2015-2016学年江苏省苏州市高一第二学期期末调研测试数学试卷
- 格式:doc
- 大小:709.19 KB
- 文档页数:8
2012~2013学年某某市高一期末调研测试数 学2013.6样本数据x 1,x 2,…x n 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑.一、填空题(本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上........) 1.已知{}1,2A =,{}2,3,4B =,则AB =▲.2.一组数据6,7,7,8,7的方差2s =▲.3.计算7πcos6的值为▲.4.计算2lg4lg5lg8+-的值为▲.5.袋中有1个白球,2个黄球,先从中摸出一球,再从剩下的球中摸出一球,两次都是黄球的概率为▲.6.执行右面的流程图,输出的S =▲.7.方程lg220x x +-=的解在(1,)k k -内,则整数k 的值为▲.8.已知(1,2)A ,(3,4)B -,(2,)C t ,若A ,B ,C 三点共线,则t =▲.9.已知函数1()41xf x a =+-是奇函数,则a 的值为▲.结束开始 S ← 0 k ← 1 S ← S +k 输出S N Y(第6题)k ≤20k ← k +1Y10.在约束条件410,4320,0,0x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥ 下,目标函数2z x y =+的最大值为▲.11.已知点E 在正△ABC 的边AB 上,AE = 2EB ,在边AC 上任意取一点P ,则“△AEP 的面积恰好小于△ABC 面积的一半”的概率为▲.PECB A(第11题)12.公差不为零的等差数列{}n a 中,22221739a a a a +=+,记{}n a 的前n 项和为n S ,其中8S 8=,则{}n a 的通项公式为n a = ▲.13.某地一天6时至20时的温度变化近似满足函数π3π10sin()84y x =++20([6,20]x ∈),其中x (时)表示时间,y (︒C )表示温度,设温度不低于20 ︒C 时某人可以进行室外活动,则此人在6时至20时中,适宜进行室外活动的时间约为▲小时.14.已知函数1|2|,13,()3(),33x x f x xf x --⎧⎪=⎨>⎪⎩≤≤,将集合{|(),01}A x f x t t ==<<(t 为常数)中的元素由小到大排列,则前六个元素的和为▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分14分)设数列{a n }是一个公差为(0)d d ≠的等差数列,已知它的前10项和为110,且a 1,a 2,a 4 成等比数列.(1)求数列{a n }的通项公式;(2)若(1)n n b n a =+,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和T n .解:(1)设数列{a n }的前n 项和为n S ,∵S 10 = 110,∴1109101102a d ⨯+=. 则19112a d +=.①……………… 2分∵a 1,a 2,a 4 成等比数列,∴2214a a a =,即2111()(3)a d a a d +=+.∴21a d d =. ∵d ≠ 0,∴a 1 = d .②……………… 5分由①,②解得12,2.a d =⎧⎨=⎩,∴2n a n =. ……………… 7分(2)∵(1)n n b n a =+=2(1)n n +,∴11111()2(1)21n b n n n n ==-++. ……………… 10分 ∴n T 111111(1)()()22231n n ⎡⎤=-+-++-⎢⎥+⎣⎦……… 12分 2(1)nn =+. ……………… 14分16.(本小题满分14分)已知a ,b ,c 是△ABC 的内角A ,B ,C 的对边,其中c b >,若a = 4,1cos 4A =-,D 为BC 边上一点,且0AD BC ⋅=,13564AB AD ⋅=.求: (1)||AD ; (2)b ,c .解:(1)由0AD BC ⋅=,得AD BC ⊥.记AD h =,由13564AB AD ⋅=,得135||||cos 64AB AD BAD ⋅∠=.………… 3分∴213564h =,则h =||AD . ………………… 5分(2)∵1cos 4A =-,∴sin A =. ………………… 7分由sin ah bc A =,得6bc =.①………………… 9分∵2222cos a b c bc A =+-,∴2213b c +=.②………………… 11分 由①,②,解得b = 2,c = 3,或 b = 3,c = 2.∵c b >,∴b = 2,c = 3. ………………… 14分 (直接由①,②得出b = 2,c = 3不扣分) 17.(本小题满分14分)已知函数(1)()2a x f x x -=-,a 为常数. (1)若()2f x >的解集为(2,3),求a 的值;(2)若()3f x x <-对任意(2,)x ∈+∞恒成立,求a 的取值X 围. 解:(1)不等式(1)()22a x f x x -=>-化为 (2)(4)02a x a x --->-. …………… 2分即[(2)(4)](2)0a x a x ---⋅->. …………… 4分∵()2f x >的解集为(2,3),∴432a a -=-. …………… 6分 解得1a =,经检验符合题意. …………… 8分 (2)∵()3f x x <-对任意(2,)x ∈+∞恒成立,∴(1)(2)(3)a x x x -<--对任意(2,)x ∈+∞恒成立. …………… 10分 令1x t -=,则(1)(2)at t t <--对任意(1,)t ∈+∞恒成立.∴23a t t<+-对任意(1,)t ∈+∞恒成立. …………… 12分∵23t t+-最小值为3,∴3a <. …………… 14分 18.(本小题满分16分)如图,某小区进行绿化改造,计划围出一块三角形绿地ABC ,其中一边利用现成的围墙BC ,长度为1(百米),另外两边AB ,AC 使用某种新型材料,∠BAC = 120°,设AB = x ,AC = y .(1)求x ,y 满足的关系式(指出x 的取值X 围);(2)若无论如何设计此两边的长,都能确保围成三角形绿地,则至少需准备长度为多少的此种新型材料?解:(1)在△ABC 中,由余弦定理,得2222cos AB AC AB AC A BC +-⋅=.∴22o 2cos1201x y xy +-=,即221x y xy ++=. …………… 4分 又x > 0,y > 0,∴x ,y 满足的关系式为221x y xy ++=(0 <x < 1). …………… 5分 (2)设需准备此种新型材料的长度为a ,则必须要x +y ≤a 恒成立. ∵221x y xy ++=,∴2()1x y xy +-=. …………… 7分 ∵2)2x y xy +≤(,∴22()1()2x y x y ++-≤. …………… 11分 则24()3x y +≤,∴x y + …………… 14分当且仅当x y ==(百米)时取“=”.∴a x +y ≤a 恒成立.19.(本小题满分16分)已知数列{a n }的前n 项和为S n ,满足a n ≠ 0,11112n n n n n n n a S a S a a -+++-=,*n ∈N .(1)求证:12n n n S a -=; (2)设1nn n a b a +=,求数列{b n }的前n 项和T n . 解:(1)证明:∵11112n n n n n n n a S a S a a -+++-=,a n ≠ 0,∴1112n n n n nS Sa a -++-=. ……………… 2分ABC则21211S S a a -=,32322S Sa a -=,…,2112n n n n n S S a a ----=(n ≥2,*n ∈N ). 以上各式相加,得211122n n n S Sa a --=+++. ……………… 4分∵111S a =,∴1121n n n S a --=-.∴12n n n S a -=(n ≥2,*n ∈N ). …………… 7分 ∵n = 1时上式也成立,∴12n n n S a -=(*n ∈N ). …………… 8分 (2)∵12n n n S a -=,∴112n n n S a ++=.两式相减,得11122n n n n n a a a -++=-.即11(21)2n n n n a a -+-=. …………… 10分 则11122n n n n a b a -+==-. …………… 12分12231nn n a a a T a a a +=+++ =211112(1)222n n --++++…………… 14分 =11222n n --+. …………… 16分20.(本小题满分16分)已知函数2()||f x ax x a =--.(1)当3a =时,求不等式()7f x >的解集;(2)当0a >时,求函数()f x 在区间[3,)+∞上的值域. 解:(1)当3a =时,不等式()7f x >,即23|3|x x --> 7.① 当x ≥3时,原不等式转化为:2340x x -->.………………… 1分解得1x <-或43x >.结合条件,得x ≥3; ………………… 3分 ② 当3x <时,原不等式转化为:23100x x +->. ……………… 4分解得2x <-或53x >.结合条件,得2x <-或533x <<. ………………… 6分综上,所求不等式解集为5{|2}3x x x <->或.………………… 7分(2)当0 <a ≤3时,2()f x ax x a =-+211()24a x a a a=-+-. ① 若132a <,即136a <≤时,∵()f x 在[3,)+∞上单调增,∴值域为[103,)a -+∞;…………… 10分 ② 若132a ≥,即106a <≤时,值域为1[,)4a a-+∞. …………… 13分 当3a >时,22(),()(3).ax x a x a f x ax x a x a ⎧-+⎪=⎨+-<⎪⎩≥≤∵()f x 在[3,)+∞上单调增,∴值域为[83,)a ++∞. 综上所述:当106a <≤时,()f x 值域为1[,)4a a -+∞;当136a <≤时,()f x 值域为[103,)a -+∞; 当3a >时,()f x 值域为[)83,a ++∞. …………… 16分 (每类3分,没有综上所述不扣分)。
2015~2016学年度第一学期期末测试七 年 级 数 学本卷分值 100分,考试时间120分钟.一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1.34-的相反数是A .43-B .43C .34-D .342.单项式225x y-的系数和次数分别是A .-2,2B .2-,3C .25-,2D .25-,33.在下面的四幅图案中,通过平移图案(1)得到的是图案4.下列各组中的两项,不是..同类项的是 A .22x y 与23x y - B .3x 与3xC .232ab c -与32c b aD .1与-18 5.若关于x 的方程710x a +-=解是1x =-,则a 的值等于A .8B .-8C .6D .-6 6.从三个不同方向看一个几何体,得到的三视图 如图所示,则这个几何体是A .圆锥B .圆柱C .棱锥D .球7.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中不正确...的是 A .ab<0 B .a -b >0 C .a +b >0 D .ab <0b 0a(1) A B C D(第6题)(第7题)8. 如图,直线a ,b 被直线c 所截,则下列说法中错误..的是 A .∠1与∠2是邻补角 B .∠1与∠3是对顶角C .∠3与∠4是内错角D .∠2与∠4是同位角 9. 如图,点D 在直线AE 上,量得∠CDE=∠A=∠C ,有以下三个结论:①AB ∥CD ;②AD ∥BC ;③∠B=∠CDA .则正确的结论是A .①②③B .①②C .①D .②③ 10.王力骑自行车从A 地到B 地,陈平骑自行车从B 地到A 地,两人都沿同一公路匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距36 km ,到中午12时,两人又相距36 km .求A 、B 两地间的路程.可设A 、B 两地间的路程为x km ,则下列所列方程中:①363624x x -+=;②36363622x -+=;③36362x -=⨯; ④3636x -=;其中正确的个数为A .1个B .2个C .3个D .4个二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 11.用科学记数法表示9600000为 ▲ .12.点A 、B 在同一条数轴上,其中点A 表示的数为-1,若点B 与点A 之间距离为3,则点B 表示的数为 ▲ . 13.已知2a b -的值是2015,则124a b -+的值等于 ▲ .14.若23(2)0x y -++=,则16xy = ▲ .15.飞机的无风航速为a 千米/小时,风速为20千米/小时.则飞机逆风飞行4小时的行程是 ▲ 千米.16.某服装店以每件180元的价格卖出两件衣服,其中一件 盈利25%,另一件亏损25%,若盈利记为正,亏损记为负,则该店卖这两件衣服总的盈亏金额是 ▲ 元.17.如图,把小河里的水引到田地A 处就作AB ⊥l ,垂足 为B ,沿AB 挖水沟,这条水沟最短的理由是 ▲ . 18. 如图,将三角板与两组对边分别平行的直尺贴在一起, 使三角板的顶点C (AC ⊥BC )落在直尺的一边上,若∠1=24°,则∠2等于 ▲ 度. 19.如图,平面内有公共端点的6条射线OA 、OB 、OC 、 OD 、OE 、OF ,从射线OA 开始按逆时针方向依次在 射线上写上数字1、2、3、4、5、6、7…,则数字 “2016”应在射线 ▲ 上.20.已知线段AB =12㎝,若M 是AB 的三等分点,N 是AM 的中点,则线段BN 的长度为 ▲ ㎝.三、解答题(本大题共8小题,共60分.请在答题卡指定区域.......内作答,解答时应写出文ac1 234 A B C DE(第8题) (第9题)(第17题)(第18题)(第19题)字说明、证明过程或演算步骤) 21.(每小题4分,共16分)计算:(1) (20)(3)(5)(7)-++---+;(2) 111()(12)462+-⨯-;(3) 322(2)(3)(4)2(3)(2)⎡⎤-+-⨯-+--÷-⎣⎦;(4) 471127326631440-+⨯-⨯÷.22.(每小题3分,共6分)(1)如图,点D 是线段AB 的中点,C 是线段AD 的中点,若AB =4㎝,求线段CD的长度.(2)如图,货船A 在灯塔O 的北偏东53°35′的方向上,客船B 在灯塔O 的南偏东28°12′的方向上.求∠AOB 的度数.23.(每小题4分,共8分)先化简,再求值:(1)求22113333a abc c a c +--+的值,其中1,2,36abc =-==-;(2)求2211312()()2323x x y x y --+-+的值,其中22,3x y =-=.24.(每小题4分,共8分)解方程: (1)72(33)20x x +-=; (2)121224x x+--=+.25.(本小题6分)如图,AD ∥BC ,∠1=60°,∠B =∠C ,DF 为∠ADC 的平分线. (1)求∠ADC 的度数;(2)试说明DF ∥AB . 解:(1)根据题意完成填空(括号内填写理由): ∵AD ∥BC (已知)∴∠B =∠1( ) 又∵∠B =∠C (已知) ∴ =∠1=60°C D (第22题(2)) A O B 西 东 北南 (第22题(1))又∵AD ∥BC (已知)∴∠ADC +∠C =180°( ) ∴∠ADC = .(2)请你完成第2题的解答过程:26.(本小题4分)列方程解应用题:某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名? 27.(本小题6分)如图:已知AB ∥CD ,∠ABE 与∠CDE 两个角的角平分线相交于点F . (1)如图1,若∠E =78°,则∠BFD = °;(2)如图2,若∠ABM =14∠ABF ,∠CDM =14∠CDF ,则∠M 和∠E 之间的数量关系为 ;(3)如图2,∠ABM =1n ∠MBF ,∠CDM =1n∠MDF ,设∠M =m °,直接用含有n ,m 的代数式表示出∠E = °.28.(本小题6分)如图,在∠AOB 的内部作射线OC ,使∠AOC 与∠AOB 互补.将射线OA ,OC 同时绕点O 分别以每秒12°,每秒8°的速度按逆时针方向旋转,旋转后的射线OA ,OC 分别记为OM ,ON ,设旋转时间为t 秒.已知t <30,∠AOB =114°. (1)求∠AOC 的度数;(2)在旋转的过程中,当射线OM ,ON 重合时,求 t 的值; (3)在旋转的过程中,当∠COM 与∠BON 互余时,求 t 的值.BE DFACBE DFA CM 图1图2CMNB(第27题)。
XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案XXX2015-2016学年度第一学期期末考试高一数学一、选择题:本大题共8小题,共40分。
1.设全集 $U=\{1,2,3,4,5,6\}$,集合 $M=\{1,4\}$,$N=\{1,3,5\}$,则 $N\cap (U-M)=()$A。
$\{1\}$ B。
$\{3,5\}$ C。
$\{1,3,4,5\}$ D。
$\{1,2,3,5,6\}$2.已知平面直角坐标系内的点 $A(1,1)$,$B(2,4)$,$C(-1,3)$,则 $AB-AC=()$A。
$22$ B。
$10$ C。
$8$ D。
$4$3.已知 $\sin\alpha+\cos\alpha=-\frac{1}{\sqrt{10}}$,$\alpha\in(-\frac{\pi}{2},\frac{\pi}{2})$,则 $\tan\alpha$ 的值是()A。
$-\frac{3}{4}$ B。
$-\frac{4}{3}$ C。
$\frac{3}{4}$ D。
$\frac{4}{3}$4.已知函数 $f(x)=\sin(\omega x+\frac{\pi}{4})$($x\inR,\omega>0$)的最小正周期为 $\pi$,为了得到函数$g(x)=\cos\omega x$ 的图象,只要将 $y=f(x)$ 的图象():A.向左平移 $\frac{\pi}{4}$ 个单位长度B.向右平移$\frac{\pi}{4}$ 个单位长度C.向左平移 $\frac{\pi}{2}$ 个单位长度D.向右平移$\frac{\pi}{2}$ 个单位长度5.已知 $a$ 与 $b$ 是非零向量且满足 $3a-b\perp a$,$4a-b\perp b$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{4}$ B。
$\frac{\pi}{3}$ C。
2015-2016学年度高二年级期末教学质量检测理科数学试卷一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.“0x >”是0>”成立的A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件 2.抛物线24y x =的焦点坐标是A .(1,0)B .(0,1)C .1(,0)16 D .1(0,)163.与圆8)3()3(22=-+-y x 相切,且在y x 、轴上截距相等的直线有A .4条B .3条C .2条D .1条 4.设l 是直线,,αβ是两个不同的平面,则下列结论正确的是A .若l ∥α,l ∥β,则//αβB .若//l α,l ⊥β,则α⊥βC .若α⊥β,l ⊥α,则l ⊥βD .若α⊥β, //l α,则l ⊥β 5.已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则⌝p 是A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<06.设(2,1,3)a x = ,(1,2,9)b y =-,若a 与b 为共线向量,则A .1x =,1y =B .12x =,12y =-C .16x =,32y =-D .16x =-,32y =7.已知椭圆2215x y m +=的离心率5e =,则m 的值为A .3B .3C D .253或38.如图,在正方体1111ABCD A BC D -中,,,M N P 分别是111,,B B B C CD 的中点,则MN 与1D P 所成角的余弦值为A. BCD .9.如图,G 是ABC ∆的重心,,,OA a OB b OC c ===,则OG =A .122333a b c ++B .221333a b c ++C .222333a b c ++D .111333a b c ++10.下列各数中,最小的数是A .75B .)6(210 C .)2(111111 D .)9(8511.已知双曲线22214x yb-=的右焦点与抛物线y 2=12x 的焦 点重合,则该双曲线的焦点到其渐近线的距离等于 A . B C .3 D .512、在如图所示的算法流程图中,输出S 的值为 A 、 11 B 、12 C 、1 D 、15二、填空题:本大题共4小题,每小题5分,满分20分13.若直线x +a y+2=0和2x+3y+1=0互相垂直,则a = 14.若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的体积为 。
一、主要存在的问题及其分析1、选择题和填空题得分率80%左右,选择题错得最多的是第11,12题,填空题错得最多的是第16题。
2、第17题,此题考察了平面向量的线性运算及数量积的坐标表示,涉及的知识面较全。
1、学生做题中较容易把向量平行的坐标表示与数量积的坐标表示混淆。
2、计算出现符号弄反的较多,估计是学生粗心所致。
3、第18题,本题有2个小题。
第(1)小题主要考查同角三角函数的基本关系,第(2)小题主要考查向量数量积,模的坐标表示及向量夹角余弦值,属于基础题型,基本上是公式的应用,但平均分不高,大概有6分。
存在问题主要是公式记不牢,计算不准确,对此,要加强对学生基本功,计算能力的提高。
4、第19题,本题主要考查学生对三角函数周期对称轴、对称中心、零点等方面知识的记忆与理解,属于中等偏易题型。
从学生的答题情况来看并不理想。
能拿满分12分的估计只有的学生,能拿到6分的也只有不到,甚至很多学生拿0分。
从学生答案分析,只要能对三角函数的周期、对称轴、对称中心熟练记忆与正确理解的都能拿到12分,但不少同学没有熟记或错误理解这些知识,从而没有答对。
例如对零点理解为坐标点,对称轴记为对称中心等。
另外还有部分同学因计算能力不好,在解方程时出现错误。
今后教学建议:(1)加强基础知识教学;(2)加强计算能力培养;(3)鼓励学生积极参与课堂教学积极应用所学的知识解题,答题。
5、第20题,考查目标:向量的坐标运算(加、减、数乘、数量积、求模均有考查)试题评价:该题目命题角度灵活,能很好体现向量法解决平面几何问题,在解决过程中几乎考查了“向量坐标运算”所有知识点。
能很好的考查学生对向量有关概念,定理的掌握。
难度:易主要存在问题:1、向量表示不规范,漏写“→”。
2、求对角线(求模)漏求另一条。
3、向量坐标求法(好多用起点减终点)4、第(2)问主要运算出错。
补救措施:1、加强基本概念、定理的讲解;2、加强基本题型的训练,让学生理解,巩固向量有关概念、定理等;3、加强答题书写的规范性;4、平时加强限时训练,提高计算的准确度、速度;6、第21题:本题主要考查函数的单调性、零点存在性定理和对数函数三个知识点,该题得分率偏低,大部分同学没能推理出最后的答案,平均得分7.1分,得分率为75.1%,主要存在的问题是推理问题,少部分学生是题目看不明。
1.已知数列{n a }满足:11a =,2210,1n n n a a a +>-= ()*n N ∈,那么使n a <3成立的n 的最大值为( ) A .2 B .3 C .8 D .9 【答案】C 【解析】试题分析:由题知{}2n a 是等差数,221(1)1n a a n n =+-⨯=,3n a <,29n a ∴<,9n ∴<,则n 的最大值为8.故选C.2.已知数列{}n a 的前n 项和n n S n 92-=,第k 项满足1310<<k a ,则=k ( ) A .9 B .10 C .11 D .12 【答案】C 【解析】试题分析:由数列{}n a 的前n 项和n n S n 92-=,可求得通项公式210n a n =-,所以1021013k <-<,解得1011.5k <<,因为*k N ∈,所以11k =,故选C.3.已知数列{}n a 满足134()n n a a n N +++=∈且19a =,其前n 项和为n S ,则满足1|6|125n S n --<的最小正整数n 为( )A. 6B.7C.8D.9 【答案】B4.已知数列{}n a 满足712,83,8n n a n n a a n -⎧⎛⎫-+>⎪ ⎪=⎝⎭⎨⎪≤⎩,若对于任意n N *∈都有1n n a a +>,则实数a 的取值范围是( )A .10,3⎛⎫ ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .11,32⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】D5.已知数列{}n a 的通项公式为327n a n =-,记数列S n 的前n 项和为,则使S 0n ≤成立的n 的最大值为( ) A .4 B .5 C .6 D .8 【答案】C 【解析】 试题分析:123433333,1,3,32175227237247a a a a ==-==-==-==⨯-⨯-⨯-⨯-,531257a ==⨯-6332675a ==⨯-,7332777a ==⨯-,…,所以使0n S ≤成立的n 的最大值为6,故选C.6.已知数列{}n a 是递增数列,且对任意*n N ∈都有2n a n bn =+成立,则实数b 的取值范围是( ) A .7(,)2-+∞ B .(0,)+∞ C .(2,)-+∞ D .(3,)-+∞ 【答案】D 【解析】试题分析:因为*n N ∈,{}n a 递增,所以322b -<,3b >-.故选D . 7.若,a ∈N *,且数列{a n }是递增数列,则a 的值是( )A .4或5B .3或4C .3或2D .1或2 【答案】A8.已知等差数列}{n a 的前n 项和为n S ,满足95S S =,且01>a ,则n S 中最大的是( ) A .6S B .7S C .8S D .15S 【答案】B 【解析】试题分析:由95S S =,得()67897820a a a a a a +++=+=, 由01>a 知,0,087<>a a ,所以7S 最大,故B 正确.9.已知数列{}n a 的前n 项和为n S ,满足515S =-,3172d <<,则当n S 取得最小值时n 的值为( ) A .7 B .8 C .9 D .10 【答案】C 【解析】试题分析:由等差数列求和公式得251551522d d S a ⎛⎫=⨯+-⨯=- ⎪⎝⎭ ,整理得132a d =--,故22215323222222n d d d d d d S n a n n d n n n ⎛⎫⎛⎫⎛⎫=+-=+---=+-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,对称轴35=2n d +,因为3172d <<,n Z ∈,故=9n 时取得最小值. 10.已知n S 是等差数列{}n a 的前n 项和,且675S S S >>,给出下列五个命题:①0d <;②110S >;③120S <;④数列{}n S 中的最大项为11S ;⑤67a a >其中正确命题的个数是( )A .5B .4C .3D .1 【答案】C11.在数列}{n a 中,12a =,11(1)(1)220()n n n n a a a a n N *++--+-=∈,若5150n a <,则n 的最小值为__________. 【答案】100 【解析】试题分析:令1n n a b -=,则∵11(1)(1)220()n n n n a a a a n N *++--+-=∈,∴11220n n n n b b b b +++-=,∴11112n n b b +-=,∵12a =,∴111b =,∴1111(1)22n n n b +=+-=,∴21n b n =+,∴211n a n -=+,∴211n a n =++,∵5150n a <,∴2511150n +<+,∴99n >,∴n 的最小值为100.所以答案应填:100. 12.数列{}n a 满足141,1211=+=+n n a a a ,记2232221n n a a a a S +⋅⋅⋅+++=,若3012m S S n n ≤-+对任意*∈N n 恒成立,则正整数m 的最小值为_______. 【答案】10 【解析】 试题分析:由1n a +=,得221114n n a a +-=,可知数列21n a ⎧⎫⎨⎬⎩⎭是以首项为1,公差为4的等差数列,所以()2111443nn n a =+-⨯=-,则2143n a n =-,22212n nS a a a =+++,考查()()222212*********418589n n n n n n n S S S S a a a n n n ++++++---=--=--+++,又1111082858289n n n n ⎛⎫⎛⎫-+->⎪ ⎪++++⎝⎭⎝⎭,即()()212311*********n n n n S S S S n n n +++---=-->+++,则可知数列{}21n n S S +-是一个递减数列,所以数列{}21n n S S +-的最大项为22313211149545S S a a -=+=+=,又3012m S S n n ≤-+对任意*∈N n 恒成立,所以144530m ≤,即283m ≥,所以m 的最小值是10.13.记数列{a n }的前n 项和为S n ,若不等式222122n n S a ma n+≥对任意等差数列{a n }及任意正整数n 都成立,则实数m 的最大值为____________. 【答案】11014.已知n S 为数列}{n a 的前n 项和,1=1a ,2=(1)n n S n a +,若存在唯一的正整数n 使得不等式2220n n a ta t --≤成立,则实数t 的取值范围为_______.【答案】1(2,1][,1)2-- 【解析】试题分析:由2(1)n n S n a =+得,当2n ≥时有112n n S na --=,所以11222(1)n n n n n a S S n a na --=-=+-,即1(1)n n n a na --=,11n n a na n -=-,又11a =,所以121211n n nn n n a a a a a n a a a a ---=⋅⋅⋅==,所以2220n n a ta t --≤等价于2220n tn t --≤,设22()2f n n tn t =--,由于2(0)20f t =-≤,所以由题意有2222(1)120(2)2220f t t f t t ⎧=--<⎪⎨=--≥⎪⎩,解之得21t -<≤-或112t ≤<,所以应填1(2,1][,1)2--. 15.已知等比数列{}n a 的首项为43,公比为13-,其前n 项和为n S ,若23n nS S N ≤-≤M 对n *∈N 恒成立,则M -N 的最小值为 . 【答案】251216.已知数列{}n a 通项为98.5n n a n -=-,若n a ≤M 恒成立,则M 的最小值为 .【答案】2 【解析】试题分析:根据题意可知M 的最小值为数列的最小项,因为90.518.58.5n n a n n -==---,可知当8n =时取得最小值,而82a =,所以M 的最小值为2.17.已知数列{}n a 的前n 项和为n T ,且点(,)n n T 在函数23122y x x =-上,且423log 0n n a b ++=(n N *∈).(I )求{}n b 的通项公式;(II )数列{}n c 满足n n n c a b =⋅,求数列{}n c 的前n 项和n S ;(III )记数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n B ,设21n n nd b B =⋅,证明:1212n d d d +++<.【答案】(I )n n b 41=;(II )nn n S ⎪⎭⎫⎝⎛+-=4132332;(III )证明见解析.试题解析:(I )由点()n T n ,在函数x x y 21232-=上,得:n n T n 21232-= (ⅰ)当1=n 时,1212311=-==T a . (ⅱ)当2≥n 时,231-=-=-n T T a n n n ,∴23-=n a n . 又∵0log 324=++n n b a , ∴n n n b 414==- (II )∵()nn n n n b a c ⎪⎭⎫⎝⎛-=⋅=4123且n n c c c c S +++=321,∴()nn n S ⎪⎭⎫⎝⎛⨯-++⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛⨯=4123417414411321 ……①()1432412341741441141+⎪⎭⎫⎝⎛⨯-++⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛⨯=n n n S …②由①-②得:()132412341414134143+⎪⎭⎫⎝⎛--⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=n n n n S()141412341141116134143+-⎪⎭⎫ ⎝⎛---⎪⎭⎫⎝⎛-+=n n n n S整理得:nn n S ⎪⎭⎫⎝⎛+-=4132332.18.已知各项都是正数的数列{}n a 的前n 项和为n S ,212n n n S a a =+,n N *∈ (1) 求数列{}n a 的通项公式;(2) 设数列{}n b 满足:11b =,12(2)n n n b b a n --=≥,数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T ,求证:2n T <; (3) 若(4)n T n λ≤+对任意n N *∈恒成立,求λ的取值范围. 【答案】(1)12n a n =;(2)证明见解析;(3)29≥λ. 【解析】试题分析:(1)本小题是已知n S 与n a 的关系求通项公式的题型,方法是先由11a S =,求出1a ,然后利用当2n ≥时,1n n n a S S -=-得到n a 与1n a -的关系,再求通项;(2)由已知得1n n b b n --=,已知前后项的差,因此可用累加法求得通项,即由121321()()()n n n b b b b b b b b -=+-+-++-得(1)2n n n b +=,从而用裂项求和法求出1{}nb 的前n 项和n T ,并证得题设结论;(3)不等式2(4)1n λn n ≤++恒成立,可变形为2(1)(4)n λn n ≥++,为此只要求得2(1)(4)nn n ++的最大值即可,这可由基本不等式得到结论.试题解析:(1)1n =时,211111122a a a a =+∴= 21112211211121222n n n n n n nn n n n S a a a a a a a S a a+++--⎧=+⎪⎪⇒=-+-⎨⎪=+⎪⎩ 111()()02n n n n a a a a --⇒+--= 1102n n n a a a ->∴-=∴{}n a 是以12为首项,12为公差的等差数列 12n a n ∴=(3)由2(4)1n λn n ≤++得224(1)(4)5n n n n n λ≥=++++, 当且仅当2n =时,245n n++有最大值29,29λ∴≥19.已知正项数列{}n a 的前n 项和为n S ,且()()241n n S a n N *=+∈.(1)求数列{}n a 的通项公式; (2)设n T 为数列12n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,证明:()213n T n N *≤<∈. 【答案】(1)21n a n =-;(2)证明见解析. 【解析】试题分析:(1)已知()241n n S a =+,要求通项公式,可再写一式2n ≥时,()21141n n S a --=+,利用1n n n a S S -=-,把两式相减可得n a 的递推关系,本题可得{}n a 是等差数列,易得通项;(2)要证明题设不等式,必须求得和n T ,由于12211(21)(21)2121n n a a n n n n +==--+-+,即可用裂项相消法求得和n T 1121n =-+,注意到*n N ∈,不等式易得证. 试题解析:(1)1n =时,11a =;2n ≥时,()21141n n S a --=+,又()241n n S a =+,两式相减得()()1120n n n n a a a a --+--=,{}10,2,n n n n a a a a ->∴-=为是以1位首项,2为公差的等差数列,即21n a n =-.20.已知数列{}n a 的前n 项和为n S ,点,n S n n⎛⎫⎪⎝⎭在直线11122y x =+上. (1)求数列{}n a 的通项公式;[来 (2)设()()13211211n n n b a a +=--,求数列{}n b 的前n 项和为n T ,并求使不等式20n kT >对一切*n N ∈都成立的最大正整数k 的值.【答案】(1)5n a n =+;(2)max 19k =. 【解析】试题分析:(1)由题意,得11122n S n n =+,化为211122n S n n =+,利用递推关系即可得出;(2)利用“裂项求和”可得Tn ,再利用数列的单调性、不等式的性质即可得出. 试题解析:(1)由题意,得11122n S n n =+,即211122n S n n =+故当2n ≥时,()()2211111111152222n n n a S S n n n n n -⎛⎫⎡⎤=-=+--+-=+ ⎪⎢⎥⎝⎭⎣⎦ 当n=1时,11615a S ===+, 所以5n a n =+.。
2015~2016学年第二学期期中考试三校联考高 一 年级 数学 试卷命题学校:张家港高级中学 命题人:赵松一、填空题:本题共14小题,每小题5分,共70分.请把答案填写在答题纸上..... 1.已知集合{}{}{}1,1,3,2,21,1a A B AB =-=-=,则实数a 的值为 ▲ .2.化简:sin13ocos17o+cos13osin17o= ▲ .3.已知数列{n a }的通项公式为22n a n n=+,那么110是它的第 ▲ 项. 4. 不等式122x x ->+的解集是 ▲ . 5.设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥-1,x +y ≤3,x ≥0,y ≥0,则z =x -2y 的取值范围是 ▲ .6.若数列1,,,,4a b c 成等比数列,则b 的值为____ ▲ __.7.已知△ABC 的三个内角A 、B 、C 成等差数列,且边a=4,c=3,则△ABC 的面积为_ ▲ __.8.等差数列{}n a 前n 项和为n S ,若7916a a +=,77S =,则12a = ▲ .9.若关于x 的不等式2260tx x t -+<的解集(,)(1,)a -∞+∞,则a 的值为 ▲ .10.已知数列{}n a 满足===-3711,2,5a a a a a nn n 则▲ .11.在等式cos()(1)1=★的括号中,填写一个锐角,使得等式成立,这个 锐角是 ▲ .12.已知数列{a n }的前n 项和S n =n 2-4n +2,则|a 1|+|a 2|+…+|a 10|= ▲ .13.设△ABC 的面积为S ,20S AB AC ⋅=.若||3BC =,则S 的最大值为 ▲ .14.已知f (x )是定义在R 上不恒为零的函数,对于任意的x ,y ∈R ,都有f (x ·y )=xf (y )+yf (x ) 成立.数列{a n }满足a n =f (2n )(n ∈N *),且a 1=2.则数列的通项公式a n = ▲ .二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.已知函数()sin()cos 6f x x x π=++(1)求函数()f x 的最大值,并写出当()f x 取得最大值时x 的取值集合;(2)若(0,),()265f ππαα∈+=,求()2f α的值 .16. 已知各项均为正数的等比数列{}n a 中,244,16a a ==.(1)求公比q ;(2)若35,a a 分别为等差数列{}n b 的第3项和第5项,求数列{}n b 的通项公式.17.在四边形中ABCD ,已知9,6,2AB BC CP PD ===. (1)若四边形中ABCD 是矩形,求AP BP ⋅的值;(2)若四边形中ABCD 是平行四边形,且AP BP ⋅=6,求AB 与AD 夹角的余弦值.18.已知函数2()3f x x ax =++.(1)当x R ∈时,()f x a ≥恒成立,求a 的取值范围; (2)当[]2,2x ∈-时,()f x a ≥恒成立,求a 的取值范围.19.如图,甲船从A 处以每小时30海里的速度沿正北方向航行,乙船在B 处沿固定方向匀速航行,B 在A 北偏西0105方向且与A相距20分钟到达C处时,乙船航行到甲船的北偏西0120方向的D 处,此时两船相距10海里. (1)求乙船每小时航行多少海里? (2)在C 处的北偏西030方向且与CE ,暗礁E海里范围内为航行危险区域.问:甲、乙两船按原航向和速度航行有无危险? 请说明理由.20.设数列{a n },a 1=1,1122n n n a a +=+,数列{b n },12n n n b a -=.(1)求证:数列{b n }为等差数列,并求出{b n }的通项公式; (2)数列{}n a 的前n项和为n S ,求n S ; (3) 正数数列{d n }满足n d ={d n }的前n 项和为D n ,求不超过100D 的最大整数的值.答案:一.填空题:1.1 2.123.4 4.{}|52x x -<<- 5.[]3,3- 6.2 7.3 3 8.15 9.-3 10. 4 11.040 12.66 1314.n ·2n 解答题:15.(1)f(x)=23sinx+21cosx+cosx=3sin(x+)3π……………….. 3分 当x+3π=2k )2(2πππ∈+k 即x=2k 时)(6Z k ∈+ππ …………….5分f(x)取得最大值3. ……………6分 此时x 的取值集合为}⎩⎨⎧∈+=Zk k x x ,62ππ ……………….7分(2)由(1)得f(x)=)3sin(3π+x 又f(533cos 3)36sin(3)6==++=+αππαπα 即cos 53=α ……….8分 54sin )2,0(=∴∈απα ………………….10分2524cos sin 22sin ==ααα 2572cos -=α ………………….12分 ααπαα2cos 232sin 23)32sin(3)2(+=+=∴f ………………... 13分 =5021324- ………………... 14分16.解:(1)由已知得21341416a a q a a q ==⎧⎪⎨==⎪⎩,∴24q =, ……4分 又0q >,∴2q =. ……6分(2)由(1)可得2n n a =.∴33558,32b a b a ====. ……8分设等差数列{}n b 的公差为d ,则3281253d -==-, ……10分 ∴()83121228n b n n =+-⨯=-. ……14分17.(1)13AP AD DP AD DC =+=+uu u r uuu r uu u r uuu r uuu rQ23B P B C C P B C D C=+=-u ur u uu r u ur u uu r u u ur ……3分 12()()33AP BP AD DC BC DC ∴⋅=+-uu u r uu r uuu r uuu r uu u r uuu rQ 四边形ABCD 是矩形 0AD DC ∴⋅=uuu r uuu r (2)分22()36811899AP BP AD BC DC ∴⋅=⋅-=-⨯=uu u r uu r uuu r uu u r uuu r …….7分②12()()633AP BP AD AB AD AB ∴⋅=+-=uu u r uu r uuu r uu u r uuu r uu u r……10分2212639AD AB AD AB ∴-⋅-⨯=uuu r uu u r uuu r uu u r 1123AB AD ∴⋅=uuu r uuu r …..12分设AB uu u r 与AD uuu r 的夹角为θ,则196cos 123θ⨯⨯= …….13分2c o s 3θ∴=即AB uu u r 与AD uuu r 的夹角的余弦值为23 …….15分18.(1),()x R f x a ∈≥恒成立,230x ax a ∴++-≥恒成立, (2)则24(3)0,6 2.a a a ∆=--≤∴-≤≤ .........5 故a 的取值范围是[]6,2- (6)(2)22()()3,24a a f x x =++-讨论对称轴与[]2,2-的位置关系,得到a 的取值满足下列条件:222222,,22(2)(2)34a a a a f a f a a ⎧-<-<⎧⎧⎪-≤--≥⎪⎪⎪⎨⎨⎨⎪⎪⎪-≥≥-≥⎩⎩⎪⎩或或, (12)解得72a -≤≤, (14)∴当[]2,2x ∈-时,()f x a ≥恒成立,a 的取值范围为[]7,2- (15)19.(1)连结AD ,由题意知CD=10,AC=060,10306020=∠=⋅ACD 是等边三角形ACD ∆∴ …………………. 2分∴AD=10, 又∠DAB=450 (3)分在10045cos 2AD BD ABD 0222=⋅-+=∆AB AD AB 中,由余弦定理得 BD=10 , V=10⋅3=30海里 ………………… 5分答:乙船的速度为每小时30海里 ………………….6分 (2) 延长CE 交BD 于F,过E 分别作EP ,于P AC ⊥EH ⊥BD 于H233430sin 3383000>==∴=∠EP ECP 甲船没有危险 …………………………10分3310tan3010CF 60,30000===∠∴=∠又 DFC HDC0Rt FEH EH 133EF ∴=∆==<在中,..15乙船有危险 ……………………… 16分20.(1)由1122n n n a a +=+,得11221n n n n a a -+=+. ………………2分 又12n n n b a -=,所以11n+n b b +=又b 1=a 1=1, ………………4分 所以数列{b n }是以1为首项,1为公差的等差数列.n b n =. ……………….6分 (2)12n n na -= ………………..7分 所以01211232222n n n S -=++++①,123112322222n nnS =++++,② 由①-②, 得112111[1()]111112212()2122222222212n n n n n n n n n n n n S ---=-=-=--=--+++++ (9)所以1242n n nS -=-+. …………….10分 (3)22222222211(1)(1)1(1)(1)nn n n n d n n n n ++++=++=++ ………………11分(1)111111(1)(1)1n n n d n n n n n n ++==+=+-+++, ……………….14分 所以100111111111(1)(1)(1)(1)101122334100101101D =+-++-++-+++-=-,.15分 所以,不超过100D 的最大整数为100. ……………..16分。
【高一】江苏省苏州市五市四区高一上学期期末调研测试试题(数学)试卷说明:一、填空题:本大题共14个小题,每小题5分,共计70分,请把答案直接填写在答题卡相应的位置上。
函数的最小正周期是.函数的定义域为___ _____.已知向量,若与平行,则实数= .的值域是__ ____.,则__ ___.已知函数的零点在区间内,则.,,则_ ____.如图是函数的图象,则其解析式是_____ ______.9、已知则_ .已知f(x)是定义在上的奇函数,当时,,若函数f(x)在区间[-1,t]上的最小值为-1,则实数t的取值范围是.,则. 12、如图, 在等腰三角形中, 底边, , , 若, 则=_____.13、如图,过原点的直线与函数的图象交于两点,过作轴的垂线交函数的图象于点,若平行于轴,则点的坐标是 _ .14、已知,函数上的最大值等于,则的值为二、解答题:本大题共6小题,计90 分。
解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内。
(本题满分14分).(1) 求的值;(2) 若,求的值;(本题满分14分)中,,,,。
(1)用表示;(2)若,,,分别求和的值。
考点:平面向量的基本定理及数量及运算.17、(本题满分14分).(1)的值域为,求;(2),若,求实数的取值范围.18.(本题满分16分某厂生产某种产品(百台),总成本为(万元),其中固定成本为2万元,每生产1百台,成本增加1万元,销售收入(万元),假定该产品产销平衡。
(1)若要该厂不亏本,产量应控制在什么范围内?(2)该厂年产多少台时,可使利润最大?(3)求该厂利润最大时产品的售价。
19.(本题满分16分)已知点,是函数图象上的任意两点,且角的终边经过点,若时,的最小值为的单调递增区间;(3)当时,不等式恒成立,求实数的取值范围. 试题解析:解:(1)角的终边经过点,…………………2分20. (本题满分16分).(1)若,函数在区间上是单调递增函数,求实数的取值范围;(2)设,若对任意恒成立,求的取值范围.【解析】每天发布最有价值的高考资源每天发布最有价值的高考资源 1 1 每天发布最有价值的江苏省苏州市五市四区高一上学期期末调研测试试题(数学)感谢您的阅读,祝您生活愉快。
某某省某某第一中学2015-2016学年高一上学期期末考试数学一、选择题:共10题1.下列说法中,正确的是A.幂函数的图象都经过点(1,1)和点(0,0)B.当a=0时,函数y=xα的图象是一条直线C.若幂函数y=xα的图象关于原点对称,则y=xα在定义域内y随x的增大而增大D.幂函数y=xα,当a<0时,在第一象限内函数值随x值的增大而减小【答案】D【解析】本题主要考查幂函数的图象与性质.由幂函数的图象与性质可知,A错误;当x=0时,y=0,故B错误;令a=-1,则y=x-1,显然C错误;故D正确.2.如图所示,则这个几何体的体积等于A.4B.6C.8D.12【答案】A【解析】由三视图可知所求几何体为四棱锥,如图所示,其中SA⊥平面ABCD,SA=2,AB=2,AD=2,CD=4,且四边形ABCD为直角梯形,∠DAB=90°,∴V=SA×(AB+CD)×AD=×2××(2+4)×2=4,故选A.3.下列关于函数y=f(x),x∈[a,b]的叙述中,正确的个数为①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;③函数f(x)的零点是方程f(x)=0的根,f(x)=0的根也一定是函数f(x)的零点;④用二分法求方程的根时,得到的都是根的近似值.A.0B.1C.3D.4【答案】B【解析】本题主要考查方程与根、二分法.由零点的定义知,零点是曲线与x轴交点的横坐标,故①错误;当f(a)=0时,无法用二分法求解,故②错误;显然,③正确;若f(x)=2x-x-1,在区间(-1,1)上的零点,用二分法,可得f(0)=0,显然,④错误.4.如图,在三棱锥S-ABC中,E为棱SC的中点,若AC=,SA=SB=SC=AB=BC=2,则异面直线AC与BE所成的角为A.30°B.45°C.60°D.90°【答案】C【解析】本题主要考查异面直线所成的角.取SA的中点D,连接BD、DE,则,是异面直线AC与BE所成的角或补角,由题意可得BD=BE=,DE=,即三角形BDE是等边三角形,所以5.如图,正方体ABCDA1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是A.AC⊥BEB.EF∥平面ABCDC.直线AB与平面BEF所成的角为定值D.异面直线AE、BF所成的角为定值【答案】D【解析】本题主要考查线面平行与垂直的判定定理、线面所成的角、异面直线所成的角,考查了空间想象能力.易证AC⊥平面BDD1B1,则AC⊥BE,A正确,不选;易知平面A1B1C1D1∥平面ABCD,则EF∥平面ABCD,B正确,不选;因为平面BEF即是平面BDD1B1,所以直线AB 与平面BEF所成的角为定值,故C正确,不选;故选D.6.若函数且)有两个零点,则实数a的取值X围是A. B. C. D.【答案】B【解析】本题主要考查函数的性质与零点.当时,函数是减函数,最多只有1个零点,不符合题意,故排除A、D;令,易判断函数在区间上分别有一个零点,故排除C,所以B正确.7.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则A.α∥β且l∥α B.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【答案】D【解析】本题涉及直线与平面的基本知识,意在考查考生的空间想象能力、分析思考能力,难度中等偏下.由于m,n为异面直线,m⊥平面α,n⊥平面β,则平面α与平面β必相交,但未必垂直,且交线垂直于直线m,n,又直线l满足l⊥m,l⊥n,则交线平行于l ,故选D.8.已知直线(1+k)x+y-k-2=0过定点P,则点P关于直线x-y-2=0的对称点的坐标是A.(3,﹣2)B.(2,﹣3)C.(3,﹣1)D.(1,﹣3)【答案】C【解析】本题主要考查直线方程、两条直线的位置关系.将(1+k)x+y-k-2=0整理为:k(x-1)+x+y-2=0,则x-1=0且x+y-2=0,可得P(1,1),设点P的对称点坐标为(a,b),则,则x=3,y=-1,故答案:C.9.如图,平面⊥平面与两平面所成的角分别为和.过分别作两平面交线的垂线,垂足为,则=A. B. C. D.【答案】A【解析】本题主要考查线面与面面垂直的判定与性质、直线与平面所成的角,考查了空间想象能力.根据题意,由面面垂直的性质定理可得,,则,则AB=2,则10.经过点P(1,4)的直线在两坐标轴上的截距都是正值,若截距之和最小,则直线的方程为A.x+2y-6=0 B.2x+y-6=0 C.x-2y+7=0 D.x-2y-7=0【答案】B【解析】本题主要考查直线方程、基本不等式.由直线的斜率为k(k<0),则y-4=k(x-1),分别令x=0、y=0求出直线在两坐标轴上的截距为:4-k,1-,则4-k+1-,当且仅当-k=-,即k=-2时,等号成立,则直线的方程为2x+y-6=0二、填空题:共5题11.已知直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,则经过点A(3,2)且与直线垂直的直线方程为________.【答案】2x-y-4=0【解析】本题主要考查直线方程、两条直线的位置关系.因为直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,所以(m+1)m-2=0,且8-(m-2),则m=1,直线: x+2y-1=0,根据题意,设所求直线方程为2x-y+t=0,将点A(3,2)代入可得t=-4,即:2x-y-4=012.用斜二测画法得到的四边形ABCD是下底角为45°的等腰梯形,其下底长为5,一腰长为,则原四边形的面积是________.【答案】8【解析】本题主要考查平面直观图.根据题意,直观图中,梯形的下底长为5,一腰长为,则易求上底为3,高为1,面积为,所以原四边形的面积是13.已知三棱锥A-BCD的所有棱长都为,则该三棱锥的外接球的表面积为________.【答案】3π【解析】本题主要考查空间几何体的表面积与体积,考查了空间想象能力.将正方体截去四个角可得到一个正四面体,由题意,可将该三棱锥补成一个棱长为1的正方体,所以该三棱锥的外接球的直径即为正方体的对角线,所以2r=,则该三棱锥的外接球的表面积为S=14.已知关于x的方程有两根,其中一根在区间内,另一根在区间内,则m的取值X围是________.【答案】【解析】本题主要考查二次函数的性质与二元一次方程的根.设,由题意可知:,求解可得15.甲、乙、丙、丁四个物体同时以某一点出发向同一个方向运动,其路程关于时间的函数关系式分别为,,,,有以下结论:①当时,甲走在最前面;②当时,乙走在最前面;③当时,丁走在最前面,当时,丁走在最后面;④丙不可能走在最前面,也不可能走在最后面;⑤如果它们一直运动下去,最终走在最前面的是甲.其中,正确结论的序号为_________(把正确结论的序号都填上,多填或少填均不得分).【答案】③④⑤【解析】①错误.因为,,所以,所以时,乙在甲的前面.②错误.因为,,所以,所以时,甲在乙的前面.③正确.当时,,的图象在图象的上方.④正确.当时,丙在甲乙前面,在丁后面,时,丙在丁前面,在甲、乙后面,时,甲、乙、丙、丁四人并驾齐驱.⑤正确.指数函数增长速度越来越快,x充分大时,的图象必定在,,上方,所以最终走在最前面的是甲.三、解答题:共5题16.如图(1)所示,在直角梯形中,BC AP,AB BC,CD AP,又分别为线段的中点,现将△折起,使平面平面(图(2)).(1)求证:平面平面;(2)求三棱锥的体积.【答案】证明:(1)分别是的中点,∵平面,AB平面.∴平面.同理,平面,∵,EF平面平面∴平面平面.(2)=.【解析】本题主要考查面面与线面平行与垂直的判定与性质、空间几何体的表面积与体积,考查了空间想象能力与等价转化.(1)根据题意,证明、,再利用线面与面面平行的判定定理即可证明;(2)由题意易知,则结果易得.17.已知两点,直线,求一点使,且点到直线的距离等于2.【答案】设点的坐标为.∵.∴的中点的坐标为.又的斜率.∴的垂直平分线方程为,即.而在直线上.∴.①又已知点到的距离为2.∴点必在于平行且距离为2的直线上,设直线方程为,由两条平行直线之间的距离公式得:∴或.∴点在直线或上.∴或②∴①②得:或.∴点或为所求的点.【解析】本题主要考查直线方程与斜率、两条直线的位置关系、中点坐标公式.设点的坐标为,求出统一线段AB的垂直平分线,即可求出a、b的一个关系式;由题意知,点必在于平行且距离为2的直线上, 设直线方程为,由两条平行直线之间的距离公式得:,求出m的值,又得到a、b的一个关系式,两个关系式联立求解即可.18.(1)已知圆C经过两点,且被直线y=1截得的线段长为.求圆C的方程;(2)已知点P(1,1)和圆过点P的动直线与圆交于A,B两点,求线段AB的中点M的轨迹方程.【答案】(1)设圆方程为.因为点O,Q在圆上,代入:又由已知,联立:解得:由韦达定理知:.所以:.即即:.即:.则.所以所求圆方程为:.(2)设点M (x ,y ), 圆的圆心坐标为C (0,2). 由题意:,又.所以: 化简:所以M 点的轨迹方程为【解析】本题主要考查圆的方程、直线与圆的位置关系、圆的性质、直线的斜率公式、方程思想.(1)设圆方程为,将y =1代入圆的方程,利用韦达定理,求出D 、E 、F 的一个关系式,再由点O 、Q 在圆上,联立求出D 、E 、F 的值,即可得到圆的方程;(2) 设点M (x ,y ), 圆的圆心坐标为C (0,2),由题意:,又,化简求解即可得到结论.19.如图,在四棱锥P —ABCD 中,PA ⊥底面ABCD , AB ⊥AD , AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.C A PB D E(1)求PB 和平面PAD 所成的角的大小;(2)证明:AE ⊥平面PCD ;(3)求二面角A-PD-C的正弦值.【答案】(1)在四棱锥P—ABCD中,∵PA⊥底面ABCD,AB⊂平面ABCD,∴PA⊥A B.又AB⊥AD,PA∩AD=A,从而AB⊥平面PAD,∴PB在平面PAD内的射影为PA,从而∠APB为PB和平面PAD所成的角.在Rt△PAB中,AB=PA,故∠APB=45°.所以PB和平面PAD所成的角的大小为45°.(2)证明:在四棱锥P—ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴CD⊥PA.由条件CD⊥AC,PA∩AC=A∵CD⊥平面PA C.又AE⊂平面PAC,∴AE⊥C D.由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥P C.又PC∩CD=C,综上得AE⊥平面PCD.(3)过点E作EM⊥PD,垂足为M,连接AM,如图所示.由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD.因此∠AME是二面角A—PD—C的平面角.由已知,可得∠CAD=30°.设AC=a,可得PA=a,AD=a,PD=a,AE=在Rt△ADP中,∵AM⊥PD,∴AM·PD=PA·AD,则AM==.在Rt△AEM中,sin∠AME==.所以二面角A—PD—C的正弦值为.【解析】本题主要考查线面垂直的判定定理与性质定理、线面角与二面角,考查了空间想象能力.(1)根据题意,证明AB⊥平面PAD,即可得证∠APB为PB和平面PAD所成的角,则易求结果;(2)由题意,易证CD⊥平面PA C,可得AE⊥C D,由题意易知AC=PA,又因为E是PC 的中点,所以AE⊥P C,则结论易证;(3) 过点E作EM⊥PD,垂足为M,连接AM,如图所示,由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD,因此∠AME是二面角A—PD—C的平面角,则结论易求.20.诺贝尔奖的奖金发放方式为:每年一发,把奖金总额平均分成6份,分别奖励给在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半;另一半利息计入基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r=6.24%.资料显示:1999年诺贝尔发放后基金总额约为19 800万美元.设f(x)表示第x(x∈N*)年诺贝尔奖发放后的基金总额(1999年记为f(1),2000年记为f(2),…,依次类推)(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;(2)试根据f(x)的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.031 29≈1.32)【答案】(1)由题意知:f(2)=f(1)(1+6.24%)-f(1)·6.24%=f(1)×(1+3.12%),f(3)=f(2)×(1+6.24%)-f(2)×6.24%=f(2)×(1+3.12%)=f(1)×(1+3.12%)2,∴f(x)=19800(1+3.12%)x-1(x∈N*).(2)2008年诺贝尔奖发放后基金总额为f(10)=19800(1+3.12%)9=26136,故2009年度诺贝尔奖各项奖金为·f(10)·6.24%≈136(万美元),与150万美元相比少了约14万美元,是假新闻.【解析】本题主要考查指数函数、函数的解析式与求值,考查了分析问题与解决问题的能力、计算能力.(1)由题意知: f(2)=f(1)(1+6.24%)-f(1)·6.24%,f(3)=f(2)×(1+6.24%)-f(2)×6.24%,化简,即可归纳出函数f(x)的解析式;(2)根据题意,求出2008年诺贝尔奖发放后基金总额为f(10),再求出2009年度诺贝尔奖各项奖金为·f(10)·6.24%,即可判断出结论.。
第10题图 苏州市2015-2016学年第二学期期中考试试卷初一数学一、 选择题(每小题2分,共20分) 1.下列计算正确的是 ( )A .a 2•a 3=a 5B . a 2+a 3=a 5C . (a 3)2=a 5D . a 3÷a 2=12.下列各式中,计算结果为x 2-1的是 ( )A .(x +1)2B .(x +1)(x -1)C .(-x +1)(x -1)D .(x -1)(x +2)3.若一个多边形的每个内角都为135°,则它的边数为( ) A .6B .8C .5D .104. 已知等腰三角形的一边长为8,另一边长为5,则它的周长为 ( ) A .18 B .21 C .13或21 D .18或21 5.若2x =3,4y =5,则2x-2y的值为 ( )A .35B .-2C .53D .656.下列计算中,正确的是( )A .(2x +1)(2x -1)=2x 2-1B .(x -4)2= x 2 –16C .(x +5)(x -6)=x 2-x -30D .(x +2y )2=x 2+2xy +4y 27.若a =-0.22,b =-2-2,c =(-12)-2,d =(-12)0,则它们的大小关系是 ( )A .a <b <c <dB .b <a <d <cC .a <d <c <bD .c <a <d <b 8.计算(-2)2013+(-2)2014的结果是 ( ) A .-2 B .2C .22013D .-220139. 如图,若AB ∥CD ,则αβγ、,之间的关系为( )A.︒=++360γβαB.︒=+-180γβαC.︒=-+180γβαD.︒=++180γβα 10.根据图中数据,计算大长方形的面积,通过不同的计算方法,你发现的结论是( )A .(a +b )(a +2b )=a 2+3ab +2b 2B .(3a +b )(a +b )=3a 2+4ab +b 2C .(2a +b )(a +b )=2a 2+3ab +b2 D .(3a +2b )(a +b )=3a 2+5ab +2b2二、 填空题(每小题2分,共20分)11. a 2·(-a 3)= ;12. 某红外线波长为0.00 000 094m ,用科学记数法把0.00 000 094m 可以写成 mγβαE DCBA第9题图第10题图第20题图13.(-0.25)2014×42013=14. 3×9m ×27m ÷81=313,则m 的值为15. 已知x +y =4,x -y =-2,则x 2-y 2=___ _______. 16. 若4x 2+kx +9是完全平方式,则k = .17. (a -2b )2=(a +2b )2+M ,则M = .18.如果(x +1)(x 2-5ax +a )的乘积的展开式中不含x 2项,则a = .19.如图,在△ABC 中,∠C =70°,若沿图中虚线截去∠C ,则∠1+∠2等于 度. 20.如图,把一张长方形纸片ABCD 沿EF 折叠,C 点落在C'处,D 点落在D'处,ED'交BC 于点G .已知∠EFG = 50°. 则∠BGD'的度数为 .三、解答题(解答题(共7大题,共 60分.解答应写出必要的计算过程、推理步骤等.) 21.计算(每题3分,共24分)(1)|-1|+(—2)3+(7-π)0-(13)-1;(2)(-2a )3·(a 2)2÷a 3(3)(-2x )·(2x 2y -4xy 2) (4) (2x -y )(x +4y )(5) (3a +b -2)(3a -b +2) (6)10002-1002×998(7) (x +1)(x 2+1)(x 4+1)(x -1)(8)(3a +2)2(3a -2)2第19题图34342x x --≤622.(本题满分4分)先化简,再求值:4(a +2)2-6(a +3)(a -3)+3(a -1)2, 其中a =-1.23.(本题满分4分)解不等式 ,并写出它的所有非正整数解.24.(本题满分6分)如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点. (1)画出△ABC 向右平移4个单位后得到的△A 1B 1C 1; (2)图中AC 与A 1C 1的关系是:_____________. (3)画出△ABC 的AB 边上的高CD ;垂足是D ; (4)图中△ABC 的面积是_______________.25.(本题满分4分)已知a +b =2,ab =-1,求下面代数式的值: (1) 6a 2+6b 2; (2)(a -b )2.26.(本题满分6分) 如图,点E 在直线D F 上,点B 在直线AC 上,已知∠1=∠2, ∠C=∠D .请问∠A=∠F 吗?为什么?12 ABC①②27.(本题满分6分) 已知:△ABC 中,∠C>∠B ,AE 平分∠BAC . (1)如图①AD ⊥BC 于D ,若∠C =70°,∠B =40°求∠DAE 的度数;(2)若△ABC 中,∠B =α,∠C =β.(α<β).请根据第一问的结果,大胆猜想∠DAE 与α、β的等量关系(不必说理);(3)如图②所示,在△ABC 中,AD ⊥BC ,AE 平分∠BAC .F 为AE 延长线上任一点,过F 点作FG ⊥BC 于G . ∠B =40°,∠C =80°.请你运用②中的结论,求∠EFG 的度数。
2015~2016学年第二学期期末调研测试高一数学2016.6参考公式:样本数据12,,,n x x x L 的方差∑=-=n i i x x n s 122)(1,其中∑==n i i x n x 11一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上......... 1.函数y =ln(x -2)的定义域为▲.2.利用计算机产生0~2之间的均匀随机数a ,则事件“3a -2<0”发生的概率为▲.▲.3.根据下列算法语句,当输入x 为60时,输出y 的值为▲.4.对一批产品的长度(单位:毫米)进行抽样检测,样本容量为400,右图为检测结果的频率分布直方图,根据产品标准,单件产品长度在区间[25,30)的为一等品,在区间[20,25)和[30,35)的为二等品,其余均为三等品,则样本中三等品的件数为▲.5.已知2,1== a a b ,a,b 的夹角θ为60 ,则b 为▲.6.从长度为2,3, 4,5的四条线段中随机地选取三条线段,则所选取的三条线段恰能 构成三角形的概率是▲.7.已知实数x 、y 满足220,20,3,x y x y x -+⎧⎪+-⎨⎪⎩≥≥≤则2z x y =-的最大值为▲.8.函数()2sin()(0,f x x ωϕω=+>且||)2πϕ<的部分图象如图所示,则()2f π的值为▲.9.已知等差数列{}n a 的公差为d ,若12345,,,,a a a a a 的方差 为8,则d 的值为▲.10.在△ABC 中,已知∠BAC =90°,AB =6,若D 点在斜边 BC 上,CD =2DB ,则AB →·AD →的值为▲.11. 计算1sin10cos10-的值为▲. 12. 已知正实数,x y 满足21x y +=,则12y x y+的最小值为▲. 13. 已知定义在R 上的奇函数f (x ),当x ≥0时,f (x )=x 2-3x .则关于x 的方程f (x )=x +3的解集为▲.14. 已知数列{}n a 的前n 项和为n S .115a =,且对于任意正整数m ,n 都有n m n m a a a += .若n S a<对任意n ∈N *恒成立,则实数a 的最小值是▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知集合A ={x |y },B ={x |x 2-2x +1-m 2≤0}. (1)若3m =,求A B ;(2)若0m >,A B ⊆,求m 的取值范围.16.(本小题满分14分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b cos C sin B . (1)求B ;(2)若b =2,a =,求△ABC 的面积.17.(本小题满分14分)已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }为等比数列.(1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和.18.(本小题满分16分)如图,某生态园将一三角形地块ABC 的一角APQ 开辟为水果园,种植桃树,已知角A 为120°.现在边界AP ,AQ 处建围墙,PQ 处围栅栏.(1)若15APQ ∠=,AP 与AQ两处围墙长度和为1)米,求栅栏PQ 的长; (2)已知AB ,AC 的长度均大于200米,若水果园APQ面积为AP ,AQ 长各为多少时,可使三角形APQ 周长最小?19.(本小题满分16分)已知函数f (x )=x |x -a |,a ∈R ,g (x )=x 2-1. (1)当a =1时,解不等式f (x )≥g (x );(2)记函数f (x )在区间[0,2]上的最大值为F (a ),求F (a )的表达式._B20.(本小题满分16分)已知数列{a n },{b n },S n 为数列{a n }的前n 项和,向量x =(1,b n ),y =(a n -1,S n ),x //y . (1)若b n =2,求数列{a n }通项公式; (2)若2n nb =,a 2=0. ①证明:数列{a n }为等差数列;②设数列{c n }满足32n n n ac a ++=,问是否存在正整数l ,m (l<m ,且l ≠2,m ≠2),使得c l 、c 2、c m成等比数列,若存在,求出l 、m 的值;若不存在,请说明理由.2015~2016学年第二学期期末调研测试高一数学参考答案及评分标准 2016.6一、填空题: 1. (2,+∞); 2.13;3.31; 4. 100;5.1;6.34;7.7;9. ±2; 10. 24; 11. 4;12. 2+1-,3-}; 14.14. 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.15. 解 (1)令3-2x -x 2≥0,解得A =[-3,1], ………………………3分 3m =时,x 2-2x 9-=0解得B =[-2,4]; ………………………6分[]2,1A B =- ………………………7分 (2)A B ⊆,即[-3,1] ⊆[1-m ,1+m ],所以1-m ≤-3且1+m ≥1,………………………11分 解得m ≥4,所以m ≥4. ………………………14分16. 解 (1)由a =b cos C sin B 及正弦定理,sin A =sin B cos C C sin B ,① 又sin A =sin(π-B -C )=sin(B +C )=sin B cos C +cos B sin C ②,C sin B =cos B sin C ,又三角形中,sin C ≠0, ………………………3分B =cos B , ………………………5分又B ∈(0,π),所以B =6π. ………………………7分 (2)△ABC 的面积为S =1sin 2ac B =14ac . ………………………9分由余弦定理,b 2=a 2+c 2-2ac cos B 得4=a 2+c 2a =,得242c c =⇒=,a =, ………………………12分所以△ABC ………………………14分 17.解(1)设等差数列{a n }的公差为d ,由题意得 d =a 4-a 13=12-33=3. ………………………2分所以a n =a 1+(n -1)d =3n (n =1,2,…).………………………4分 设等比数列{b n -a n }的公比为q ,由题意得q 3=b 4-a 4b 1-a 1=20-124-3=8,解得q =2. ………………………6分所以b n -a n =(b 1-a 1)q n -1=2n -1.从而b n =3n +2n -1(n =1,2,…).………………………8分 (2)由(1)知b n =3n +2n -1(n =1,2,…).数列{3n }的前n 项和为32n (n +1),………………………10分数列{2n -1}的前n 项和为1×1-2n 1-2=2n-1,………………………12分所以,数列{b n }的前n 项和为32n (n +1)+2n -1. ………………………14分18.解 (1)依题意,45AQP ∠=,由正弦定理:sin 45sin15sin120AP AQ PQ==………………………2分得sin 45sin15sin120AP AQ PQ+=+………………………3分sin15sin(4530)sin 45cos30cos 45sin 30=-=-=…………5分sin 45sin15sin120AP AQ PQ +==+PQ ⇒=7分(2)设AP x =米,AQ y =米.则1sin1202S xy == 10000xy ⇒= -----------------------------------------------------------------------------------9分200x y +≥=-----------------------------------------------------------------------------11分设ABC ∆的周长为L ,则L=x y ++x y =+分令x y t +=,L=tmin 200L =+100x y ==取等号;---------------------------------------------------------------------------15分答:(1)PQ =米;(2)当100AP AQ ==米时,三角形地块APQ 的周长最小--------------------------------------------------------------------------16分19.解f (x )≥g (x ),a =1时,即解不等式x |x -1|≥x 2-1,………………………1分当x ≥1时,不等式为x 2-x ≥x 2-1,解得x ≤1,所以x =1;…………………3分 当x <1时,不等式为x -x 2≥x 2-1,解得112x -≤≤, 所以112x -<≤;………………………5分综上,x ∈1[,1]2-. ………………………6分 (2)因为x ∈[0,2],当a ≤0时,f (x )=x 2-ax ,则f (x )在区间[0,2]上是增函数, 所以F (a )=f (2)=4-2a ;………………………7分当0<a <2时,22,0(),2x ax x af x x ax a x ⎧-+<⎪=⎨-<⎪⎩≤≤,则f (x )在区间[0,]2a 上是增函数,在区间[,]2a a 上是减函数,在区间[a ,2]上是增函数,所以F (a )=max{f (2a),f (2)},…………9分 而2()24a a f =,f (2)=4-2a ,令()(2)2af f <即2424a a <-,解得44a --<-+所以当04a <<时,F (a )= 4-2a ;………………………11分令()(2)2af f ≥即2424a a -≥,解得4a --≤或4a -+≥所以当42a <≤时,2()4a F a =;………………………12分当a ≥2时,f (x )=-x 2+ax ,当122a<≤即2≤a <4时,f (x )在间[0,]2a 上是增函数,在[,2]2a 上是减函数,则2()()24a a F a f ==;………………………13分当22a≥,即a ≥4时,f (x )在间[0,2]上是增函数,则()(2)24F a f a ==-;………14分所以,242,4()44424,4a a aF a a a a ⎧-⎪⎪=<<⎨⎪-⎪⎩≤≥,………………………16分20.解 (1) x //y ,得S n =(a n -1)b n ,当b n =2,则S n =2a n -2 ①,当n =1时,S 1=2a 1-2,即a 1=2, ………………………1分 又S n +1=2a n +1-2 ②,②-①得S n +1-S n =2a n +1-2a n , 即a n +1=2a n ,又a 1=2,所以{a n }是首项为2,公比为2的等比数列,………………………3分所以a n =2n . ………………………4分 (2)①2n nb =,则2S n = na n -n ③,当n =1时,2S 1=a 1-1,即a 1=-1, 又2S n +1=( n +1)a n +1-(n +1)④,④-③得2S n +1-2S n =(n +1)a n +1-na n -1,………………………6分 即(n -1)a n +1-na n -1=0 ⑤, 又na n +2-(n +1)a n +1-1=0⑥⑥-⑤得,na n +2-2na n +1+na n =0,即a n +2+a n =2a n +1,所以数列{a n }是等差数列. ………………………8分②又a 1=-1,a 2=0,所以数列{a n }是首项为-1,公差为1的等差数列.a n =-1+(n -1)×1=n -2,所以1n n c n+=,………………………10分 假设存在l <m (l ≠2,m ≠2),使得c l 、c 2、c m 成等比数列,即22l m c c c =, 可得9114l m l m++=⋅,………………………12分 整理得5lm -4l =4m +4即4454m l m +=-,由44154m m +-≥,得1≤m ≤8,………………14分一一代入检验18m l =⎧⎨=⎩或22m l =⎧⎨=⎩或31611m l =⎧⎪⎨=⎪⎩或454m l =⎧⎪⎨=⎪⎩或587m l =⎧⎪⎨=⎪⎩或61413m l =⎧⎪⎨=⎪⎩或73231m l =⎧⎪⎨=⎪⎩或81m l =⎧⎨=⎩ 由l <m ,所以存在l =1,m =8符合条件. ………………………16分。