存在一起,打破了像素空间位置的连续性。
用Matlab读取各个格式的遥感数据,是图像处理的前提条件,只有将图像读入Matlab工作空间,才能进行后续的图像处理工作。
二、算法描述1.调用fopen函数用指定的方式打开文件。
2.在for循环中调用fread函数,用指定的格式读取各个像素。
3.用reshape函数,重置图像的行数列数。
4.用imadjust函数调整像素的范围,使其有一定对比度。
5.用imshow显示读取的图像。
三、Matlab源代码1.读取BSQ的源代码:clear allclclines=400;samples=640;N=6;img=fopen('D:\sample_BSQ','rb');for i=1:Nbi=fread(img,lines*samples,'uint8');band_cov=reshape(bi,samples,lines);band_cov2=band_cov'; band_uint8=uint8(band_cov2);tif=imadjust(band_uint8);mkdir('D:\MATLAB','tifbands1')name=['D:\MATLAB\tifbands1\tif',int2str(i),'.tif'];imwrite(tif,name,'tif');tilt=['波段',int2str(i)];subplot(3,2,i),imshow(tif);title(tilt);endfclose(img);2.读取BIP源代码clear allclclines=400;samples=640;N=6;for i=1:Nimg=fopen('D:\MATLAB\sample_BIP','rb');b0=fread(img,i-1,'uint8');b=fread(img,lines*samples,'uint8',(N-1));band_cov=reshape(b,samples,lines);band_cov2=band_cov';%תÖÃband_uint8=uint8(band_cov2);tif=imadjust(band_uint8);mkdir('E:\MATLAB','tifbands')name=['E:\MATLAB\tifbands\tif',int2str(i),'.tif'];imwrite(tif,name,'tif'); %imwrite(A,filename,fmt)tilt=['波段',int2str(i)];subplot(3,2,i),imshow(tif);title(tilt);fclose(img);end3.读取BIL的源代码clear allclclines=400;samples=640;N=6;for i=1:Nbi=zeros(lines,samples);for j=1:samplesimg=fopen('D:\MATLAB\sample_BIL','rb');bb=fread(img,(i-1)*640,'uint8');b0=fread(img,1*(j-1),'uint8');bandi_linej=fread(img,lines,'uint8',1*(N*samples-1));fclose(img);bi(:,j)=bandi_linej;endband_uint8=uint8(bi);tif=imadjust(band_uint8);mkdir('D:\MATLAB','tifbands')name=['D:\MATLAB\tifbands\tif',int2str(i),'.tif'];imwrite(tif,name,'tif');tilt=['²¨¶Î',int2str(i)];subplot(3,2,i),imshow(tif);title(tilt);end。
《遥感数字图像处理》实验报告《遥感技术原理与应用》期末报告研究生《遥感技术原理与应用》期末考试报告题目:利用TM遥感数据进行土地覆盖分类和制图专业:地图学与地理信息系统2015.12一、研究方法缨帽变换:也称K-T变换,是一种特殊的主成分变换。
但与主成分不同,其旋转轴不是指向主成分方向,而是指向与地面景物有密切关系的方向,特别是与植物生长过程和土壤有关。
传统的NDVI植被信息提取方法受到影像空间分辨率的限制,对影像上信息量少的植被(如道路两旁的行道树、居民小区中的绿地等)提取效果不佳。
缨帽变换对区分不同类型植被类型如树、灌木、草地、农作物等非常有效,此次试验具有较好的应用。
支持向量机分类法:是建立在统计学习理论的VC维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折中,以求获得最好的推广能力。
最大似然分类法:假设每一个波段的每一类统计都呈正态分布,计算给定像元属于某一训练样本的似然度,像元最终被归并到似然度最大的一类当中。
二、研究内容及数据对富民县散旦乡TM影像进行信息挖掘后突出植被和水体等地物信息;结合二调数据,选择样本,分别用最大似然和支持向量机(SVM)分类法对散旦乡进行分类,通过对比分类精度,比较两种分类方法的优缺点。
数据:对富民县进行裁剪后得到的散旦乡Landsat TM影像;富民县二类调查小班数据;富民县县行政区数据。
三、研究过程1.裁剪研究区域将富民县行政区数据导入ArcGIS软件中,根据属性表查找得到散旦乡数据,导入ENVI,再利用ENVI提供的不规则裁剪工具进行裁剪得到散旦乡TM影像(4,3,2假彩色合成),见图1、2。
图1散旦乡在富民县的位置图2研究区原始影像2.缨帽变换在主菜单Transforms→Tassled Cap中使用缨帽变换对研究区影像进行正交变换,变换结果包括亮度“Brightness”、绿度“Greenness”、第三波段“Third”三个波段信息。
数字图像处理实验报告⼆○⼀⼋~⼆○⼀九学年第⼀学期信息科学与⼯程学院课程设计报告书课程名称:数字图像处理班级:学号:姓名:指导教师:⼆○⼀⼋年⼗⼆⽉⼀、课程设计⽬的:1. 掌握读、写、显⽰图像的基本⽅法。
2. 掌握图像直⽅图的概念、计算⽅法以及直⽅图归⼀化、均衡化⽅法。
3. 掌握图像灰度变换的基本⽅法,理解灰度变换对图像外观的改善效果。
⼆、课程设计内容及要求:1. 读⼊⼀幅图像,判断其是否为灰度图像,如果不是灰度图像,将其转化为灰度图像。
2. 完成灰度图像的直⽅图计算、直⽅图归⼀化、直⽅图均衡化等操作。
3. 完成灰度图像的灰度变换操作,如线性变换、伽马变换、阈值变换(⼆值化)等,分别使⽤不同参数观察灰度变换效果(对灰度直⽅图的影响)。
三、详细设计步骤:1、所使⽤的图像⽂件都保存在Matlab 安装⽬\toolbox\images\imdemos⼦⽬录下。
2、图像的读、写、显⽰操作。
运⽤Matlab 图像处理⼯具箱中的imread函数分别读⼊灰度图像pout.tif、⼆值图像blobs.png 和RGB 图像peppers.png,观察相应的图像矩阵,并运⽤imshow 函数显⽰相应图像。
3、对⼀个RGB 彩⾊图像peppers.png,分别抽取其R、G、B 三个分量层,并显⽰各层图像。
1、以灰度图像pout.tif 为例,运⽤灰度变换法实现图像增强。
2、运⽤Matlab 编程实现灰度直⽅图的统计以及直⽅图均衡化处理过程:(1)计算并绘制原始图像的灰度直⽅图;(2)根据离散累计分布函数,对原始灰度直⽅图进⾏均衡化处理,绘制均衡化后的灰度直⽅图;(3)⽣成均衡化处理后的新图像,显⽰并保存。
(4)⽐较原始图像和新图像的对⽐度。
(1)利⽤Matlab 函数IMNOISE(),在原图上分别叠加⾼斯噪声和椒盐噪声(2)实现均值滤波和中值滤波的功能,去除噪声;(3)调整窗⼝⼤⼩,采⽤对⽐均值滤波中值滤波的性能;1、以灰度图像rice.png 为例,实现Roberts 算⼦、Sobel 算⼦、Prewitt算⼦对其进⾏边缘检测,并实现根据梯度⽣成 5 种不同的增强图像。
遥感图像处理实习报告一、实验名称:遥感图像处理二、实习地点:辽工大博雅楼606三、实习时间:2011年12月19日-2011年12月25日四、实习目的:1.了解遥感软件的基本结构,并能熟练地运用该软件处理遥感数据2.掌握使用软件工具来进行各种图像基本操作3.灵活运用空间增强、辐射增强、光谱增强处理4.掌握监督分类和非监督分类的原理与操作过程五、实习内容:1.图像的显示和存取1.1图像显示视窗(Viewer)是显示栅格图像、矢量图形、注记文件、AOI等数据层的主要窗口,每次启动 ERDAS IMAGING时,系统都会自动打开一个二维视窗(Viewer)如图所示。
在应用过程中可以随时打开新的视窗。
二维视窗(Viewer)主要由视窗菜单条、工具条、显示窗和状态条四部分组成。
1.1.2图像显示第一步:启动程序菜单上选择File | Open | Raster Layer——Select Layer To Add对话框下图或在工具条上选择——Select Layer To Add对话框图所示。
第二步:确定文件图中的File选项用于图像文件的确定,具体内容及实例如表所示。
第三步:设置参数在Select Layer To Add对话框中点击Raster Options, 就进入设置参数状态,如图所示。
在Select Layer To Add对话框中,点击OK,打开所确定的图像,视窗中显示该图像。
2.图像的预处理:在ERDAS图标面板工具条中,点击图标——Data Preparation菜单。
2.1图象几何校正第一步:显示图象文件在视窗中打开需要校正的Landsat TM图象:第二步:启动几何校正模块在Viewer#1的菜单条中,选择Raster|Geometric Correction(1)ERDAS IMAGINE●打开Set Geometric Model对话框●选择多项式几何校正模型 Polynomial——OK●程序自动打开Geo Correction Tools对话框和 Polynomial Model Properties对话框●先选择Close关闭Polynomial Model Properties对话框●程序自动打开GCP Tool Reference Setup对话框●程序自动打开 Reference Map Information提示框。
《遥感数字图像处理》实习报告学院:环境与资源学院班级:地理1002学号:周颖智姓名: 20101171西南科技大学环境与资源学院遥感实习2013年5月11日目录1、实验目的 (2)2、实验内容 (15)3、实验步骤 (26)4、实验体会 (38)《某地区森林资源遥感动态监测》一、实验目的熟练掌握ENVI4.7软件中对遥感数字图像进行图像预处理、图像分类、分类后处理以及对分类后的图像进行必要的综合分析得到我们想要的信息。
二、实验内容对00年森林资源遥感图像july_00_quac.img进行图像增强处理得到图像00I_K-L.img,然后选择合适的图像分类方法,对增强后的图像进行分类,得到分类后图像00ML1,接着对分类后图像进行分类后处理的最终的分类结果图00MMN。
用同样的遥感图像处理方法得到06年森林资源遥感图像july_06_quac.img的分类结果图06MMN。
最后对分类后处理的图像进行分类精度的评估,当精度符合标准时便可对分类结果图00MMN和06MMN进行波段运算B1-B2,便可以得到00年到06年该地区森林资源的一个动态变化情况图B1-B2。
三、实验步骤(一)、对00年森林资源遥感图像july_00_quac.img进行图像增强处理。
已知我们所学过的遥感图像增强处理的方式有:图像彩色增强、图像拉伸、图像变换以及图像滤波。
1、首先打开00年森林资源遥感图像july_00_quac.img,然后的遥感图像进行彩色增强。
采用真彩色合成的方式来的彩色图像,这里我使用的波段合成方式有:321(真彩色)、432(标准假彩色)、以及其他假彩色合成的方式,542、542、741、742、572和453等,得到如下的彩色图像:321.img(图一)432.img(图二)453.img(图三)742.img(图四)741.img(图五)543.img(图六)542.img(图七)572.img(图八)最后,我选择了542波段合成后的彩色图像542.img。
数字图像处理实验报告图像处理数字图像处理实验报告实验报告书实验类别数字图像处理学院信息工程学院专业通信工程班级通信1005班姓名叶伟超指导教师聂明新2013 年 6 月 3 日篇二:数字图像处理实验报告数字图像处理实验报告课程:班级:学号:姓名:指导老师:日期:实验一内容一MATLAB数字图像处理初步一、实验目的与要求1.熟悉及掌握在MATLAB中能够处理哪些格式图像。
2.熟练掌握在MATLAB中如何读取图像。
3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。
4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。
5.图像间如何转化。
二、实验内容及步骤1.利用imread( )函数读取一幅图像,假设其名为flower.tif,存入一个数组中;解:读取图像,存入数组I中:I = imread('flower.tif');2.利用whos 命令提取该读入图像flower.tif的基本信息;解:查询数组I的信息:3.利用imshow()函数来显示这幅图像;解:因为imshow()方法不能直接显示tif图像矩阵,因此要先转换成RGB模式,再调用imshow()显示。
代码如下:I1 = I(:,:,1);I2 = I(:,:,2);I3 = I(:,:,3);RGB = cat(3,I1,I2,I3);imshow(RGB);显示的图像为:4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;解:代码如下:imfinfo('flower.tif')结果截图:5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为flower.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。
解:代码:imwrite(RGB,'flower.jpg','quality',80);结果截图:6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp 图像,设为flower.bmp。
第1篇一、实验背景与目的随着遥感技术的不断发展,遥感影像已成为获取地球表面信息的重要手段。
遥感影像处理是对遥感影像进行一系列技术操作,以提高影像质量、提取有用信息的过程。
本实验旨在通过实践操作,让学生掌握遥感影像处理的基本原理和常用方法,提高学生对遥感影像数据的应用能力。
二、实验内容与步骤本次实验主要包括以下内容:1. 数据准备:获取实验所需的遥感影像数据,包括光学影像、红外影像等。
2. 影像预处理:对原始遥感影像进行辐射校正、几何校正、图像增强等处理。
3. 影像分割:对预处理后的影像进行分割,提取感兴趣的目标区域。
4. 影像分类:对分割后的影像进行分类,识别不同的地物类型。
5. 结果分析:对分类结果进行分析,评估分类精度。
三、实验步骤1. 数据准备- 获取实验所需的遥感影像数据,包括光学影像、红外影像等。
- 确保影像数据具有较好的质量和分辨率。
2. 影像预处理- 辐射校正:对原始遥感影像进行辐射校正,消除大气、传感器等因素对影像辐射强度的影响。
- 几何校正:对原始遥感影像进行几何校正,消除地形起伏、地球曲率等因素对影像几何形状的影响。
- 图像增强:对预处理后的影像进行图像增强,提高影像对比度、清晰度等。
3. 影像分割- 选择合适的分割方法,如基于阈值分割、基于区域生长分割、基于边缘检测分割等。
- 对预处理后的影像进行分割,提取感兴趣的目标区域。
4. 影像分类- 选择合适的分类方法,如监督分类、非监督分类等。
- 对分割后的影像进行分类,识别不同的地物类型。
5. 结果分析- 对分类结果进行分析,评估分类精度。
- 分析分类结果中存在的问题,并提出改进措施。
四、实验结果与分析1. 影像预处理结果- 经过辐射校正、几何校正和图像增强处理后,遥感影像的质量得到显著提高,对比度、清晰度等指标明显改善。
2. 影像分割结果- 根据实验所采用的分割方法,成功提取了感兴趣的目标区域,分割效果较好。
3. 影像分类结果- 通过选择合适的分类方法,对分割后的影像进行分类,成功识别了不同的地物类型。
遥感图像处理实习总结遥感图像处理实习总结遥感实习总结专业:摄影测量与遥感技术班级:姓名:学号:为期两周的遥感数字图像处理结束了,在老师的精心安排下,我们全身心的投入到这次实习中。
虽然是满天的时间,但是由于教室还有其他人占用并不能在那全天使用,所以说是两周实习但是我们能用是时间依然很少,我们要力抓每一分每一秒,熟练操作遥感数字图像处理软件。
整个实习是以黄河水院为基础图形。
通过格式变换、几何校正、图像剪裁、图像分类,以及最后的专题地图制作。
实习的过程简单又复杂,简单的是,只要动手,计算机几乎自动化的替你操作,复杂的是,在操作过程中,又有好多选项和注意的事项,有很多参数的设置很有讲究。
所以在练习中我遇到好多问题,并通过解决这些问题进一步加深了对软件和课本知识的理解。
首先我们进行的是数据预处理。
我们需要进行遥感图像的几何校正。
由于各种误差所以遥感图像存在着几何变形,因此需要在操作前进行几何校正。
流程如下:第一步:显示图像文件(打开两个视窗窗口),第二步:启动几何校正模块,第三步:启动控制点工具,第四步:地面控制点(GCP)的采集,第五步:采集地面检查点,第六步:图象重采样,第七步:保存几何校正模式。
其中最关键最难的就属地面控制点的采集,我们使用的是二次多项式,所以得选取六个控制点然后再选出六个检查点。
但是图像存在着误差,而我们要把误差控制在一个像素以内,这就更加困难了。
在进过长时间的摸索和练习,精度慢慢的就达到了,但是图纠正后依旧不是很好,在询问同学后发现原来是点的分布不是很均匀,所以导致了图的变形。
在图的校正后就得进行图范围的裁剪得到所需的范围。
裁剪有两种方法一种是规则分幅裁剪,一种是不规则分幅裁剪。
规则分幅裁剪需要知道坐标,而不规则分幅裁剪则只需要在图上手选出需要裁剪的范围。
而我们没有坐标只能用不规则分幅裁剪。
第二项就是图象增强处理,主要包括:空间、辐射、光谱增强处理的主要方法。
空间增强:包括卷积增强处理,辐射增强:直方图均衡化处理,光谱增强:主成份变换、缨穗变换、色彩变换。
遥感图像处理实习报告在当今科技飞速发展的时代,遥感技术作为获取地球表面信息的重要手段,已经在众多领域得到了广泛应用。
为了更深入地了解和掌握遥感图像处理的技术和方法,我参加了本次遥感图像处理实习。
通过这次实习,我不仅学到了专业知识,还提高了实践操作能力,对遥感技术有了更全面的认识。
一、实习目的本次实习的主要目的是让我们熟悉遥感图像处理的基本流程和方法,掌握常用的遥感图像处理软件,学会对遥感图像进行几何校正、辐射校正、图像增强、图像分类等操作,并能够运用所学知识解决实际问题,提高对遥感数据的分析和应用能力。
二、实习内容(一)数据准备在实习开始前,我们收集了一系列的遥感图像数据,包括不同传感器、不同分辨率、不同波段组合的图像。
这些数据涵盖了城市、农田、森林、水域等多种地物类型,为后续的处理和分析提供了丰富的素材。
(二)软件学习我们使用了 ERDAS IMAGINE 和 ENVI 这两款主流的遥感图像处理软件。
通过学习这两款软件的基本操作界面、功能模块和工具菜单,我们逐渐熟悉了如何导入数据、显示图像、进行图像裁剪和拼接等基本操作。
(三)几何校正几何校正是遥感图像处理中的重要环节,它可以消除由于传感器姿态、地球曲率、地形起伏等因素引起的图像几何变形。
我们首先选取了具有精确地理坐标的控制点,然后利用多项式模型对图像进行几何校正,通过不断调整参数,使校正后的图像与实际地理坐标相匹配。
(四)辐射校正辐射校正旨在消除由于传感器性能、大气散射和吸收等因素引起的图像辐射误差。
我们采用了基于直方图匹配和辐射定标的方法,对图像的亮度和对比度进行了调整,使不同时相、不同传感器获取的图像具有可比性。
(五)图像增强为了突出图像中的有用信息,我们运用了多种图像增强技术,如对比度拉伸、直方图均衡化、滤波等。
通过这些操作,图像中的地物特征更加清晰,有利于后续的分析和识别。
(六)图像分类图像分类是遥感图像处理的核心任务之一,我们尝试了监督分类和非监督分类两种方法。
一、实习时间及地点时间:2016年3月15日至2016年3月29日,地点:院楼四楼机房。
二、实习内容(1)遥感数据下载(2)遥感影像增强滤波处理(3)遥感影像镶嵌(4)遥感影像裁剪(5)遥感影像的计算机自动分类及精度评价(6)遥感影像专题地图制作三、任务分工我们小组共有五名同学:冯正英,刘天珂,王亚茹,刘晓晨,石义广。
其中刘晓晨和石义广负责下载数据,冯正英,刘天珂,王亚茹负责数据的预处理。
分类时刘晓晨和石义广负责2003年的开封影像分类,冯正英,刘天珂,王亚茹负责2008年的开封影像分类以及两期影像的精度评定和后处理工作。
最后专题制作是每人都参与专题地图的制作。
四、实习过程1 研究区及数据准备1.1 遥感影像数据的采集1.1.1 确定研究区域在进行实习之前,我们首先讨论哪一座城市作为我们的研究区域,根据老师的要求,让我们根据遥感图像,做出一个城市近几年来的变化情况,经过我们小组讨论,觉得近几年来开封的变化比较迅速,同时我们也比较熟悉,所以我们确定了以开封作为我们的研究城市。
1.1.2 下载影像数据选定好研究区域后需要下载相应的影像数据做下一步的处理。
(1)按照指导书的要求,首先下载Java插件,打开指导书中的网址,即美国的USGS软件。
其次注册一个账号以便下载影像照片。
(2)选择卫星传感器:鼠标点collection→landsat Archive,由于landsat卫星有1-7系列(6除外),但是经过试验之后发现landsat8只有2013年的数据,而且landsat7的数据都有条带影响,所以我们最终选择的是landsat4-5TM传感器。
点击MapLayers→Admin Boundaries可以在屏幕内出现省界范围。
图1 选择卫星传感器图2 添加界限范围(3)确定方位:根据我们组选择的研究区域,在WRS-2中输入123和36,在Lat中输入34.5和115.0,并将最大含云量改为0%以便处理。
遥感数字图像处理及应用实验报告姓名:学号:专业:学院:学校:实验一遥感图像统计特性一、实验目的掌握遥感图像常用的统计特性的意义和作用,能运用高级程序设计语言实现遥感图像统。
二、实验内容编程实现对遥感图像进行统计特性分析,均值、方差(均方差)、直方图、相关系数等。
三、实验原理1.均值像素值的算术平均值,反映图像中地物的平均反射强度。
公式为:2.方差像素值与平均值差异的平方和,反映了像素值的离散程度。
也是衡量图像信息量大小的重要参数。
公式为:3.相关系数反映了两个波段图像所包含信息的重叠程度。
f,g为两个波段的图像。
公式为:四、实验数据及图像显示:原始图像:运行结果:实验二遥感图像增强处理一、实验目的掌握常用遥感图像的增强方法,能运用高级程序设计语言实现遥感图像的增强处理。
二、实验内容编程实现对遥感图像的IHS 变换、IHS 逆变换、进行统计特性分析,均值、方差(均方差)、直方图、相关系数等。
三、实验原理:1.IHS变换2.SPOT图像真彩色模拟模拟真彩色:通过某种形式的运算得到模拟的红、绿、蓝三个通道,然后通过彩色合成近似的产生真彩色图像。
(1)SPOT IMAGE 公司提供的方法该方法实际上是将原来的绿波段当作蓝波段,红波段(0.61-0.68 μm)仍采用原来的波段,绿波段用绿波段、红波段、红外波段的算术平均值来代替。
(2)ERDAS IMAGING 软件中的方法此法将原来的绿波段当作蓝波段,红波段仍采用原来的波段,绿波段用绿波段、红外波段按3:1 的加权算术平均值来代替。
四、实验数据及图像显示原始图像:ISH变换所的图像:SPORT真彩色图像:实验三遥感图像融合一、实验目的掌握多源遥感图像融合的原理与方法,能运用高级程序设计语言实现遥感图像的融合。
二、实验内容选择IHS 变换、PCA 变换和Brovey 变换三种方法中的一种,编程实现多源遥感图像融合,即将低空间分辨率的多光谱图像与高空间分辨率的全色图像实现融合。
辽宁工程技术大学《数字图像处理》上机实习报告教学单位辽宁工程技术大学专业摄影测量与遥感实习名称遥感数字图像处理班级测绘研11-3班学生姓名路聚峰学号*********指导教师孙华生实习1 读取BIP 、BIL、BSQ文件一、实验目的用Matlab读取BIP 、BIL、BSQ文件,并将结果显示出来。
遥感图像包括多个波段,有多种存储格式,但基本的通用格式有3种,即BSQ、BIL和BIP格式。
通过这三种格式,遥感图像处理系统可以对不同传感器获取的图像数据进行转换。
BSQ是像素按波段顺序依次排列的数据格式。
BIL 格式中,像素先以行为单位块,在每个块内,按照波段顺序排列像素。
BIP格式中,以像素为核心,像素的各个波段数据保存在一起,打破了像素空间位置的连续性。
用Matlab读取各个格式的遥感数据,是图像处理的前提条件,只有将图像读入Matlab工作空间,才能进行后续的图像处理工作。
二、算法描述1.调用fopen函数用指定的方式打开文件。
2.在for循环中调用fread函数,用指定的格式读取各个像素。
3.用reshape函数,重置图像的行数列数。
4.用imadjust函数调整像素的范围,使其有一定对比度。
5.用imshow显示读取的图像。
三、Matlab源代码1.读取BSQ的源代码:clear allclclines=400;samples=640;N=6;img=fopen('D:\sample_BSQ','rb');for i=1:Nbi=fread(img,lines*samples,'uint8');band_cov=reshape(bi,samples,lines);band_cov2=band_cov'; band_uint8=uint8(band_cov2);tif=imadjust(band_uint8);mkdir('D:\MATLAB','tifbands1')name=['D:\MATLAB\tifbands1\tif',int2str(i),'.tif'];imwrite(tif,name,'tif');tilt=['波段',int2str(i)];subplot(3,2,i),imshow(tif);title(tilt);endfclose(img);2.读取BIP源代码clear allclclines=400;samples=640;N=6;for i=1:Nimg=fopen('D:\MATLAB\sample_BIP','rb');b0=fread(img,i-1,'uint8');b=fread(img,lines*samples,'uint8',(N-1));band_cov=reshape(b,samples,lines);band_cov2=band_cov';%תÖÃband_uint8=uint8(band_cov2);tif=imadjust(band_uint8);mkdir('E:\MATLAB','tifbands')name=['E:\MATLAB\tifbands\tif',int2str(i),'.tif'];imwrite(tif,name,'tif'); %imwrite(A,filename,fmt)tilt=['波段',int2str(i)];subplot(3,2,i),imshow(tif);title(tilt);fclose(img);end3.读取BIL的源代码clear allclclines=400;samples=640;N=6;for i=1:Nbi=zeros(lines,samples);for j=1:samplesimg=fopen('D:\MATLAB\sample_BIL','rb');bb=fread(img,(i-1)*640,'uint8');b0=fread(img,1*(j-1),'uint8');bandi_linej=fread(img,lines,'uint8',1*(N*samples-1));fclose(img);bi(:,j)=bandi_linej;endband_uint8=uint8(bi);tif=imadjust(band_uint8);mkdir('D:\MATLAB','tifbands')name=['D:\MATLAB\tifbands\tif',int2str(i),'.tif'];imwrite(tif,name,'tif');tilt=['²¨¶Î',int2str(i)];subplot(3,2,i),imshow(tif);title(tilt);end四、运行结果图1:读取文件的六个波段图实习2 均值/中值滤波、边缘信息提取一、实验目的与原理各种图像滤波算子可以实现图像的增强,去噪,边缘提取等。
上机实验1:遥感图像处理的基本操作练习实验目的: 熟悉图像处理软件ENVI 图像处理的基本操作实验内容:1、打开与存储文件2、多光谱显示3、练习矢量和栅格数据叠合4、3-D曲面浏览5、图像切割6、感兴趣区域(ROI: region of interest)生成7、输出图像的直方图8、查询图像统计特征9、制作二维散点图实验步骤1、打开与存储文件Envi标准文件格式?如何查询图像某点的值:点击File-open image file 打开C:\RSI\IDL62\products\ENVI42\data(缺省目录)下的文件can_tmr.img,学会如何查询图像某点的值(双击左键或者对图像点击右键,利用cursorlocation/value以及pixel locator)。
请将一幅遥感数字图像输出为ascii格式的文本文件:(提示:File/save file as),打开文本文件,体会遥感数字图像之含义。
2、多光谱显示打开can_tmr.img文件后,在available band list 中选择RGB color, 然后任意选择三个波段进行彩色合成,这时候显示的是一幅假彩色图像,尝试将你多光谱显示的结果图存储成JPEG格式的结果图。
3、练习矢量数据与栅格数据的叠合:a)打开world_dem,再打开对应的矢量文件,点击File-open vector file,选中C:\RSI\IDL62\products\ENVI42\data\vector路径下的.shp文件,在available vector file对话框中选中select all layers,然后load selected到display 1(world_dem图像)。
4、3-D曲面浏览除了可以显示3维立体地形,该功能可以将地形数据与多光谱数据叠加显示,具有很直观的立体效果,叠加显示的步骤:▪应用地形数据bhdemsub.img和多光谱数据bhtmref.img,打开这两个文件,并用多波段彩色显示bhtmref.img后用T opographic-3D surfaceview 观察立体效果。
实验报告~遥感数字图像处理本科学⽣综合性、设计性实验报告姓名学号专业班级实验课程名称遥感数字图像处理云南省保⼭市近⼆⼗年来的植被变化⼀、实验准备实验名称:云南省保⼭市近⼆⼗年来的植被变化实验时间:2014年6⽉25⽇星期四⾄2014年6⽉26⽇星期四实验类型:□验证实验√综合实验□设计实验1、实验⽬的和要求:本实验基于1989—2014年保⼭市植被指数(NDVI)时间序列数据,采⽤时序变化趋势和空间分析法,对保⼭市植被的时空变化过程及保护成效进⾏了定量分析。
本研究基于1989~2014年的NDVI数据,分析保⼭地区的植被变化过程,监测保护效果,为当地可持续发展和保护区⽣态环境建设提供理论⽀持。
Landsat4~5,Landsat7,Landsat8系列影像,ENVI5.0,ARCGIS,EDARS操作软件3、实验理论依据或知识背景:植被覆盖度是反映地表信息的重要参数测量植被覆盖度的⽅法可分为地表实测和遥感监测两类由于具有显著的时空分异特性,因⽽利⽤遥感资料已成为估算尤其对⼤⾯积)的主要⼿段为了完成⼤范围地区的植被覆盖度监测,⽬前使⽤较多的遥感测量⽅法有回归模型法、植被指数法以及像元分解模型法等, 其中基于NDVI植被指数和像元分解模型的植被覆盖度遥感估算是⼀种⽐较新的区域植被覆盖度遥感估算⽅法。
保⼭地区是⼀个以⼭地⼭区为主、⾃然环境条件错综复杂的区域,随着经济的快速发展,⼟地利⽤⽅式和⼟地覆盖类型也发⽣了很⼤的变化,为了准确估计⼟地覆盖变化,本⽂根据植被指数估算植被覆盖度的原理,基于NDVI植被指数和改进后的像元⼆分模型对福州地区的植被覆盖度进⾏了遥感估算,对估算结果进⾏了初步验证,并对福州地区植被覆盖的时空变化特征进⾏了分析。
⼆、实验内容、步骤和结果本次研究,结合研究⽬标和实际情况,综合权衡各种因素后,主要采⽤的卫星遥感影像为保⼭地区三个时相的Landsat TM影像,成像时间分别为1989年和2000年、2014年,影像分辨率为30m,影像已经过⼤⽓校正、⼏何精校正及裁减处理1此外,本研究还收集到了2000年保⼭地区1B100 000⼟地利⽤图。
【关键字】报告遥感图像处理实验报告篇一:遥感数字图像处理实验报告设计重庆交通大学遥感数字图像处理实验报告实验课程:数字图像处理实验名称:设计所有遥感数字图像处理的实验班级:实验一:遥感图像合成和显示增强一、目的和要求1. 目的掌握图像合成和显示增强的基本方法,理解存储的图像数据与显示的图像数据之间的差异。
2. 要求熟练根据图像中的地物特征进行合成显示、拉伸、图像均衡化等显示增强操作。
理解直方图的含义,能熟练利用直方图进行多波段的图像显示拉伸增强处理。
2、实验内容1. 图像的彩色合成显示2. 图像的基本拉伸方法3. 图像均衡化方法4. 图像规定化三、实验步骤四、实验体会实验二:遥感图像的几何精纠正一、目的和要求1.目的使用多项式方法对TM遥感图像进行几何精纠正。
2.要求能熟练根据地图、GPS测点数据或具有投影的图像对遥感图像进行几何精纠正。
能够正确地选择几何纠正中的各种参数。
能够对纠正结果进行评估。
掌握几何精纠正的基本方法和操作要点。
能够自定义地图投影并进行图像的投影转换。
2、实验内容1. 对TM图像进行几何精纠正。
2. 自定义地图投影。
3. 转换图像的投影。
三、实验步骤四、实验体会实验三:图像变换一、目的和要求1.目的掌握图像变换的基本操作方法,对比变换前后图像差异,理解不同变换方法之间的区别。
2.要求能够根据图像的特征设定傅里叶变换的滤波器,消除图像中的条纹。
能够解释主成分变换后的图像,利用主成分变换消除图像中的噪声。
能够利用KT变换结果进行图像合成、解释地物信息。
熟练利用代数运算产生不同的波段组合。
利用彩色变换进行图像的合成和融合。
能够解释变换后的图像,并根据工作目的选择合适的图像变换方法。
2、实验内容1. SPOT图像的傅里叶变换。
2. TM图像的主成分变换。
3. TM图像的代数变换。
4. ETM 图像的彩色变换。
三、实验步骤四、实验体会篇二:遥感图像处理实验报告格式遥感图像处理班级:学号:姓名:指导教师:实验报告目录一、实验目的 (3)2、实验时间 (3)三、实验地点 (3)四、实验内容 (3)1.图像j50e023013和j50e024013的校正 (3)2.校正后图像的裁剪 (3)3.图像裁剪后的拼接 (5)4.图像pinjie校正spot图像 (7)5.校正后的spot图像校正图像etm+ (10)6.校正后图像的融合 (12)7.融合图像的分类 (13)五、实验体会 (14)一、实验目的:(1)了解遥感软件的基本结构,并能熟练地运用该软件处理遥感数据。