活性污泥上浮和沉淀池中污泥膨胀成因及检测与控制(DOC)
- 格式:doc
- 大小:56.00 KB
- 文档页数:9
活性污泥泡沫和膨胀的原因和预警控制发布时间:2010-1-6 15:23:21 中国污水处理工程网摘要:本文研究了某污水处理厂发生泡沫和污泥膨胀的原因和条件,发现污泥膨胀和泡沫主要由微丝菌属细菌异常增殖引起。
其发生具有季节性和周期性,主要在冬春季节气温较低时爆发。
批式试验和连续流试验采取工艺调整措施如缩短泥龄和提高负荷,以及投加化学药剂如次氯酸钠(NaCLO)、季铵盐(AFP)、聚丙烯酰胺(PAM)和聚铝(PAM)等,这些方法均可达到降低污泥体积指数SVI,不同程度地控制污泥膨胀和泡沫的效果。
在实际应用中,缩短泥龄和投加次氯酸钠在泡沫和污泥膨胀发生的不同阶段也可以取得一定的控制效果。
本文提出了控制丝状细菌异常增殖引发泡沫和污泥膨胀的预防控制对策。
关键词:微丝菌;污水处理厂;污泥膨胀和泡沫;预警控制1 前言活性污泥泡沫和膨胀是活性污泥处理厂运行管理中经常碰到的异常问题,它们绝大多数是由丝状微生物异常增殖引起,由丝状细菌引发的活性污泥泡沫和膨胀具有明显的季节性和周期性,在寒冷季节发生较多。
由微丝菌Microthrix Parvicella引发的泡沫和污泥膨胀在欧洲、澳洲等国污水处理厂最为常见,氧化沟则更容易发生[1-6]。
微丝菌是一类革兰氏阳性菌,具有长而卷曲的丝状体和疏水性的细胞壁,喜好低温,长链脂肪酸和油脂。
目前,对由微丝菌引起的泡沫和膨胀缺乏有效的控制对策[7-8]。
本研究对某污水处理厂三槽式氧化沟出现的微丝菌泡沫和膨胀问题进行了分析研究,通过在小试试验中采取的工艺参数调整措施如降低泥龄,以及投加化学药剂如加氯杀灭丝状菌,絮凝沉淀等方法进行控制研究,并在实际污水处理现场进行实际应用验证。
为有效预防和控制活性污泥膨胀和泡沫,本文提出活性污泥泡沫和膨胀的预警控制措施。
2 试验材料和方法2.1 批式试验采用批式试验研究了四种不同的化学药剂对丝状微生物的控制效果。
活性污泥的混合液取自污水厂发生泡沫的氧化沟,试验在1 L的烧杯中进行,四种化学药剂是有效氯10%的次氯酸钠溶液,纯度为45%的季铵盐抗菌剂AFP(上海未来企业公司生产),絮凝剂聚丙烯酰胺PAM (分子量900万)和聚铝PAC,各药剂的加量:次氯酸钠为100~1250 gCL/kg MLSS,AFP 为10~250 gCL/kg MLSS,PAM 2~8 mg/L,PAC 50~400 mg/L。
污水生化处理中污泥膨胀原因及控制措施的分析2.3污泥负荷大多数人们认为低负荷容易造成污泥膨胀。
因为在低负荷情况下,菌胶团细菌对营养物质的吸收受到限制,而丝状菌比菌胶团细菌有更大的比表面积,在低负荷下具有更强的捕食能力。
但也有人认为只有污泥负荷在某个范围内才不易引起污泥膨胀现象。
PiPeS通过对多个污水处理厂调查研究,发现污泥负荷在0.25~0.45kg(B0D5)Ag(MISS)∙d范围内才不易引发污泥膨胀,低于或高于这个范国都可能导致污泥膨胀。
2.4溶解氧值溶解氧值(DO)也是导致污泥膨胀的因素。
大多数认为溶解氧浓度低时由于丝状菌比菌胶团细菌有更高的溶解氧亲合力和忍耐力,因此在低氧条件下丝状菌比菌胶团细菌有更强的竞争力,所以在溶解氧浓度低的情况下易造成污泥膨胀。
2.5PH值菌胶团的适宜PH值范围是6.5—8.5,当PH值低于6.0时,其生长受到抑制,而在该PH范围内有利于真菌的繁殖,当降低到4.5时真菌则完全占据优势,菌胶团原生动物消失,污泥絮体遭到破坏,最终导致污泥膨胀现象。
2.6早期消化污水在进入污水处理厂之前在城市污水管道或在预处理区停留时间过长,能够发生系列反应,生成硫化物等,而当污水中硫化物含量较高时易引起多种等硫丝菌的过度繁殖,最终导致污泥膨胀。
3污泥膨胀的控制措施3.1应急措施适用于临时应急,主要方法是投加药物增强污泥沉降性能或是直接杀死丝状菌。
投加铁盐铝盐等混凝剂可以直接提高污泥的压密性保证沉淀出水。
另外,投加一些化学药剂,如氯气,加在回流污泥中也可以到达消除污泥膨胀现象。
投加过氧化氢和臭氧也可以起到破坏丝状菌的效果。
采用这种方法一般能较快降低SVl值,但这些方法并没有从根本上控制丝状菌的繁殖,一旦结束加药,污泥膨胀现象可以又会卷土重来。
而且投药有可能破坏生化系统的微生物生长环境,导致处理效果降低,所以,这种方法只能做为临时应急时用。
3.2改善生化环境污水厂发生污泥膨胀的时候,一般无法从工艺流程、池型和曝气方式的改变来解决,只能在正在运行的流程根底上通过改变生化池内的微生物生长环境来抑制或消除丝状菌的过度繁殖。
活性污泥膨胀的原因和对策在污水运营过程中经常会遇到污泥膨胀的问题,可以看到的现象就是污泥结构松散,泥水分离困难,上清液浑浊等,从指标上分析就是出水COD氨氮均有上升趋势。
污泥膨胀分为丝状菌污泥膨胀和非丝状菌污泥膨胀。
一、丝状菌污泥膨胀引发丝状菌污泥膨胀的原因就是字面意思由于丝状菌的过量繁殖引发的污泥膨胀。
主要判断依据有:(1)沉降比很高,污泥指数(SV30/污泥浓度*10)>200。
(2)镜检菌胶团周边丝状线条很多。
(3)长时间观测,做沉降比时发现泥层厚度逐渐升高(可到90%以上),上清液比较清澈,无大量悬浮物存在,污泥浓度没有多大变化。
(4)好氧池溶解氧长期处在2mg/L以下甚至1以下。
引发丝状菌污泥膨胀的原因目前比较公认的就是溶解氧不足,来水PH长期偏低,或水温长期偏高,在个别案例中,由于特殊有机物的存在也可以引发丝状菌的膨胀。
应对方法:(1)提高溶解氧至2mg/L以上,调整初期可以控制溶解氧至4mg/L左右,后续在慢慢降低。
还有一点就是出现这种情况查看要查看曝气是否均匀,溶解氧的检测要多点位进行。
(2)若PH较低,调至7.5-8(3)若水温高,需增加冷却系统。
二、非丝状菌污泥膨胀就是镜检比你未发现丝状菌的存在,但是沉降比很高污泥浓度变化不大。
主要判断依据有:(1)污泥感官比较细碎,悬浮碎污泥较多,甚至污泥中有气泡夹杂。
(2)沉降比泥层高,上清液浑浊。
(3)镜检污泥絮体较小,菌胶团内部分泌出很多粘性较高的糖类物质。
引发非丝状菌污泥膨胀的原因:(1)营养比失衡,造成活性污泥中菌胶团内部活性降低。
(2)有毒物质混入,造成菌胶团结构瓦解。
(3)大量无机不溶物混入系统,也容易诱发非丝状菌污泥膨胀。
应对措施:(1)检测原水氮磷含量,对于缺少的微量元素按照COD:N:P=100:5:1进行补充,或者补充生活污水量。
(2)补充新的活性污泥,对系统进行闷曝。
(3)查找原水是否存在有毒物质混入。
若长期存在有毒物质过去,需增加高级氧化工艺。
污泥膨胀的原因及解决方法
污泥膨胀是指在处理废水或污水时,污泥在一定条件下出现体积膨胀的现象。
这种现象在污水处理过程中经常发生,给污水处理厂的正常运行带来了很大困扰。
那么,污泥膨胀的原因是什么?又该如何解决呢?
首先,污泥膨胀的原因主要有以下几点:
1. 污泥中有机物含量过高,导致微生物过度繁殖,产生大量气体,从而引起污泥膨胀;
2. 污泥中颗粒物质过多,使得污泥颗粒之间的结合力减弱,导致污泥膨胀;
3. 污泥中含有大量胶体物质,使得污泥颗粒之间的间隙增大,造成污泥膨胀;
4. 污泥中含有过多的水分,使得污泥颗粒之间的结合力减弱,导致污泥膨胀。
针对以上原因,我们可以采取一些解决方法来应对污泥膨胀问题:
1. 控制有机物含量,通过加强污泥处理过程中的厌氧消化和好
氧处理,降低有机物含量,减少微生物过度繁殖,从而减少气体产生,避免污泥膨胀;
2. 控制颗粒物质含量,采取合适的絮凝剂和絮凝剂投加量,加
强絮凝沉淀过程,减少污泥中颗粒物质的含量,提高污泥的结合力,避免污泥膨胀;
3. 控制胶体物质含量,采取适当的絮凝剂和絮凝剂投加量,加
强絮凝沉淀过程,减少污泥中胶体物质的含量,减小污泥颗粒之间
的间隙,避免污泥膨胀;
4. 控制水分含量,通过加强污泥脱水处理,减少污泥中的水分
含量,提高污泥的结合力,避免污泥膨胀。
总之,污泥膨胀是污水处理过程中常见的问题,但是只要我们
找准原因,采取有效的解决方法,就能够有效地避免和解决污泥膨
胀问题,确保污水处理厂的正常运行。
希望以上内容能够对大家有
所帮助。
污泥膨胀的原因及解决方法
污泥膨胀主要有以下几个原因:
1. 水分含量高:污泥中含有大量的水分,当水分含量超过一定程度时,污泥会发生膨胀。
2. 有机物分解产生气体:污泥中存在丰富的有机物,当这些有机物分解时,会产生大量的气体,导致污泥膨胀。
3. 微生物活动:污泥中的微生物在分解有机物的过程中会产生一些副产物,这些副产物会导致污泥膨胀。
针对污泥膨胀问题,可以采取以下解决方法:
1. 调整污泥的含水率:通过加热、蒸发、压榨等方法,将污泥中的多余水分去除,从而降低污泥的含水率,减少膨胀的可能。
2. 加入稳定剂:选择适当的稳定剂,如氧化钙、氧化铁等,将其加入污泥中,可以促进有机物的稳定化,减少污泥的膨胀。
3. 控制微生物活动:通过调节污泥中的氧气供应、温度等条件,控制微生物的生长和活动,降低膨胀的发生。
4. 采用浓缩处理:通过采用离心机、压滤机等设备对污泥进行浓缩处理,将污泥中的水分去除,减少膨胀的可能。
5. 选择合适的污泥处理方法:在选择污泥处理方法时,应综合
考虑污泥的特性和处理效果,选择合适的处理方法可以有效控制膨胀问题。
总之,针对污泥膨胀问题,需要综合分析污泥的特性及处理过程中的因素,并采取相应的措施来解决。
污泥膨胀现象的原因和控制措施活性污泥法中的关键是活性污泥, 其沉降性能的好坏直接影响到出水水质。
一、什么是“活性污泥活性污泥法自1914年由E.Arden 和W.T.Lokett在英国曼彻斯特开创以来, 广泛被应用于生活污水和工业废水的处理。
所谓活性污泥, 就是由细菌、原生动物等微生物与悬浮物质、胶体物质混杂在一起而形成的具有很强吸附分解有机物能力的絮状体颗粒, 这种絮状结构具有良好的沉降性能, 使处理水与污泥分开, 最终达到废水净化的目的。
二、什么是“污泥膨胀”?发生污泥膨胀是活性污泥处理系统在运行过程中出现的异常情况之一,其表观现象是活性污泥絮凝体的结构与正常絮凝体相比要松散一些, 体积膨胀, 含水率上升, 不利于污泥底物对污水中营养物质的吸收降解, 微生物大量消失, 并且影响后续构筑物的沉淀效果。
三、污泥膨胀的测定指标评价污泥沉降性能常用指标有下列几种:①污泥沉降比: 取活性污泥反应器中的混合液静置30min后所形成的沉淀污泥的容积占原混合液容积的百分比。
正常的活性污泥沉静30min 后, 一般可接近其最大密度, 反映沉淀池中活性污泥的浓缩情况,即SV30。
②污泥容积指数: 曝气池出口处的混合液, 在经过了30min 静沉后, 每克干污泥所形成的沉淀污泥所占有的容积。
可表示活性污泥中菌胶团结合水率的高低。
③污泥成层沉降速度: 混合液静置一段时间后, 形成清晰的泥水分界线, 此后进入成层沉淀阶段, 分界线将以匀速下降。
④丝状菌长度: 活性污泥单位体积内丝状菌的长度, 该量用来表示丝状菌含量。
四、污泥膨胀的诱因目前, 对污泥膨胀的研究可以分为两个方面, 一方面从工艺运行的角度来研究。
比如: 调整污水的pH 值、溶解氧、泥龄等; 另一方面是对引起污泥膨胀的微生物进行研究。
这两个方面是相互影响、相互联系、相互制约的。
从目前已有的研究成果来看, 活性污泥膨胀的发生与以下几种因素有关。
1、进水水质(1) 进水中氮和磷营养物质缺乏: 当进水中氮和磷含量不足时,会使低营养型微生物如: 贝氏硫细菌、浮游分枝球衣菌等丝状菌过量繁殖, 出现丝状菌污泥膨胀。
活性污泥膨胀上浮的产生因素与控制参考资料:/esite/detail10000632.htm 在活性污泥法处理各种废水中,因各种原因会使污泥膨胀、上浮导致污泥结构松散、沉降性差,严重破坏整个生化处理过程,不仅影响出水水质,而且由于污泥大量流失,使曝气池中混合液浓度不断降低,污染物去除效果变差。
污泥膨胀从广义上讲是指活性污泥的凝聚性和沉降性的恶化,其表现形式是处理废水呈现浑浊。
污泥膨胀可分为丝状膨胀和高粘性膨胀。
丝状膨胀指丝状细菌过度增殖。
污泥的絮体是由菌胶团和丝状菌共同组成的,二者相互交织,正常情况下二者比例适当。
如果丝状细菌过多,则丝状菌将伸出污泥的絮体之外,使絮体分散,相互间的接触、凝聚很难,导致SVI 很高。
高粘性膨胀是由于污泥中高粘性的多糖类物质太多所致,它们的持水性能很强,使污泥含水率较高,比重降低,难以沉降。
引起污泥膨胀的主要因素如下。
1水质废水中如果糖类物质含量过多,产生丝状膨胀的细菌对糖类物质有特别的嗜好,豆制品、糖类加工废水中易出现这种现象。
在这类废水中N、P含量相对不足,由于丝状细菌的表面积大于一般细菌的表面积,故易把废水中不足的N、P吸收,使之达到增殖。
2DO促使处理池中DO上升的第1种情况是当微生物处于饥饿状态时,引起自身氧化,进入衰老期;第2种情况是由于污泥活性差,叶轮线速度过高,供氧过多。
总之,DO上升,短期内污泥活性可能很好,新陈代谢快,有机物分解也快,但时间一久,污泥被打得又轻又碎(但无气泡),象雾花片似的飘满处理池表面,随水流走,影响去除效率。
3温度温度是影响微生物生长和生存的重要因素之一。
温度过低,微生物活性不足;温度过高,吸收细胞中生物化学反应速度和生长速率加快。
通常温度每升高10℃,生化反应速度就增加1倍。
另一方面,细胞的重要组成如蛋白质、核酸等对温度较敏感,随温度的升高而可能遭受不可逆的破坏。
适宜活性污泥微生物生长的温度范围为15~35℃。
4pH值活性污泥是一个动态的微生态系统,其中不同种属的微生物对pH值有不同的适宜范围。
污泥膨胀的原因及解决方法污泥膨胀是指在污水处理过程中,底泥或沉淀污泥在储存、处理或运输过程中发生体积膨胀的现象。
污泥膨胀会导致处理设施容积紧张,增加处理成本,甚至造成环境污染。
产生污泥膨胀的原因很多,包括物理、化学和生物等多种因素。
下面将详细介绍污泥膨胀的原因及解决方法。
一、原因:1. 细菌活动:在生活污水中含有大量的细菌,这些细菌会降解有机物,并进一步产生沉淀污泥。
这些细菌在有限的环境中繁殖和生存,会分泌胞外聚合物,使沉淀污泥形成胶体、胶体凝胶等物质,从而引起污泥体积的膨胀。
2. 养殖业废物:农村和养殖业中产生的废物通常通过人工混合进入污水处理系统,这些废物中含有大量的纤维素和微生物残留物,这些物质不容易被污水处理系统降解,会引起污泥膨胀。
3. 某些化学药剂的添加:在污水处理过程中,常常添加一些化学药剂用于改变水质、改变污泥特性等。
这些药剂的使用不当或过量使用可能会导致污泥发生膨胀。
4. 污泥质量和成分:污泥中含有的有机物质和无机物质的比例、含量对污泥膨胀也有很大影响。
例如,污泥稀释度过高、有机物含量较高、难于分解的成分较多等都会导致污泥膨胀。
二、解决方法:1. 加强淤泥预处理:在污水处理前加强淤泥预处理,采取适当的工艺对污泥进行脱水、浓缩等操作,尽量减少有机质的含量和体积。
可以采用篦渣机、离心机、带式压滤机等设备进行脱水和预处理操作,使污泥质量更稳定,减少污泥膨胀的发生。
2. 加强污泥处理工艺控制:控制好有氧和厌氧的处理时间,改善污泥颗粒度分布,减少胞外聚合物的分泌和沉积,减少胶体的形成。
同时,可以适当调整污泥pH值、曝气量、搅拌速度等条件,以减少污泥膨胀。
3. 减少有机质负荷:在生活污水处理过程中,减少有机负荷的负荷量是减少污泥膨胀的关键。
可以通过加强预处理、提高曝气效果、调整曝气和搅拌方式等方式来减少有机负荷。
4. 合理选择化学药剂:在使用化学药剂时,应严格按照使用说明进行投药,并根据实际情况适量使用,防止过量使用对污泥产生不利影响。
对化工污水处理场污泥膨胀与上浮的原因及其控制浅述发布时间:2021-07-13T06:22:04.798Z 来源:《现代电信科技》2021年第6期作者:陈胜余[导读] 比如当生产乙醇时处理厂的水质是比较好的,但是生产出新醇时,那么所产生的水质是比较差的。
(南京神克隆科技有限公司)摘要:污泥膨胀属于活性污泥,在实际实施时的一项重要难题,在实际化工污水处理厂中经常会存在污泥膨胀与上浮的问题,如果在短时间内并没有提出有效的解决措施的话,那么会影响后续生产工作有序进行,因此在实际工作中需要加强对这一问题的重视程度。
本文论述的化工污水处理厂污泥膨胀与上浮的原因,在此基础上提出优化性的解决措施,从而保证实际工作的平稳运行。
关键词:化工污水;污水处理;污泥膨胀;上浮原因一、污水处理厂的工作流程在对化工污水处理厂污泥膨胀和上浮原因进行分析之前,需要明确污水处理厂的主要工作流程,从而为后续工艺实施奠定坚实的基础。
污水处理厂经过沉沙池去除其中悬浮物颗粒之后,再进入到调节水质和水量的工作中,在水池中利用10%的稀硫酸进行pH值指示调节仪的自动调节,之后再添加一些营养盐,分为不同的曝气池。
在供氧方面,要提供表面的曝气池,通过设置曝气池能够和液位调节相互融合,调节其中的充氧能力。
在污水处理厂废水处理工作中,大多数都是源于乙烯工程的化工废水,在实际时运行时,其中的稳固性并无法达到相关的标准以及要求。
在实际运用的过程中需要加强对运行规律的了解和认识,比如当生产乙醇时处理厂的水质是比较好的,但是生产出新醇时,那么所产生的水质是比较差的。
(二)溶解氧的影响在实际污水处理厂中,为了防止污泥的流失,现场管理人员通过曝气池的控制调节好了正常的出水量,当出水量达到1/5~1/10时并没有发生浓度上的变化,在空气量没有改变的情况下,进水量是非常少的,这就导致了曝气池内的溶解氧浓度浓度是那么的高。
从中可以看出在正常进水量的有机物浓度较高情况下,溶解氧的浓度是更低的,对于污泥的大量流失来说,此时的耗氧速率在不断的减少,曝气池内的溶解氧大部分时间都是保持正常的状态中的。
生化系统活性污泥上浮和沉淀池中污泥膨胀成因及检测与控制引言:在采用活性污泥法处理废水的运行过程中,有多种原因可引起生化体统(曝气池)中污泥活性受到抑制,导致生化系统中污泥上浮和沉淀池中污泥膨胀,从而使有机物的去除率下降。
污泥膨胀、上浮的问题是活性污泥自产生以来一直伴随并常常发生的一个棘手的问题。
其主要特征是:污泥结构松散,质量变轻,体积膨大,沉淀压缩性能差;SV值增大,有时达到90%,SVI达到400以上;大量污泥流失,出水浑浊;二次沉淀池难以固液分离,回流污泥浓度低,有时还伴随大量的泡沫的产生,无法维持生化处理的正常工作。
污泥膨胀、上浮是生化处理系统较为严重的异常现象之一,它直接影响出水水质,并危害整个生化系统的运作。
生化池(曝气池)中污泥活性一旦受到抑制,就会导致微生物性质和类群的改变、有机底物的去除率下降。
有些微生物(如丝状菌)的过量增长会形成泡沫或浮渣,运行时机械应力、挟裹气泡等均会使活性污泥的比重降低而上浮飘走,流入二沉池会引起二沉池污泥膨胀,不仅增加了出水中的悬浮固体量,而且会大大降低生物反应系统(曝气池)中活性污泥的活性和数量。
污泥膨胀的发生率是相当高的,在欧洲近50%的城市污水厂每年都会有不同程度的污泥膨胀发生,在我国的发生率也非常高。
基本上目前各种类型的活性污泥工艺都会发生污泥膨胀。
污泥膨胀不但发生率高,发生普遍,而且一旦发生难以控制,通常都需要很长的时间来调整。
针对污泥膨胀、污泥上浮及生化系统中污泥活性受抑制,各方面的理论很多,但并不完全一致。
本文在阅读大量文献基础上,对导致活性污泥活性抑制与膨胀、上浮的原因、检测方法和控制技术进行了讨论,整理出几种较为成熟且有普遍意义的观点,并归纳如下。
1 引起活性污泥上浮的主要因素1.1 进水水质1.1.1 过量的表面活性物质和油脂类化合物这类物质可以影响细胞质膜的稳定性和通透性,使细胞的某些必要成分流失而导致微生物生长停滞和死亡。
当曝气池进水中含有大量这类物质时,会产生大量泡沫(气泡),这些气泡很容易附聚在菌胶团上,使活性污泥的比重降低而上浮。
另外,当进水含油脂量过高时,经过曝气与混合,油脂会附聚在菌胶团表面,使细菌缺氧死亡,导致比重降低而上浮。
1.1.2 pH值冲击过高或过低的pH值会影响活性污泥微生物胞外酶及存在于细胞质和细胞壁里酶的催化作用以及微生物对营养物质的吸收。
当连续流曝气反应池内pH<4.0或pH>11.0时,多数情况下活性污泥中微生物活性受到抑制,或失去活性,甚至死亡,以致发生污泥上浮。
用SBR 法处理啤酒废水和化工废水的实验结果表明:当进水pH值为2.5-5.0和10.0-12.0时,pH 值越低(或越高),污泥活性受抑制越严重,上浮污泥量越多。
控制低pH值(3.5-7.0)的反应周期内pH值不变,两种废水的活性污泥在pH≤5.5时就开始出现污泥上浮。
另一方面,随着pH值的增加,由于胞外聚合物(Extra Celluar Polymer)的电离官能团增加,活性污泥絮凝作用增加(尽管带的负电性增加),但当pH值超过一定范围后,絮凝作用下降。
可见,这时的电排斥作用增加,也会造成活性污泥脱絮(悬浮、不絮凝、反絮凝(deflocculation)和上浮[6]。
1.1.3 盐含量的影响对进水的pH值调整不能消除碱度对活性污泥的影响。
对碱性进水调pH值,虽然中和了碱性物质,但产生了盐。
盐溶液浓度不同其渗透压也不同,渗透压是影响微生物生存的重要因素之一。
如微生物所处的溶液渗透压发生突变,就会导致细胞死亡。
1.1.4 水温过热组成活性污泥的微生物适合的温度范围一般为15-35℃,超过45℃时会使活性污泥中大部分微生物死亡而上浮(经过长期驯化的或特殊微生物除外)。
另外,Klaus Kriebitzsch等在用SBR工艺测定温度对细胞内酶活性影响的试验中也发现,温度在20、30和40℃时酶活性较好,大于50℃之后,酶的活性明显下降。
1.1.5 致毒性底物对好氧活性污泥微生物有致毒作用的底物主要包括:含量过高的COD、有机物(酚及其衍生物,醇,醛和某些有机酸等)、硫化物、重金属及卤化物。
高底物浓度可与细胞酶活动中心形成稳定的化合物,导致基质不能接近,无法被降解,甚至使细胞中毒死亡。
重金属离子进人细胞后主要与酶或蛋白质上的-SH基结合而使之失活或变性。
微量的重金属离子还能在细胞内不断积累最终对微生物发生毒害作用(微动作用)。
卤化物最常见的是碘和氯,碘不可逆地与菌体蛋白质(或酶)的酪氨酸结合,生成二碘酪氨酸,使菌体失活。
氯与水合成次氯酸,其分解产生强氧化剂。
而且废水中有机物的突变,使原被驯化好的并能降解有机毒物的微生物减少或消失。
1.2 工艺运行1.2.1 过量曝气微生物处于饥饿状态而引起自身氧化进人衰老期,池中溶解氧浓度(DO)上升;或者由于污泥活性差,曝气叶轮线速度过高,供氧过多。
总之,DO上升,短期内污泥活性可能很好,因为新陈代谢快,有机物分解也快,但时间一久,污泥被打得又轻又碎(但无气泡),象雾花片似的飘满沉淀池表面,随水流走。
这种污泥色浅,活性差,耗氧速率下降,污泥体积和污泥指数增高,处理效果明显降低。
1.2.2 缺氧引起的污泥上浮污泥呈灰色,若缺氧过久则呈黑色,并常带有小气泡。
1.2.3 反硝化引起的污泥上浮当废水中有机氨化合物含量高或氨氮高时,在适宜条件下可被硝酸菌和亚硝酸菌氧化为NO3-,如二沉池积泥或停留时间过长,NO3-还原产生的N2会被活性污泥絮凝体所吸附,使得活性污泥上浮。
1.2.4 回流量太大引起的污泥上浮回流量突增,会使气水分离不彻底,曝气池中的气泡带到沉淀区上浮,这种污泥呈颗粒状,颜色不变,上翻的方向是从导流区壁直向沉淀区壁成湍流翻动。
1.2.5 二沉池池底积泥引起的污泥上浮如果二沉池底泥发酵,产生的CO2和H2也会附聚在活性污泥上,使污泥比重降低而上浮。
污泥腐化产生CH4、H2S后卜浮,首先是一个个小气泡逸出水面,紧接着有黑色污泥上浮。
1.3 活性污泥丝状菌过量生长及其控制产生的污泥上浮1.3.1 温度与负荷微丝菌(Mocrothrix patvicella)的最佳生长条件是温度在12-15℃,污泥负荷小于0.1kg/(kg·d)。
它的天然疏水性会引起活性污泥的脱水性差,最高为490mL/g。
在温度高于20℃后、即使污泥负荷是0.2kg/(kg·d),M.parvicella也不增值。
它打碎成30-80μm的碎片,成浮渣形式而上浮。
1.3.2 表面活性物质、类脂化合物及机械应力作用引起低负荷膨胀和污泥上浮的最频繁的丝状菌是:微丝菌、0092型、0041型。
在进水中表面活性物质和类脂化合物浓度的升高、接种和机械应力也会引起放线菌(Actinomycetes)的增长。
Kappeleretal观察到机械应力(如离心泵)损坏紧密的活性污泥絮凝体并导致微丝菌的过量增长[9]。
1.3.3 过量投加丝状菌抑制剂在曝气池流出槽中注人过氧化氢,数天后,丝状菌就消失,SVI从580mL/g下降至178mL/g。
且过氧化氢也有确保曝气池DO和去除H2S臭味的效果。
但若加人量太多会引起活性污泥的活性抑制及污泥上浮。
2、沉淀池(二次沉淀池)中污泥膨胀原因污泥膨胀分为丝状菌膨胀和非丝状菌膨胀。
非丝状菌膨胀主要发生在废水水温较低而污泥负荷太高的时候,此时细菌吸附了大量有机物,来不及代谢,在胞外积贮大量高粘性的多糖物质,使得表面附着物大量增加,很难沉淀压缩。
而当氮严重缺乏时,也有可产生膨胀现象。
因为若缺氮,微生物便于工作不能充分利用碳源合成细胞物质,过量的碳源将被转弯为多糖类胞外贮存物,这种贮存物是高度亲水型化合物,易形成结合水,从而影响污泥的沉降性能,产生高粘性的污泥膨胀。
非丝状菌污泥膨胀发生时其生化处理效能仍较高,出水也还比较清澈,污泥镜检也看不到丝状菌。
非丝状菌膨胀发生情况较少,且危害并不十分严重,在这里就不着重研究。
丝状菌膨胀在日常实际工作中较为常见,成因也十分复杂。
影响丝状菌污泥膨胀的因素有很多,但我们首先应该认识到的是活性污泥是一个混合培养系统,其中至少存在着30种可能引起污泥膨胀的丝状菌。
而丝状菌在与活性胶团系统共生的关系中是不可缺少的一类重要微生物。
它的存在对净化污水起着很好的作用。
它对保持污泥的絮体结构,保持生化处理的净化效率,及在沉淀中起着对悬浮物的过滤作用等都有很重要的意义。
事实也证明在丝状菌与菌胶团细菌平衡时是不会产生污泥膨胀,只有当丝状菌生长超过菌胶团细菌时,才会出现污泥膨胀现象。
2.1污泥负荷对污泥膨胀的影响一般认为活性污泥中的微生物的增长都是符合Monod方程的:Sμ=μmaxKS +S式中μ----微生物比增长速率,d-1;μ=1/x* dx/dtX----生物体浓度,mg/L;S----生长限制性基质浓度(残留与溶液中的基质浓度),mg/L;KS-----饱和常数(半速度常数),其值为μ=μmax/2时的基质浓度,mg/L;μmax-----在饱和浓度中微生物的最大比增长速率,d-1研究证明大多数的丝状菌的KS和μmax值比菌胶团的低,所以,按照以上Monond方程,具有低KS和μmax值的丝状菌在低基质浓度条件下具有高的增长速率,而具有较高KS和μmax值的菌胶团在高基质浓度条件下才占优势。
同样认为低负荷对于丝状菌生长有利的理论还有表面积/容积比(A/V)假说。
这里的表面积和容积,是指活性污泥中微生物的表面积与体积。
该假说认为伸展于絮凝体之外的丝状菌的比表面积(A/V)要大大超过菌胶团细菌的比表面积。
当微生物处于受基质限制和控制的状态时,比表面积大的丝状菌在取得底物方面要比菌胶团有利,结果在曝气池内丝状菌就变成了优势菌。
低负荷易导致污泥膨胀这一观点无论是在实际运行中还是在理论上都有了较为成熟的解释。
但在我国,通常生化反应的负荷设计都是较高的,的大量污泥膨胀却是在高负荷条件下发生的,这引起了人们对该理论的怀疑。
事实上,在高负荷条件下的污泥膨胀往往是由于供氧不足、曝气池内DO浓度降低引起的。
我们下面就针对溶解氧DO对于污泥膨胀的影响。
具体参见更多相关技术文档。
2.2溶解氧浓度对污泥膨胀的影响微生物对有机物的降解过程实质上就是对氧的利用过程。
溶解氧在活性污泥法的运行中是一个重要的控制参数,曝气池中DO浓度的高低直接影响着有机物的去除效率和活性污泥的生长。
低DO浓度一直被认为是引起丝状菌污泥膨胀的主要因素之一。
丝状菌由于具有较大的比表面积和较低的氧饱和常数,在低DO浓度下比絮状菌增殖得快,从而导致丝状菌污泥膨胀。
根据各方面的研究反应,DO对于污泥膨胀影响的的临界值并不确定。
DO浓度的要求是与污泥负荷息息相关的,负荷越高,则对应的临界值就越大。