初高数学衔接导学案第六至第九课《韦达定理》《方程》《方程组》《不等式》
- 格式:doc
- 大小:215.76 KB
- 文档页数:9
初高衔接[3]根与系数的关系——韦达定理一元二次方程02=++c bx ax 如果有两根1x ,2x ,则有根与系数的关系a b x x -=+21,acx x =21我们称此为一元二次方程的韦达定理,在初中是通过求根公式证明的,现在给出另外更通用的证明方式.因为1x ,2x 是方程的两根,所以21212212)())((x ax x x x a ax x x x x a c bx ax ++-=--=++对比两边的系数即得韦达定理.韦达定理给出了在不解出两根的情况下,两根和与两根积的表达,在高中数学中占有非常重要的地位.例1. 已知a ,b 是方程0142=++x x 的两根,求下列各式的值: (1)22b a +,33b a +; (2)b a 11+,ba ab +; (3)b a - .分析与解 一元二次方程的判别式为正,由韦达定理知4=+b a ,1=ab .于是(1)中:142)(222=-+=+ab b a b a , 52))((2233-=+-+=+b ab a b a b a .(2)中:411=+=+abb a b a , 1422=+=+abb a b a a b . (3)因为ab b a b a b a 4)()(22-+=-=-,所以32=-b a .注 事实上,所有关于a ,b 的对称式(即交换a ,b 的顺序后,式子不变)都可以用b a +,ab 表示出来.例2 .已知α,β是方程012=--x x 的两根,写出一个以α1,β1为两根的一元二次方程,并求βα86+的值.分析与解 由韦达定理知1=+βα,1-=⋅βα,所以⎪⎪⎩⎪⎪⎨⎧-=⋅-=+=+111111βααββαβα,从而以α1,β1为两根的一元二次方程为01)1(2=---x x ,即012=-+x x .由韦达定理知αβ-=1,代入知ααβα88866-+=+.下面来写6α:因为α是方程的解,所以有αα+=12,从而24)1(αα+=)1(21αα+++= α32+=所以有426ααα⋅=)32)(1(αα++= )1(352αα+++=58+=α从而有1386=+βα. 注 事实上,令xt 1=,整理得到的关于t 的一元二次方程就是以α1,β1为两根的一元二次方程.一元二次方程的韦达定理可以推广到一元n 次方程中去,我们处理较多的是一元三次方程,如果)0(023≠=+++a d cx bx ax 有三个实数根1x ,2x ,3x ,那么有d cx bx ax +++23))()((321x x x x x x a ---=32132312123213)()(x x ax x x x x x x x a x x x x a ax -+++++-= 从而得到一元三次方程的韦达定理⎪⎪⎪⎩⎪⎪⎪⎨⎧-==++-=++a d x x x a c x x x x x x ab x x x 321323121321例3. 设α,β,γ是三次方程0133=+-x x 的三个根.(1)以α1,β1,γ1为根的三次方程是______________; (2)以βα11+,γβ11+,αγ11+为根的三次方程是______________.分析与解 由三次方程的韦达定理知⎪⎩⎪⎨⎧-=-=++=++.1,3,0αβγγαβγαβγβα (1)因为⎪⎪⎪⎩⎪⎪⎪⎨⎧-=⋅⋅=++=⋅+⋅+⋅=++=++.11110111111,3111γβααβγγβααγγββααβγαβαγβγγβα,所以以α1,β1,γ1为根的三次方程是 0)1(0323=--⋅+-x x x即01323=+-x x . (2)先计算三根和有)11()11()11(αγγββα+++++)111(2γβα++=6=因为211γγγαββαβα=--=+=+,所以我们知道这三根就是2α,2β,2γ,从而三根积为1)(2=αβγ.最后计算222222αγγββα++的值.先介绍一个三项的完全平方式ac bc ab c b a c b a 222)(2222+++++=++.从而有222222αγγββα++)222()(2222βγααβγγαβγαβγαβ++-++= αβγγβα)(29++-=9=综上知所求的三次方程为019623=-+-x x x .最后给出两道练习:练习一 已知1x ,2x 是方程0132=+-x x 的两根,求2221x x +,3231x x +,)1)(1(21++x x ,2111x x +,21x x -的值.答案 7,18,5,3,5.练习二 已知a ,b ,c 是方程0164223=---x x x 的三个根,求cb a 111++,222c b a ++的值.答案 −6,10.提示 ac bc ab c b a c b a 222)(2222+++++=++.。
方程与方程组以及不等式韦达定理一、 【归纳初中知识】1、一元二次方程的解法在初中时我们已学习过配方法、公式法、因式分解法等主要解法。
2、对于任意的一元二次方程)0(02≠=++a c bx ax ,通过判别式ac b 42-=∆能够判断其方程解的个数。
二、 【衔接高中知识】我们已经知道)0(02≠=++a c bx ax 如果有两个解,则其分别为; a ac b b x 2421-+-=,aac b b x 2422---= 则我们可以得到⎪⎪⎩⎪⎪⎨⎧=-=+a c x x a b x x 2121 上面揭示了二次方程的根与系数c b a ,,之间关系的等式我们叫做韦达定理,韦达定理在未来高中三年的学习中占据着非常重要的地位。
反之,若21,x x 满足⎪⎪⎩⎪⎪⎨⎧=-=+a cx x a b x x 2121,则我们可以说21,x x 一定是)0(02≠=++a c bx ax 的两个解,这叫做韦达定理的逆定理。
三、 【例题精讲】例1:若21,x x 是0122=-+x x 的两个根,求:(1)2221x x +;(2)222111x x +;(3)21x x -;(4)3231x x +,. 解析:略,注意ax x x x x x ∆=-+=-21221214)(例2:任意写出一个二次方程,使得它的两个根分别为5-和32. 解析:0)32)(5(=-+x x 或03103132=-+x x例3:已知关于x 的方程0141)1(22=+++-k x k x ,根据下列条件,分别求出满足条件的k 值.(1)方程两实根之积为5;(2)方程两实根满足21x x =.解析:(1)451410)141(4])1([22122=⇒⎪⎪⎩⎪⎪⎨⎧=+=≥+-+-=∆k k x x k k (2)⎪⎪⎩⎪⎪⎨⎧⇒⎪⎩⎪⎨⎧>⇒>∆-=⇒=+=⇒=∆⇒=⇒=无解23010230212121k k x x k x x x x 综上,若21x x =,则23=k例4:若21,x x 是方程02324222=-++-m m mx x 的两个根,当m 为何值时,2221x x +取得最小值?请你求出这个最小值 解析:23222322)2(2)(222212212221+-=-+⋅-=-+=+m m m m m x x x x x x 当43=m 时,有最小值87 例5:已知关于x 的方程04)2(222=++-+m x m x 有两个实数根,并且两根平方和比两根之积大21,求m 的值.解析:1017163)(221221212221-=⇒⎩⎨⎧≥∆--=-+=-+m m m x x x x x x x x例6:若关于x 的方程02=++a x x 有两个根:(1)当其中一个大于1,另一个小于1时,求a 的取值范围;(2)当两个根都小于1时,求a 的取值范围.解析:(1)由已知设0)1)(1(1,12121<--⇒<>x x x x 且0>∆所以2041021)()1)(1(212121-<⇒⎩⎨⎧>-<+=++-=--a a a x x x x x x (2)法一:41204102)1)(1(21≤<-⇒⎩⎨⎧⇒≥-=∆>+=--a a a x x 法二:借鉴二次函数图形,根据两根均小于1可知当1=x 时,函数值011>++a ,同时也需满足0≥∆例7:若21,x x 是方程01)12(22=+++-k x k x 的两实数根,且均大于1.(1)求实数k 的取值范围;(2)若2121=x x ,求k 的值 解析:(1)143430)1(4)12(101)12(1)1)(1(22221≠≥⇒⎪⎩⎪⎨⎧≥⇒≥+-+=∆≠⇒>++-+=--k k k k k k k k x x 且 (2))(171)12(29219)12(3122221221212121舍去或==⇒++=⇒⎪⎩⎪⎨⎧=+==+⇒=+=+k k k k x k x x x k x k x x***例8:已知b a ,是一元二次方程012=--x x 的两个实数根,求)2(22-+b a a 的值. 解析:120101222-=-⇒⎪⎩⎪⎨⎧=--=--b b b b a a 01)1()2(2222=+=+-=-+=-+∴ab ab a a b a a b a a课后习题1、关于x 的一元二次方程0522=++-a a x ax 其中一个根是0,则a =10-或2、关于x 的方程07)3(102=-++-m x m x :(1)若有一个根为0,则7=m ,此时方程另一个根为:1(2)若两根之和为53-,则9-=m ,此时方程两个根分别为:1,58- 3、方程01222=-+x x 的两根为21,x x ,则321=-x x4、设21,x x 为方程02=++q px x 的两根,且1,121++x x 为方程02=++p qx x 的两根,则________________,==q p 解析:由题意有⎩⎨⎧-=-=⇒⎩⎨⎧=++--=+-⇒⎩⎨⎧=++-=++⎩⎨⎧=-=+3112)1)(1(221212121q p p q p q p p x x q x x q x x p x x 和 *5、已知实数c b a ,,满足b a -=6,92-=ab c ,则____________,______,===c b a 解析:由题意有的两根是方程096,96222=++-⇒⎩⎨⎧+==+c x x b a c ab b a 300)9(4362==⇒=⇒≥+-=∆∴b a c c***6、若1≠ab ,且09201952=++a a ,05201992=++b b ,则95=a b 解析:的两根为方程09201951,091201915092019509120191505201992222=++⇒⎪⎩⎪⎨⎧=+⋅+⋅=++=+⋅+⋅⇒=++x x b a b ba ab b b b故59=b a 7、已知关于x 的方程)0(02≠=++a c bx ax 两根之比为5:3,求证:21564b ac = 证明:设222222121211564156415641585,3b ac ac b a c a b a ck x x a b k x x k x k x =⇒=⇒=⇒⎪⎪⎩⎪⎪⎨⎧==-==+⇒==8、已知方程05)2(222=-+--a x a x 有实数根,且两根之积等于两根之和的2倍,求a 解析:由题意⎪⎩⎪⎨⎧==⇒-=-⇒+=≤⇒≥---⇒≥∆)(31)2(45)(2490)5(4)2(402212122舍去或a a a a x x x x a a a 综上,1=a9、若一元二次方程04)1(2=++-x m x 的两个根均满足30≤≤x ,求m 的取值范围 法一:借助函数图像可知:①当3,0==x x 时函数值均0≥31004)1(39≤⇒≥++-⇒m m ②350≥-≤⇒≥∆m m 或 ③对称轴513210≤≤-⇒≤+≤m m 综上,3103≤≤m法二:设两根为21,x x ,则有31033503100)3)(3(51602121≤≤⇒⎪⎪⎩⎪⎪⎨⎧≥-≤⇒≥∆≤⇒≥--≤≤-⇒≤+≤m m m m x x m x x 或。
方程与方程组以及不等式韦达定理一、 【归纳初中知识】1、一元二次方程的解法在初中时我们已学习过配方法、公式法、因式分解法等主要解法。
2、对于任意的一元二次方程)0(02≠=++a c bx ax ,通过判别式ac b 42-=∆能够判断其方程解的个数。
二、 【衔接高中知识】我们已经知道)0(02≠=++a c bx ax 如果有两个解,则其分别为; a ac b b x 2421-+-=,aac b b x 2422---= 则我们可以得到⎪⎪⎩⎪⎪⎨⎧=-=+a c x x a b x x 2121 上面揭示了二次方程的根与系数c b a ,,之间关系的等式我们叫做韦达定理,韦达定理在未来高中三年的学习中占据着非常重要的地位。
反之,若21,x x 满足⎪⎪⎩⎪⎪⎨⎧=-=+a cx x a b x x 2121,则我们可以说21,x x 一定是)0(02≠=++a c bx ax 的两个解,这叫做韦达定理的逆定理。
三、 【例题精讲】例1:若21,x x 是0122=-+x x 的两个根,求:(1)2221x x +;(2)222111x x +;(3)21x x -;(4)3231x x +例2:任意写出一个二次方程,使得它的两个根分别为5-和32.例3:已知关于x 的方程0141)1(22=+++-k x k x ,根据下列条件,分别求出满足条件的k 值.(1)方程两实根之积为5;(2)方程两实根满足21x x =.例4:若21,x x 是方程02324222=-++-m m mx x 的两个根,当m 为何值时,2221x x +有最小值?请你求出这个最小值例5:已知关于x 的方程04)2(222=++-+m x m x 有两个实数根,并且两根平方和比两根之积大21,求m 的值.例6:若关于x 的方程02=++a x x 有两个根:(1)当其中一个大于1,另一个小于1时,求a 的取值范围;(2)当两个根都小于1时,求a 的取值范围.例7:若21,x x 是方程01)12(22=+++-k x k x 的两实数根,且均大于1.(1)求实数k 的取值范围;(2)若2121=x x ,求k 的值***例8:已知b a ,是一元二次方程012=--x x 的两个实数根,求)2(22-+b a a 的值.课后习题1、关于x 的一元二次方程0522=++-a a x ax 其中一个根是0,则a =________2、关于x 的方程07)3(102=-++-m x m x :(1)若有一个根为0,则_______=m ,此时方程另一个根为__________(2)若两根之和为53-,则_______=m ,此时方程两个根分别为______、________ 3、方程01222=-+x x 的两根为21,x x ,则______21=-x x4、设21,x x 为方程02=++q px x 的两根,且1,121++x x 为方程02=++p qx x 的两根,则________________,==q p*5、已知实数c b a ,,满足b a -=6,92-=ab c ,则____________,______,===c b a ***6、若实数b a ,满足1≠ab 且09201952=++a a ,05201992=++b b ,求a b =______ 7、已知关于x 的方程)0(02≠=++a c bx ax 两根之比为5:3,求证:21564b ac =8、已知方程05)2(222=-+--a x a x 有实数根,且两根之积等于两根之和的2倍,求a9、若一元二次方程04)1(2=++-x m x 的两个根均满足30≤≤x ,求m 的取值范围。
如何进行初中数学到高中数学的有效衔接高中数学与初中数学相比,高中数学在教材内容、教学要求、教学方式、思维层次以及学习方法上都发生了许多变化,如何过渡好初高中数学教学,是提高高中数学教学质量一个十分重要的问题。
学生由初中升入高中将面临许多变化,受这些变化的影响,学生不能尽快地适应高中数学学习,不少初中数学成绩的佼佼者,进入高中后成绩大幅下降。
因此,升入高中后,学生普遍感觉高中数学比初中数学难,的确,高一新生学习数学存在大面积的不适应问题,新课改实施后,高一数学教师也明显感觉这种现象有加剧的趋势,究其原因,高一数学在逻辑推理性,抽象程度和知识难度上比初中数学都加大了。
特别是现在初中数学教学内容又进行了压缩,而高中数学在内容上以及高考考试大纲上却对学生能力提出了更高的要求。
为此在高一上学期的数学教学中,我们应有意识地为学生搭建一个连接初高中的斜坡,使学生顺利地完成初中向高中的过渡。
本文主要以下几个方面探讨成因,并根据个人实践经验归纳出相应的应对策略,与同行探讨。
一、初高中数学学习过渡困难成因探讨。
1.情感过渡期方面经历完初三备考的全身心投入,学生较为疲惫,刚进入高一时会有放松的想法,因此,学习上比较松懈。
另外,在新学校中,既要熟悉新同学、新老师,又要熟悉新环境,精力容易分散。
这样的状态下,学习效果大打折扣。
2. 学习习惯的养成及学习方法过渡方面存在着问题。
初高中数学课程的定位有别。
初中属于义务教育阶段,数学课程的定位是“大众数学”,需要培养公民的基本数学素养。
高中不属于义务教育阶段,高中数学课程的定位是“构建以后深造发展所需的更高水平的数学基础”,既有必修内容作为共同基础,又有选修内容满足个别需要。
另外,随着学科学习内容的自然延展,高中数学的广度、深度、抽象程度都高于初中数学。
高一刚入学的新生刚从初三的紧张学习生活中解放出来,再加之很长时间的一段假期,心没有收回来,还处于玩的状态来学习;有一部分学生还保持着初中时的督促式学习方式,老师不督促就不学;还有一部分呢只限制于完成老师的作业,不主动去研究一些课外的题目。
第一讲 数与式1、 绝对值(1)绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩(2)绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. (3)两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.2、绝对值不等式的解法 (1)含有绝对值的不等式①()(0)f x a a <>,去掉绝对值后,保留其等价性的不等式是()a f x a -<<。
②()(0)f x a a >>,去掉绝对值后,保留其等价性的不等式是()()f x a f x a ><-或。
③22()()()()f x g x f x g x >⇔>。
(2)利用零点分段法解含多绝对值不等式:①找到使多个绝对值等于零的点.②分区间讨论,去掉绝对值而解不等式.一般地n 个零点把数轴分为n +1 段进行讨论. ③将分段求得解集,再求它们的并集. 例1。
求不等式354x -<的解集例2.求不等式215x +>的解集例3.求不等式32x x ->+的解集例4。
求不等式|x +2|+|x -1|>3的解集.例5。
解不等式|x -1|+|2-x |>3-x .例6。
已知关于x 的不等式|x -5|+|x -3|<a 有解,求a 的取值范围. 练习解下列含有绝对值的不等式:(1)13x x -+->4+x(2)|x +1|<|x -2| (3)|x -1|+|2x +1|<4 (4)327x -<(5)578x +>3、因式分解 乘法公式(1)平方差公式 22()()a b a b a b +-=- (2)完全平方公式 222()2a b a ab b ±=±+ (3)立方和公式 2233()()a b a ab b a b +-+=+ (4)立方差公式 2233()()a b a ab b a b -++=-(5)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++ (6)两数和立方公式 33223()33a b a a b ab b +=+++ (7)两数差立方公式 33223()33a b a a b ab b -=-+-因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法 例1 分解因式:(1)x 2-3x +2; (2)2672x x ++(3)22()x a b xy aby -++; (4)1xy x y -+-.2.提取公因式法例2.分解因式:(1)()()b a b a -+-552(2)32933x x x +++3.公式法例3.分解因式: (1)164+-a (2)()()2223y x y x --+4.分组分解法例4.(1)x y xy x 332-+- (2)222456x xy y x y +--+- 5.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例5.把下列关于x 的二次多项式分解因式:(1)221x x +-; (2)2244x xy y +-.练习(1)256x x -- (2)()21x a x a -++ (3)21118x x -+(4)24129m m -+ (5)2576x x +- (6)22126x xy y +-(7)()()3211262+---p q q p (8)22365ab b a a +- (9)()22244+--x x(10)1224+-x x (11)by ax b a y x 222222++-+-(12)91264422++-+-b a b ab a (13)x 2-2x -1(14) 31a +; (15)424139x x -+;(16)22222b c ab ac bc ++++; (17)2235294x xy y x y +-++-第二讲 一元二次方程与二次函数的关系1、一元二次方程 (1)根的判别式对于一元二次方程ax 2+bx +c =0(a ≠0),有:(1) 当Δ>0时,方程有两个不相等的实数根x 1,2=2b a-;(2)当Δ=0时,方程有两个相等的实数根x 1=x 2=-2b a; (3)当Δ<0时,方程没有实数根.(2)根与系数的关系(韦达定理)如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a -,x 1·x 2=ca.这一关系也被称为韦达定理.2、二次函数2y ax bx c =++的性质1。
初升高衔接课数学教案(总共8讲)初高一衔接课:基本运算问题初高一衔接课:基本运算问题(一)绝对值一、知识梳理:⑴ 数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.⑵ 数的绝对值是他本身,负数的绝对值是他的相反数,0的绝对值是0,即(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩.⑶ 个负数比较大小,绝对值大的反而小.⑷ 个绝对值不等式:||(0)x a a a x a <>⇔-<<; ||(0)x a a x a >>⇔<-或x a >. ⑸ 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.二、例题讲解:例1 解不等式:13x x -+->4.解法一:由01=-x ,得1=x ;由30x -=,得3x =; ①若1<x ,不等式可变为(1)(3)4x x ---->, 即24x -+>4,解得x <0, 又x <1, ∴x <0;②若12x ≤<,不等式可变为(1)(3)4x x --->, 即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->, 即24x ->4, 解得x >4. 又x ≥3, ∴x >4.综上所述,原不等式的解为 x <0,或x >4.解法二:如图1.1-1,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|PA |,即|PA |=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB |,即|PB |=|x -3|.所以,不等式13x x -+->4的几何意义即为 |PA |+|PB |>4. 由|AB |=2,可知点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧. x <0,或x >4.三、强化练习1.填空:(1)若5=x ,则x =_________;若4-=x ,则x =_________.(2)如果5=+b a ,且1-=a ,则b =________;若21=-c ,则c =________. 2.选择题:下列叙述正确的是 ( ) (A )若a b =,则a b = (B )若a b >,则a b > (C )若a b <,则a b < (D )若a b =,则a b =±13A B x0 4C D xP |x -1||x -3| 图1.1-1x原式=(+说明:本题若先从方程7∴-x x=⨯364∴+x x13此例可以看出,常数项为正数时,应分解为两个同号因数,它们的符号与一次项系数的符号相同.∴+x x5-=15∴-x x2此例可以看出,常数项为负数时,应分解为两个异号的因数,其中绝对值较大的因数与一次项系数的符答案:1.222(3)(39),(2)(42),(23)(469),a a a m m m x x x +-+-++-++2.2222()(),()(),nx x y y xy x x x y x xy y +-+-++ 22432(1)(4321)y x x x x x --+++ 3.(2)(1)x x --,(9)(3)x x -+, (5)()m n m n -+4.3(2)(8)ax x x -- ;(3)(2)na ab a b +- ;2(3)(1)(23)x x x x -+-+;(2)(415),x y x y -+(772)(1)a b a b +++-5.2()(3),(21)(21),(3)(52)x y a y x x x x y -++--+;(12)(12),x y x y -++-23333()(),(1)(1),()(1)ab a b a b x y x y x x y x y +----+-++.6.2837.5354(2)(1)(1)(2)n n n n n n n n -+=--++8.322322()()a a c b c abc b a ab b a b c ++-+=-+++初高一衔接课:基本运算问题初高一衔接课:基本运算问题(四)根式一、知识梳理:二次根式的性质(1)一般地,形如(0)a a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式. 例如 232a a b b +++,22a b +等是无理式,而22212x x ++,222x xy y ++,2a 等是有理式. (2)二次根式2a 的意义2a a ==,0,,0.a a a a ≥⎧⎨-<⎩(3)二次根式的化简与运算二次根式的乘法:ab b a =),(0≥0≥b a ;二次根式的除法:先把除法写成分式的形式,然后通过分母有理化进行运算; 二次根式的加减法:合并同类二次根式. (4)其性质如下:(五)分式一、知识梳理:当分式A B 的分子、分母中至少有一个是分式时,AB就叫做繁分式,繁分式的化简常用以下两种方法:(1) 利用除法法则;(2) 利用分式的基本性质.二、例题讲解:【例1】化简11xx x x x-+-解法一:原式=222(1)11(1)1(1)(1)11x x x x x xx x x x x x x x x x x x x x x x x x x++=====--⋅+-+-+++--+解法一:原式=22(1)1(1)(1)111()x x x x x x x x x x x x x x x x x x x x x x x++====-⋅-+--+++--⋅ 说明:解法一的运算方法是从最内部的分式入手,采取通分的方式逐步脱掉繁分式,解法二则是利用分式的基本性质A A mB B m⨯=⨯进行化简.一般根据题目特点综合使用两种方法. 【例2】化简222396162279x x x x x x x x++-+-+--=61x -.【解法二】原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +-=61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值. 【解】 2222()2()8a b c a b c ab bc ac ++=++-++=. 例3 解不等式:13x x -+->4.【解法一】由01=-x ,得1=x ;由30x -=,得3x =;①若1<x ,不等式可变为(1)(3)4x x ---->, 即24x -+>4,解得x <0,又x <1,∴x <0; ②若12x ≤<,不等式可变为(1)(3)4x x --->, 即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->, 即24x ->4, 解得x >4. 又3x ≥,∴x >4.综上所述,原不等式的解为 x <0,或x >4.【解法二】如图1-1,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|PA |,即|PA |=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB |,即|PB |=|x -3|.所以,不等式13x x -+->4的几何意义即为 |PA |+|PB |>4. 由|AB |=2,可知点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧.∴x <0,或x >4.例4 分解因式:(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.【解】(1)如图1.2-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).今后在分解与本例类似的二次三项式时,可以直接将图1.2-1中的两个x 用1来表示(如图1.2-2所示).13A B x4C D xP |x -1||x -3|图1-1-1 -2 x x 图1.2-1 -1 -2 1 1 图1.2-2-2 6 1 1 图1.2-3 -ay -by x x 图1.2-4(2)由图1.2-3,得x 2+4x -12=(x -2)(x +6). (3)由图1.2-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图1.2-5所示).例5 分解因式:(1)32933x x x +++; (2)222456x xy y x y +--+-. 【解】(1)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++ =2(3)(3)x x ++.或 32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++提 示熟练进行分解因式运算是高中数学的基本要求.=22[(1)2][(1)(1)22]x x x +++-+⨯+ =2(3)(3)x x ++.(2)222456x xy y x y +--+-=222(4)56x y x y y +--+-=22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-. 或 222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+--- =(22)(3)x y x y -++-.例6 试比较下列各组数的大小:(1)1211-和1110-; (2)264+和226-. 【解】 (1)∵1211(1211)(1211)11211112111211--+-===++,1110(1110)(1110)11110111101110--+-===++, 又12111110+>+, ∴1211-<1110-.-1 1x y图1.2-5910+⨯(1)n n ++1910+⨯(910-1(1)n n ++(4n n -是正整数,(1)n n ++513.计算:1111132435911++++⨯⨯⨯⨯.4.试证:对任意的正整数n ,有111123234(1)(2)n n n +++⨯⨯⨯⨯++<14 .答案 A 组 1.(1)2x <-或4x > (2)-4<x <3 (3)x <-3,或x >3 2.1 3.(1)23- (2)11a -≤≤ (3)61- B 组1.(1)37 (2)52,或-15 2.4.C 组1.(1)C (2)C 2.121,22x x == 3.36554.提示:1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++.一次函数和反比例函数初高一衔接课:(一)一次函数和反比例函数一、基础知识梳理1、平面直角坐标系(1)在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系.水平的数轴叫做x 轴或横轴,铅直的数轴叫做y 轴或纵轴,x 轴与y 轴统称坐标轴,他们的公共原点O 称为直角坐标系的原点. (2)点的坐标和象限.(3)平面直角坐标系内的对称点:设11(,)M x y ,22(,)M x y '是直角坐标系内的两点.① 若M 和'M 关于y 轴对称,则有1212x x y y =-⎧⎨=⎩.② 若M 和'M 关于x 轴对称,则有1212x x y y =⎧⎨=-⎩.③ 若M 和'M 关于原点对称,则有1212x x y y =-⎧⎨=-⎩.所以,22x =-,13y =-,则()2,3A -、()2,3B --. (3)因为A 、B 关于原点对称,它们的横纵坐标都互为相反数, 所以22x =-,13y =,则()2,3A 、()2,3B --.例2已知一次函数y =kx +2的图象过第一、二、三象限且与x 、y 轴分别交于A 、B 两点,O 为原点,若ΔAOB 的面积为2,求此一次函数的表达式.【解】∵B 是直线2+=kx y 与y 轴交点,∴B (0,2),∴OB =2, 1222AOB S AO BO AO ∆=⋅=∴=又, 2y kx =+又,过第二象限,(20)A ∴-,1120212x y y kx k y x =-==+=∴=+把,代入中得,例3反比例函数xk y 1-=与一次函数)1(+=x k y 只可能是( )(A ) (B ) (C ) (D )【解】因直线)1(+=x k y 必过点()0,1-,所以选择(C )、(D )一定错误.又直线)1(+=x k y 与y 轴的交点为()k ,0,所以当1>k ,双曲线xk y 1-=必在第一、三象限. 故选(A )例4 如图,反比例函数ky x=的图象与一次函数y mx b =+的图象交于(13)A ,,(1)B n -,两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x 取何值时,反比例函数的值大于一次函数的值. 【解】(1)(13)A ,在ky x=的图象上, 3k ∴=,3y x∴=又(1)B n -,在3y x =的图象上,3n ∴=-,即(31)B --,,313m bm b =+⎧⎨-=-+⎩,解得:1m =,2b =,反比例函数的解析式为3y x=,一次函数的解析式为2y x =+,(2)从图象上可知,当3x <-或01x <<时,反比例函数图象在一次函数图象的上方,所以反比例函数的值大于一次函数的值.例5 如图,正比例函数x y 3=的图象与反比例函数xky =)>,>(00x k 的图象交于点A .过A 作AB ⊥x 轴于B 点.若k 取1,2,3,…,20时,对应的Rt △AOB 的面积分别 为1S ,2S ,3S ,…,20S ,则1S +2S +3S +…+20S =_ .【解】过正比例函数与反比例函数的交点作x 轴的垂线.x 轴、正比例函数图象及垂线所围成的三角形的面积是k 的 一半.于是 1S +2S +3S +…+20S =22020121×)+(×=105.例6 已知反比例函数xky 2=和一次函数12-=x y ,其中一次函数的图象经过()b a ,、()k b a ++,1两点. (1)求反比例函数的解析式;(2)若点A 坐标是()1,1,请问,在x 轴上是否存在点P ,使AOP ∆为等腰三角形?若存在,把符合条件的点P 的坐标都求出来,若不存在,请说明理由. 【解】 (1)根据题意,得()⎩⎨⎧-+=+-=.112,12a k b a by xA OB图(12)ABOxy两式相减,得2=k .所以所求的反比例函数的解析式是xy 1=. (2)由勾股定理,得21122=+=OA ,OA 与x 轴所夹的角为︒45.①当OA 为AOP ∆的腰时,由OP OA =,得()0,21P ,()0,22-P ;由AP OA =,得()0,23P .②当OA 为AOP ∆的底时,得()0,14P . 所以,这样的点有4个,分别是()0,2、()0,2-、()0,2、()0,1.例7已知一次函数y ax b =+的图象经过点()3,32A +,()1,3B -,()2,C c -.求222a b c ab bc ca++---的值.【解】 由点点()3,32A +,()1,3B -,()2,C c -在次函数y ax b =+的图象上,于是有233+=+b a ,3=+b a ,c b a =+2,解得31,231,1a b c =-=-=,3,232,23a b b c c a ∴-=--=--=-.222a b c ab bc ca ++---=()()()2221136 3.2a b b c c a ⎡⎤-+-+-=-⎣⎦例8如图,点A 、C 在反比例函数()30y x x=<的图象上,B 、D 在x 轴上,△OAB ,△BCD 均为正三角形,则点C 的坐标是 .【解】 作AE ⊥OB 于E ,CF ⊥BD 于F ,易求OE =EB =1, 设BF =m ,则(2,3)C m m ---,代入3y x= 得2222210,2m m m -±+-==.D CB AOyx又0,12m m >∴=-+,∴点C 的坐标为 ()12,36---.四、课后巩固练习 A 组1.函数y kx m =+与(0)my m x=≠在同一坐标系内的图象可以是( )2.如图,平行四边形ABCD 中,A 在坐标原点,D 在第一象限角平分线上,又知6AB =,22AD =,求,,B C D 点的坐标.3.如图,已知直线12y x =与双曲线(0)ky k x=>交于A B ,两点,且点A 的横坐标为4.(1)求k 的值;(2)过原点O 的另一条直线l 交双曲线(0)ky k x=>于P Q ,两点(P 点在第一象限),若由点P 为顶点组成的四边形面积为24,求点P 的坐标.B 组1.选择题如图是三个反比例函数y =1k x ,y =2kx ,y =3k x在x 轴上方的图象,由此观察得到k 1、k 2、k 3∴的大小关 系为( )A .k 1>k 2>k 3B .k 3>k 2>k 1C .k 2>k 3>k 1D .k 3>k 1>k 2 2.选择题xyO A . xyO B .xyO C . xyO D .OxAyByxO第2题 第3题yxCB AO yx图 1 OA B DC P4 9图 2如图,正比例函数kx y =和()0>=a ax y 的图象 与反比例函数()0>=k xky 的图象分别相交于A 点和 C 点.若AOB Rt ∆和COD Rt ∆的面积分别为1S 和2S ,则1S 与2S 的关系是( )(A )1S >2S (B )1S =2S (C )1S <2S (D )不能确定3.如图,已知Rt △ABC 的锐角顶点A 在反比例函数y =m x的 图象上,且△AOB 的面积为3,OB =3. (1)求点A 的坐标; (2)求函数y =mx的解析式; (3)若直线AC 的函数关系式为y =27x +87, 求△ABC 的面积.4.如图1,在矩形ABCD 中,动点P 从点B 出发, 沿BC ,CD ,DA 运动至点A 停止.设点P 运动 的路程为x ,△ABP 的面积为y ,如果y 关于x 的 函数图象如图2所示,则△ABC 的面积是( )A .10B .16C .18D .20C 组1.如图,如果x x >,且0<kp ,那么,在自变量x 的取值范围内,正比例函数kx y =和反比例函数xpy =在同一直角坐标系中的图象示意图正确的是( )(A ) (B ) (C ) (D )2.已知反比例函数xmy 21-=的图象上两点()()2211,,,y x B y x A ,当210x x <<时,有21y y <,则m 的取值范围是___ __.3.已知点()a P ,1在反比例函数()0≠=k xky 的图象上,其中322++=m m a (m 为实数),则这个函数的图象在第_____象限.4.已知3=b ,且反比例函数x b y +=1的图象在每个象限内,y 随x 的增大而增大,如果点()3,a 在双曲线xby +=1上,则_____=a .5.如果不等式0<+n mx 的解集是4>x ,点()n ,1在双曲线xy 2=上,那么一次函数 ()m x n y 21+-=的图象不经过第___象限.6.已知直线b kx y +=经过反比例函数xy 8-=的图象上两点()1,2y A 与()2,2x B ,则.______=kb五、参考答案与解析A 组 1. B2. D(2,2)、C(8,2)、B(6,0).3.(1)8k =.(2)点P 的坐标是(24)P ,或(81)P ,.B 组 1.B2.B 解析:设()()2211,,,y x C y x A .则根据题意,k y x y x ==2211. 所以k y x AB OB S 212121111==×=, k y x CD OC S 212121222==×=.根据题意,把()4,2-A 、()2,4-B 两点的坐标代入直线b kx y +=中,得 ⎩⎨⎧=+--=+.24,42b k b k 解得⎩⎨⎧-=-=.2,1b k故()2121-=-=-k b .二次函数初高一衔接课:(二)二次函数一、基础知识梳理1、二次函数的图像与性质(1)二次函数y =ax 2+bx +c (a ≠0)的图象由于y =ax 2+bx +c =a (x 2+b x a )+c =a (x 2+bx a+224b a )+c -24b a224()24b b aca x a a-=++, 所以,y =ax 2+bx +c (a ≠0)的图象可以看作是将函数y =ax 2的图象作左右平移、上下平移得到的.其图像为①当a >0时,函数y =ax 2+bx +c 图象是开口向上的抛物线,顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2ba;②当a <0时,函数y =ax 2+bx +c 图象是开口向下的抛物线,顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2ba; (2)二次函数y =ax 2+bx +c (a ≠0)的性质(1); (2).【解】 由于函数和的自变量x 的取值范围是全体实数,所以只要确定它们的图象有最高点或最低点,就可以确定函数有最大值或最小值. (1)因为二次函数中的二次项系数2>0, 所以抛物线有最低点,即函数有最小值.因为=,所以当时,函数有最小值是. (2)因为二次函数中的二次项系数-1<0, 所以抛物线有最高点,即函数有最大值. 因为=, 所以当时,函数有最大值.例3 (1)当12x ≤≤时,求函数21y x x =--+的最大值和最小值. (2)当0x ≥时,求函数(2)y x x =--的取值范围. 【解】 (1)作出函数21y x x =--+的图像(如右图),当1x =时,=max y -1,当2x =时,=min y -5. (2)作出函数2(2)2y x x x x =--=-在0x ≥内的 图像(如右图),可以看出:当1x =时,min 1y =-,无最大值. 所以,当0x ≥时,函数的取值范围是1y ≥-.例4 某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m (件)与每件的销售价x (元)满足一次函数1623,3054m x x =-≤≤.5322--=x x y 432+--=x x y 5322--=x x y 432+--=x x y 5322--=x x y 5322--=x x y 5322--=x x y 849)43(22--x 43=x 5322--=x x y 849-432+--=x x y 432+--=x x y 432+--=x x y 425)23(2++-x 23-=x 432+--=x x y 425A.B.C.D.于是可设二次函数为y =a (x +1)2+2,或y =a (x +1)2-2,由于函数图象过点(1,0),∴0=a (1+1)2+2,或0=a (1+1)2-=-12,或a =12. 2.∴a所以,所求的函数为y =-12(x +二次2,或y =12(x +1)21)2+-2.(3)设该二次函数为y =ax 2+bx +c (a ≠0).由函数图象过点(-1,-22),(0,-8),(2,8),可得 228842a b c c a b c -=-+⎧⎪-=⎨⎪=++⎩,解得 a =-2,b =12,c =-8.故所求的二次函数为y =-2x 2+12x -8.例6二次函数bx ax y +=2和反比例函数by x=在同一坐标系中的图象大致是( )。
引入课初高中数学教学内容分析教学目标:1.通过介绍,认识到衔接的重要性与必要性,2.了解初高中数学知识的“脱节点”3.初步规划高中数学的学习方法教学重点:知识点的差异与学习方式的差异教学难点:在初中薄弱的数学基础上如何学好高中数学教学过程:阅读材料一:现有初高中数学知识存在以下“脱节”1.立方和与差的公式初中已删去不讲,而高中的运算还在用。
2.因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,但高中教材许多化简求值都要用到,如解方程、不等式等。
3.二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。
4.初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。
配方、作简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法。
5.二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授。
6.图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握。
7.含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中这部分内容视为重难点。
方程、不等式、函数的综合考查常成为高考综合题。
8.几何部分很多概念(如重心、垂心等)和定理(如平行线分线段比例定理,射影定理,相交弦定理等)初中生大都没有学习,而高中都要涉及。
另外,像配方法、换元法、待定系数法初中教学大大弱化,不利于高中知识的讲授。
阅读材料二:初中数学与高中数学衔接紧密的知识点1 绝对值:⑴在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
⑵正数的绝对值是他本身,负数的绝对值是他的相反数,0的绝对值是0,即(0)0(0)(0)a aa aa a>⎧⎪==⎨⎪-<⎩⑶两个负数比较大小,绝对值大的反而小⑷两个绝对值不等式:||(0)x a a a x a<>⇔-<<;||(0)x a a x a>>⇔<-或x a>2 乘法公式:⑴平方差公式:22()()a b a b a b-=+-⑵立方差公式:3322()()a b a b a ab b-=-++⑶立方和公式:3322()()a b a b a ab b +=+-+⑷完全平方公式:222()2a b a ab b ±=±+,2222()222a b c a b c ab ac bc ++=+++++ ⑸完全立方公式:33223()33a b a a b ab b ±=±+±3 分解因式:⑴把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
第2讲 根与系数的关系(韦达定理)现行初中数学教材主要要求学生掌握一元二次方程的概念、解法及应用,而一元二次方程的根的判断式及根与系数的关系,在高中教材中的二次函数、不等式及解析几何等章节有着重要应用.本专题将对一元二次方程根的判别式、根与系数的关系等进行讲述。
【知识梳理】一元二次方程的根与系数的关系(韦达定理)一元二次方程20 (0)ax bx c a ++=≠的两个根为:,22b b x x a a-+--==所以:1222b b b x x a a a-+--+=+=-,12244ac c x x a a⋅==== 定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么:1212,b c x x x x a a+=-= 说明:一元二次方程根与系数的关系由十六世纪的法国数学家韦达发现,所以通常把此定理称为”韦达定理”.上述定理成立的前提是0∆≥.【高效演练】1.若12x x , 是一元二次方程2230x x -=- 的两个根,则12·x x 的值是( ) A .2 B .-2 C .4 D .-3【解析】:方程的两根为1x ,2x ,根据题意得123c x x a==-.故选D . 【答案】D .2.若α,β是方程x 2﹣2x ﹣3=0的两个实数根,则α2+β2的值为( )A. 5B. 7C. 9D. 10【解析】∵α,β是方程x 2﹣2x ﹣3=0的两个实数根,∴α+β=2,αβ=﹣3,∴α2+β2=(α+β)2﹣2αβ=22﹣2×(﹣3)=10.故选D .【答案】D3.关于x 的一元二次方程x 2+px +q =0的两根同为负数,则( )A. p >0且q >0B. p >0且q <0C. p <0且q >0D. p <0且q <0【解析】试题解析:设x 1,x 2是该方程的两个负数根,则有x 1+x 2<0,x 1x 2>0,∵x 1+x 2=-p ,x 1x 2=q∴-p <0,q >0∴p>0,q >0.故选A .【答案】A4.方程x 2-(m +6)x +m 2=0有两个相等的实数根,且满足x 1+x 2=x 1x 2,则m 的值是( )A. -2或3B. 3C. -2D. -3或25.规定:如果关于x 的一元二次方程20ax bx c ++=(a ≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论:①方程2280x x +-=是倍根方程;②若关于x 的方程220x ax ++=是倍根方程,则a =±3;③若关于x 的方程260ax ax c -+=(a ≠0)是倍根方程,则抛物线26y ax ax c =-+与x 轴的公共点的坐标是(2,0)和(4,0);④若点(m ,n )在反比例函数4y x=的图象上,则关于x 的方程250mx x n ++=是倍根方程. 上述结论中正确的有( )A .①②B .③④C .②③D .②④【解析】③关于x 的方程260ax ax c -+=(a ≠0)是倍根方程,∴x 2=2x 1,∵抛物线26y ax ax c =-+的对称轴是直线x =3,∴抛物线26y ax ax c =-+与x 轴的交点的坐标是(2,0)和(4,0),故③正确;④∵点(m ,n )在反比例函数4y x =的图象上,∴mn =4,解250mx x n ++=得x 1=﹣2m ,x 2=﹣8m ,∴x 2=4x 1,∴关于x 的方程250mx x n ++=不是倍根方程;故选C .【答案】C .6.已知关于x 的一元二次方程230x x --=的两个实数根分别为,αβ,则()()11αβ--=__________.【解析】∵关于x 的方程: 230x x --=的两个实数根分别为αβ、,∴13αβαβ+==-,,∴()()()1113113αβαβαβ--=-++=--+=-.【答案】-37.若方程210x x --=的两实根为a 、b ,则11a b +的值为_______。
第六课 根的判别式与韦达定理
一、知识点
1.一元二次方程ax 2+bx +c =0(a ≠0)根的判别式:
2.韦达定理:如果一元二次方程ax 2+bx +c =0(a ≠0)的两个根是12,x x ,
那么有: 12x x +=_________ 12x x =_________ 二、例题
例1 解关于x 的方程:
(1)x 2-3x +3=0 (2)x 2-2x +a =0 (3)2
210mx x ++=
例2 已知方程2
560x kx +-=的一个根是2,求它的另一个根及k 的值.
例3 已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m 的值.
例4 已知12,x x 是方程2520x x --=两个实数根,求下列式子的值:
①
12
11x x +;②2212
x x +;③33
12x x +;④()()1211x x --;⑤12x x -
例5 已知两个数的和为4,积为-12,求这两个数.
例6 求作一个方程,使它的根是方程2
780x x -+=的两根的平方的负倒数.
例7 若关于x 的一元二次方程x 2-x +a -4=0的一根大于零、另一根小于零,求实数a 的取值范围.
三、练习: 1.填空题:
(1)若关于x 的方程mx 2+ (2m +1)x +m =0有两个不相等的实数根,则实数m 的取值范围是 .
(2)方程kx 2
+4x -1=0的两根之和为-2,则k = .
(3)已知关于x 的方程x 2-ax -3a =0的一个根是-2,则它的另一个根是 .
(4)如果a ,b 是方程x 2+x -1=0的两个实数根,那么代数式a 3+a 2b +ab 2+b 3的值是 . (5)已知一个直角三角形的两条直角边长恰好是方程2x 2-8x +7=0的两根,则这个直角三角形的斜
边长等于 .
2.已知关于x 的方程x 2-kx -2=0.
(1)求证:方程有两个不相等的实数根;
(2)设方程的两根为x 1和x 2,如果2(x 1+x 2)>x 1x 2,求实数k 的取值范围.
3.已知一元二次方程2
2450x x --=的两个根分别是12,x x ,求下列式子的值:
(1)12(2)(2)x x ++ (2)33
12x x + (3)12x x -
4.求一个一元二次方程,使它的两根分别是方程x 2-7x -1=0各根的相反数.
5.若关于x 的方程x 2
+x +a =0的一个根大于1,另一根小于1,求实数a 的取值范围.
第七课 分式方程高次方程与无理方程
一、知识点
解分式方程高次方程与无理方程的常用方法: 二、例题
例1 解方程:
⑴、
3
5
4147=--+x x
⑵、06)1
(5)1(
2=++-+x x x x
(3)
222223(21)
20212
x x x x +--+=-+
例2 解方程:
(1)32
2530x x +-= (2)024)5(2)5(2
2
2
=----x x x x
(3)(2)(1)(3)(6)16x x x x -+++= (4)4
3
2
26210x x x x +-++=
例3 解方程:
(11x =+ (23=
(3)23152x x ++=
三、练习: 解下列方程: (1)2315()6022x x -+=-- (2)43253222=+-+x
x x x (3)2
2324123x x x x =---- (4)x
x x x x x 3133512
=-++-+
(5)22
)12(31222
222-=+---+x x x x (6)03)76(2)76(2
22=----x x x x
(71= (8)22415x x -+=
第八课 二元二次方程组与三元一次方程组
一、知识点
解方程组的方法: 二、例题
例 解下列方程组:
(1)22
210410
x y x y x y --=⎧⎨---+=⎩ (2)1128x y xy +=⎧⎨=⎩
(3)222255043x y x y x xy y ⎧---=⎪⎨++=⎪⎩ (4)22
124
x xy xy y ⎧+=⎪⎨+=⎪⎩
(5)22
22
384x y x xy y ⎧-=⎪⎨++=⎪⎩ (6)2311322114324
x y z x y z x y z ++=⎧⎪+-=⎨⎪--=⎩
三、练习:解下列方程组
(1)⎩
⎨⎧=-=+154322
2y x y x
(2)⎪⎩⎪⎨⎧=+=--5
2322222y x y xy x
(3)⎩
⎨⎧-==+103
xy y x
(4)⎪⎩⎪⎨⎧=---=+-+3
)(2)(5
)(4)(2
2
y x y x y x y x
(5)⎪⎩⎪⎨⎧=-+-=-++0
941290252222
2y xy x y xy x (6)1226310x y z x y z x y z ++=⎧⎪+-=⎨⎪-+=⎩
第九课 一元二次不等式
一、知识点:
一元二次不等式的解集:
二、例题
例1 解下列不等式:
⑴ 036>-x (2) 0322<-+x x (3)062
<+-x x
变式: (1)23520x x +-≥ (2)2
210x x -++<
(3)2450x x -+> (4)2
440x x -+->
例2 解下列不等式
(1)
04
312>--x x (2) 012>+-x x (3)81
153x x +≥+
例3 解关于x 的不等式2
(1)0x x a a ++->(a 为常数).
例4 已知不等式)0(02
≠<++a c bx ax 的解是2<x 或3>x ,求不等式02
>++c ax bx 的解.
三、练习:
1.解下列不等式 (1)0432
>--x x
(2)0122
≤--x x
(3)0432>-+x x
(4)08162
≤+-x x
(5)01232<+-x x
(6)0432
<-x
(7)122-≥-x x
(8)(2)(53)0x x +-≤
(9)311
2>--x
x (10)0)1(2<++-a x a x (a 为常数)
.
2.已知关于x 不等式022
>-+c bx x 的解为1-<x 或3>x 。
试解不等式042
≥++cx bx .。