第六章 第2讲 动量守恒定律及其应用
- 格式:doc
- 大小:192.00 KB
- 文档页数:9
动量守恒定律及其应用湖南省绥宁二中 陈铭仁 刘万润(422606)动量守恒定律是自然科学中最基本的原理之一,它为中学阶段解决一些变力作用问题提供了一条有效途径,从而避免了动力学分析所带来的困难。
动量守恒定律,以其在知识体系中的重要性及在实际应用中的广泛性,一直处于高考命题考查的重点和热点。
一、动量守恒定律1、内容:系统不受外力或者所受外力之和为零,这个系统的动量守恒。
2、数学表达式:(1)p 1+p 2=p 1/+p 2/,即22112211v m v m v m v m '+'=+, (2)Δp=Δp 1+Δp 2=03、动量守恒的条件:⑴系统不受外力或者所受合外力为零;⑵系统所受外力的合力虽不为零,但远小于系统内力,忽略不计。
⑶系统在某一个方向上所受合外力为零,则该方向上动量守恒。
⑷全过程某阶段系统所受合外力为零,则该阶段系统动量守恒。
二、应用动量守恒定律解决问题的基本思路和一般方法:1、分析题意,明确研究对象。
对于比较复杂的物理过程,要明确在哪些阶段中,哪些物体发生相互作用,从而确定所研究的系统是由哪些物体组成的。
2、对各阶段系统内的物体进行受力分析,分清内力和外力。
在受力分析的基础上判断动量是否守恒。
3、明确所研究的过程,确定过程的始、末状态,即系统内各个物体的初动量和末动量,各物体运动的速度均应是相对同一参考系的速度。
4、确定好正方向,建立动量守恒方程求解.三、动量守恒定律的应用实例:1.碰撞:两个物体碰撞时,由于作用时间极短,一般内力远大于外力,所以认为系统的动量守恒。
碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种: 如图所示,设光滑水平面上,质量为m 1球A 以速度v 1向质量为m 2的静止小球B (1)弹性碰撞:在整个作用过程中系统的动量和机械能都守恒。
由动量守恒和能量守恒可得:A 、B 的最终速度分别为121121212112,v m m m v v m m m m v +='+-=':。
第2节动量守恒定律及其应用一、动量守恒定律1.动量守恒定律的内容如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变。
2.动量守恒的数学表达式(1)p=p′(系统相互作用前总动量p等于相互作用后总动量p′)。
(2)Δp=0(系统总动量变化为零)。
(3)Δp1=-Δp2(相互作用的两个物体组成的系统,两物体动量增量大小相等,方向相反)。
3.动量守恒的条件(1)系统不受外力或所受外力之和为零时,系统的动量守恒。
(2)系统所受外力之和不为零,但当内力远大于外力时系统动量近似守恒。
(3)系统所受外力之和不为零,但在某个方向上所受合外力为零或不受外力,或外力可以忽略,则在这个方向上,系统动量守恒。
二、碰撞、反冲和爆炸1.碰撞(1)概念:碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力很大的现象。
(2)特点:在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的物体组成的系统动量守恒。
(3)分类:2.(1)物体在内力作用下分裂为两个不同部分,并且这两部分向相反方向运动的现象。
(2)反冲运动中,相互作用力一般较大,通常可以用动量守恒定律来处理。
3.爆炸问题(1)爆炸与碰撞类似,物体间的相互作用力很大,且远大于系统所受的外力,所以系统动量守恒。
(2)爆炸过程中位移很小,可忽略不计,作用后从相互作用前的位置以新的动量开始运动。
1.思考辨析(正确的画“√”,错误的画“×”)(1)系统所受合外力的冲量为零,则系统动量一定守恒。
(√)(2)动量守恒是指系统在初、末状态时的动量相等。
(×)(3)物体相互作用时动量守恒,但机械能不一定守恒。
(√)(4)在爆炸现象中,动量严格守恒。
(×)(5)在碰撞问题中,机械能也一定守恒。
(×)(6)反冲现象中动量守恒、动能增加。
(√)2.(人教版选修3-5P16T1改编)(多选)如图所示,在光滑的水平面上有一辆平板车,人和车都处于静止状态。
物理理解动量守恒定律及其应用动量守恒定律是物理学中非常重要的一个定律,它能够帮助我们解释许多自然界现象,也能够应用于各种实际情况中。
本文将介绍动量守恒定律的基本概念、公式以及其在不同场景下的应用。
一、动量守恒定律的基本概念动量是物体运动的一个重要物理量,它的大小与物体的质量和速度有关。
动量守恒定律指的是,在没有外力作用的封闭系统中,系统的总动量保持不变。
动量守恒定律可以用以下公式来表示:m1v1 + m2v2 = m1v1' + m2v2'其中,m1和m2分别是两个物体的质量,v1和v2是它们的初始速度,v1'和v2'是它们的最终速度。
二、动量守恒定律的应用1. 弹性碰撞在弹性碰撞中,物体之间没有能量损失。
根据动量守恒定律,碰撞前后系统的总动量保持不变。
因此,我们可以利用动量守恒定律来解决弹性碰撞问题。
例如,当一个球以一定的速度撞击另一个静止的球时,可以通过动量守恒定律计算出两个球的最终速度。
2. 爆炸在爆炸过程中,物体由于内部能量释放而迅速分离。
由于没有外力的作用,根据动量守恒定律,系统的总动量在爆炸过程中保持不变。
我们可以利用动量守恒定律来计算碎片在爆炸中的速度和方向。
3. 荷枪实验荷枪实验是研究物体间相互作用力的实验之一。
在荷枪实验中,一个质量较大的物体以一定的速度撞击另一个质量较小的物体,并通过观察两个物体的反弹情况来研究它们之间的力。
根据动量守恒定律,我们可以推断出相互作用力的大小和方向。
4. 双轨道实验双轨道实验是研究动量守恒定律的一种经典实验。
在双轨道实验中,两个小车在两条平行轨道上运动,当它们发生碰撞时,会发生动量的转移。
根据动量守恒定律,我们可以通过测量小车的速度和质量,计算出碰撞前后系统的总动量是否守恒。
三、结论动量守恒定律是物理学中的重要定律,它能够帮助我们解释和预测各种物体间碰撞、爆炸等情况下的运动状态。
通过运用动量守恒定律,我们可以计算出系统中物体的速度和方向,研究相互作用力的大小和方向。
动量守恒定律及应用引言:动量守恒定律是物理学中的基本原理之一,它描述了物体在相互作用过程中动量的守恒。
本文将介绍动量守恒定律的基本原理和应用,并探讨其在实际生活中的重要性。
一、动量守恒定律的基本原理动量守恒定律是基于牛顿第二定律和牛顿第三定律发展起来的。
根据牛顿第二定律,物体所受合外力等于其质量与加速度的乘积,即 F = ma。
而根据牛顿第三定律,物体间的相互作用力具有相等且相反的特性。
基于以上两个定律,我们可以得出动量守恒定律的表达式:在一个孤立系统中,如果没有外力作用,则系统总动量守恒,即∑mi * vi = ∑mf *vf,其中mi和vi分别表示初始时刻物体的质量和速度,mf和vf 表示最终时刻物体的质量和速度。
二、动量守恒定律的应用1. 碰撞问题动量守恒定律在碰撞问题中有着广泛的应用。
无论是完全弹性碰撞还是非完全弹性碰撞,都可以通过动量守恒定律来求解。
在完全弹性碰撞中,碰撞前后物体的动量总和保持不变,但动能可以转化;而在非完全弹性碰撞中,除了动量总和守恒外,动能还会发生损失。
2. 火箭推进原理火箭推进原理也是动量守恒定律的应用之一。
火箭通过喷射燃料气体产生动量,由于气体的质量很小,喷射速度较大,因此动量的改变可以达到较大的数值,从而推动火箭。
3. 交通事故分析交通事故中的动量守恒定律可以用于分析碰撞力的大小以及事故发生后车辆的速度变化。
通过研究车辆的质量和速度,可以帮助调查人员还原事故过程并查明责任。
三、动量守恒定律在实际生活中的重要性动量守恒定律不仅在物理学研究中有重要意义,也在我们的日常生活中发挥了重要作用。
1. 运动防护在进行各种运动时,了解动量守恒定律可以帮助我们做好自我防护。
例如,在滑雪运动中,如果遇到碰撞,通过合理控制自己的速度和方向,可以减少事故的发生。
2. 交通安全在道路交通中,了解动量守恒定律可以帮助我们更好地理解碰撞的力量。
这可以提醒我们保持安全距离,正确操作车辆,从而减少交通事故的发生。
第2节动量守恒定律一、动量守恒定律1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。
[注1] 2.表达式:m1v1+m2v2=m1v1′+m2v2′。
3.适用条件(1)理想守恒:不受外力或所受外力的合力为0。
(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力。
[注2](3)某一方向守恒:如果系统在某一方向上所受外力的合力为0,则系统在该方向上动量守恒。
二、碰撞、反冲、爆炸1.碰撞(1)特点:作用时间极短,内力(相互碰撞力)远大于外力,总动量守恒。
(2)分类①弹性碰撞:碰撞后系统的总动能没有损失。
[注3]②非弹性碰撞:碰撞后系统的总动能有损失。
③完全非弹性碰撞:碰撞后合为一体,机械能损失最大。
2.爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且远大于系统所受的外力,所以系统动量守恒。
3.反冲 [注4](1)定义:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量,如发射炮弹、火箭等。
(2)特点:系统内各物体间的相互作用的内力远大于系统受到的外力,动量守恒。
【注解释疑】[注1] 外力和内力是相对的,与研究对象的选取有关。
[注2] 外力的冲量在相互作用的时间内忽略不计。
[注3] 弹性碰撞是一种理想化的物理模型,在宏观世界中不存在。
[注4] 反冲运动和爆炸问题中,系统的机械能可以增大,这与碰撞问题是不同的。
[深化理解]1.动量守恒方程为矢量方程,列方程时必须选择正方向。
2.动量守恒方程中的速度必须是系统内各物体在同一时刻相对于同一参考系(一般选地面)的速度。
3.碰撞、爆炸、反冲均因作用时间极短,内力远大于外力满足动量守恒(或近似守恒),但系统动能的变化是不同的。
4.“人船”模型适用于初状态系统内物体均静止,物体运动时满足系统动量守恒或某个方向上系统动量守恒的情形。
[基础自测]一、判断题(1)只要系统合外力做功为零,系统动量就守恒。
(×)(2)系统动量不变是指系统的动量大小和方向都不变。
[课时作业]单独成册方便使用[基础题组]一、单项选择题∶m B=3∶2,原来静1.如图所示,A、B两物体质量之比m止在平板车C上,A、B间有一根被压缩的弹簧,地面光滑.当弹簧突然被释放后,以下系统动量不守恒的是()A.若A、B与C上表面间的动摩擦因数相同,A、B组成的系统B.若A、B与C上表面间的动摩擦因数相同,A、B、C组成的系统C.若A、B所受的摩擦力大小相等,A、B组成的系统D.若A、B所受的摩擦力大小相等,A、B、C组成的系统解析:如果A、B与C上表面间的动摩擦因数相同,弹簧被释放后,A、B分别相对C向左、向右滑动,它们所受的滑动摩擦力F A向右,F B向左,由于m A∶m B =3∶2,所以F A∶F B=3∶2,则A、B组成的系统所受的外力之和不为零,故其动量不守恒;对A、B、C组成的系统,A与C、B与C间的摩擦力为内力,该系统所受的外力为竖直方向的重力和支持力,它们的合力为零,故该系统的动量守恒;若A、B所受的摩擦力大小相等,则A、B组成的系统所受的外力之和为零,故其动量守恒.综上所述,A正确.答案:A2.(2019·福建泉州高三质检)“爆竹声中一岁除,春风送暖入屠苏”,爆竹声响是辞旧迎新的标志,是喜庆心情的流露.有一个质量为3m的爆竹斜向上抛出,到达最高点时速度大小为v0、方向水平向东,在最高点爆炸成质量不等的两块,其中一块质量为2m,速度大小为v,方向水平向东,则另一块的速度为() A.3v0-v B.2v0-3vC.3v0-2v D.2v0+v解析:取水平向东为正方向,爆炸过程系统动量守恒,3m v0=2m v+m v x,可得v x=3v0-2v,C正确.答案:C3.(2019·福建福州模拟)一质量为M 的航天器,正以速度v 0在太空中飞行,某一时刻航天器接到加速的指令后,发动机瞬间向后喷出一定质量的气体,气体喷出时速度大小为v 1,加速后航天器的速度大小为v 2,则喷出气体的质量m 为( )A .m =v 2-v 0v 1M B .m =v 2v 2+v 1M C .m =v 2-v 0v 2+v 1M D .m =v 2-v 0v 2-v 1M 解析:规定航天器的速度方向为正方向,由动量守恒定律可得M v 0=(M -m )v 2-m v 1,解得m =v 2-v 0v 2+v 1M ,故C 正确. 答案:C4.(2019·安徽江南十校联考)如图所示,一个质量为m 的物块A 与另一个质量为2m 的物块B 发生正碰,碰后B 物块刚好能落入正前方的沙坑中.假如碰撞过程中无机械能损失,已知物块B 与地面间的动摩擦因数为0.1,与沙坑的距离为0.5 m ,g 取10 m/s 2,物块可视为质点.则A 碰撞前瞬间的速度为( )A .0.5 m /sB .1.0 m/sC .1.5 m /sD .2.0 m/s解析:碰后物块B 做匀减速直线运动,由动能定理有-μ·2mgx =0-12·2m v 22,得v 2=1 m/s.A 与B 碰撞过程中动量守恒、机械能守恒,则有m v 0=m v 1+2m v 2,12m v 20=12m v 21+12·2m v 22,解得v 0=1.5 m/s ,则C 项正确.答案:C5.A 、B 两船的质量均为m ,都静止在平静的湖面上,现A 船中质量为12m 的人,以对地的水平速度v 从A 船跳到B 船,再从B 船跳到A 船……经n 次跳跃后,人停在B 船上,不计水的阻力,则( )A .A 、B 两船速度大小之比为2∶3B .A 、B (包括人)两船动量大小之比为1∶1C .A 、B (包括人)两船的动能之比为2∶3D .A 、B (包括人)两船的动能之比为1∶1解析:人和两船组成的系统动量守恒,两船原来静止,总动量为0,A 、B (包括人)两船的动量大小相等,选项B 正确;经过n 次跳跃后,A 船速度为v A 、B 船速度为v B ,则0=m v A -(m +m 2)v B ,解得v A v B=32,选项A 错误;A 船最后获得的动能为E k A =12m v 2A ,B 船(包括人)最后获得的动能为E k B =12(m 2+m )v 2B =12(m 2+m )(23v A )2=23E k A ,所以E k A E k B=32,选项C 、D 错误. 答案:B二、多项选择题6.质量为M 的小车静止于光滑的水平面上,小车的上表面和14圆弧的轨道均光滑.如图所示,一个质量为m 的小球以速度v 0水平冲向小车,当小球返回左端脱离小车时,下列说法中正确的是( )A .小球一定沿水平方向向左做平抛运动B .小球可能沿水平方向向左做平抛运动C .小球可能沿水平方向向右做平抛运动D .小球可能做自由落体运动解析:小球水平冲向小车,又返回左端,到离开小车的整个过程中,系统机械能守恒、水平方向动量守恒,相当于小球与小车发生弹性碰撞.如果m <M ,小球离开小车向左做平抛运动;如果m =M ,小球离开小车做自由落体运动;如果m >M ,小球离开小车向右做平抛运动.答案:BCD7.质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ.初始时小物块停在箱子的正中间,如图所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,在整个过程中,系统损失的动能为( )A.12m v 2B.mM 2(m +M )v 2C.12NμmgL D .Nμm gL解析:由于水平面光滑,箱子和小物块组成的系统动量守恒,二者经多次碰撞后,保持相对静止,易判断两物体最终速度相等设为v 共,由动量守恒定律得m v =(m+M )v 共,系统损失的动能为12m v 2 -12(m +M )v 2共=mM 2(m +M )v 2,B 正确;系统损失的动能等于克服摩擦力做的功,经N 次碰撞后,物块的路程为NL ,即ΔE k =-W f =NμmgL ,D 正确.答案:BD8.如图所示,小车AB 放在光滑水平面上,A 端固定一个轻弹簧,B 端粘有油泥,AB 总质量为M ,质量为m 的木块C 放在小车上,用细绳连接于小车的A 端并使弹簧压缩,开始时AB 和C 都静止,当突然烧断细绳时,C 被释放,C 离开弹簧向B 端冲去,并跟B 端油泥粘在一起,忽略一切摩擦,下列说法正确的是( )A .弹簧伸长过程中C 向右运动,同时AB 也向右运动B .C 与B 碰前,C 与AB 的速率之比为M ∶mC .C 与油泥粘在一起后,AB 立即停止运动D .C 与油泥粘在一起后,AB 继续向右运动解析:AB 与C 组成的系统在水平方向上动量守恒,C 向右运动时,AB 应向左运动,故A 错误;设碰前C 的速率为v 1,AB 的速率为v 2,则0=m v 1-M v 2,得v 1v 2=M m ,故B 正确;设C 与油泥粘在一起后,AB 、C 的共同速度为v 共,则0=(M+m )v 共,得v 共=0,故C 正确,D 错误.答案:BC[能力题组]一、选择题9.一弹丸在飞行到距离地面5 m 高时仅有水平速度v =2 m /s ,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1.不计质量损失,重力加速度g 取10 m/s 2,则下列图中两块弹片飞行的轨迹可能正确的是( )解析:由h =12gt 2可知,爆炸后甲、乙两块做平抛运动的时间t =1 s ,爆炸过程中,爆炸力对沿原方向运动的一块的冲量沿运动方向,故这一块的速度必然增大,即v >2 m /s ,因此水平位移大于2 m ,C 、D 项错误;甲、乙两块在爆炸前后,水平方向不受外力,故水平方向动量守恒,即甲、乙两块的动量改变量大小相等,两块质量比为3∶1,所以速度变化量之比为1∶3,由平抛运动水平方向上,x =v 0t ,所以A 图中,v 乙=-0.5 m/s ,v 甲=2.5 m /s ,Δv 乙=2.5 m/s ,Δv 甲=0.5 m /s ,A 项错误;B 图中,v 乙=0.5 m/s ,v 甲=2.5 m /s ,Δv 乙=1.5 m/s ,Δv 甲=0.5 m/s ,B 项正确.答案:B10.(2019·天津高三质检)甲、乙两球在水平光滑轨道上向同方向运动,已知它们的动量分别是p 1=5 kg·m /s ,p 2=7 kg·m/s ,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10 kg·m/s ,则两球质量m 1与m 2间的关系可能是( )A.m1=m2B.2m1=m2C.4m1=m2D.6m1=m2解析:甲、乙两球在碰撞过程中动量守恒,所以有p1+p2=p1′+p2′,即p1′=2 kg·m/s.由于在碰撞过程中,不可能有其他形式的能量转化为机械能,只能是系统内物体间机械能相互转化或一部分机械能转化为内能,因此系统的机械能不会增加,所以有p212m1+p222m2≥p1′22m1+p2′22m2,所以有m1≤2151m2.因为题目给出物理情景是“甲从后面追上乙”,要符合这一物理情景,就必须有p1m1>p2m2,即m1<57m2;同时还要符合碰撞后乙球的速度必须大于或等于甲球的速度这一物理情景,即p1′m1≤p2′m2,所以m1≥15m2.因此C选项正确.答案:C11.(多选)如图甲所示,光滑水平面上有P、Q两物块,它们在t=4 s时发生碰撞,图乙是两者的位移—时间图像,已知物块P的质量为m P=1 kg,由此可知()A.碰撞前P的动量为4 kg·m/sB.两物块的碰撞可能为弹性碰撞C.物块Q的质量为4 kgD.两物块碰撞过程中P对Q作用力的冲量是3 N·s解析:根据位移—图像可知,碰撞前P的速度v0=4 m/s,碰撞前P的动量为p0=m P v0=4 kg·m/s,选项A正确.根据位移—图像,碰撞后二者速度相同,说明碰撞为完全非弹性碰撞,选项B错误.碰撞后,二者的共同速度v=1 m/s,由动量守恒定律,m P v0=(m P+m Q)v,解得m Q=3 kg,选项C错误.由动量定理,两物块碰撞过程中P对Q作用力的冲量是I=Δp Q=m Q v=3 N·s,选项D正确.答案:AD二、非选择题12.在光滑的水平面上,质量为m 1的小球A 以速率v 0向右运动.在小球A 的前方O 点有一质量为m 2的小球B 处于静止状态,如图所示.小球A 与小球B 发生正碰后小球A 、B 均向右运动.小球B 被在Q 点处的墙壁弹回后与小球A 在P 点相遇,PQ =1.5PO .假设小球间的碰撞及小球与墙壁之间的碰撞都是弹性的,求两小球质量之比m 1∶m 2.解析:从两小球碰撞后到它们再次相遇,小球A 和B 的速度大小保持不变.根据它们通过的路程,可知小球B 和小球A 在碰撞后的速度大小之比为4∶1. 设碰撞后小球A 和B 的速度分别为v 1和v 2,在碰撞过程中动量守恒,碰撞前后动能相等,则有m 1v 0=m 1v 1+m 2v 212m 1v 20=12m 1v 21+12m 2v 22 利用v 2v 1=4,可解出m 1∶m 2=2∶1. 答案: 2∶113.如图所示,光滑水平直轨道上有三个质量均为m 的物块A 、B 、C .B 的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A 以速度v 0朝B 运动,压缩弹簧;当A 、B 速度相等时,B 与C 恰好相碰并粘接在一起,然后继续运动.假设B 和C 碰撞过程时间极短.求从A 开始压缩弹簧直至与弹簧分离的过程中:(1)整个系统损失的机械能;(2)弹簧被压缩到最短时的弹性势能.解析:(1)从A 压缩弹簧到A 与B 具有相同速度v 1时,对A 、B 与弹簧组成的系统,由动量守恒定律得m v 0=2m v 1①此时B 与C 发生完全非弹性碰撞,设碰撞后的瞬时速度为v 2,损失的机械能为ΔE .对B 、C 组成的系统,由动量守恒和能量守恒定律得m v 1=2m v 2② 12m v 21=ΔE +12(2m )v 22③ 联立①②③式得ΔE =116m v 20④(2)由②式可知v 2<v 1,A 将继续压缩弹簧,直至A 、B 、C 三者速度相同,设此速度为v 3,此时弹簧被压缩至最短,其弹性势能为E p .由动量守恒和能量守恒定律得m v 0=3m v 3⑤12m v 20-ΔE =12(3m )v 23+E p ⑥ 联立④⑤⑥式得E p =1348m v 20答案:(1)116m v 20 (2)1348m v 20 14.(2018·高考全国卷Ⅱ)汽车A 在水平冰雪路面上行驶,驾驶员发现其正前方停有汽车B ,立即采取制动措施,但仍然撞上了汽车B .两车碰撞时和两车都完全停止后的位置如图所示,碰撞后B 车向前滑动了4.5 m ,A 车向前滑动了2.0 m ,已知A 和B 的质量分别为2.0×103 kg 和1.5×103 kg ,两车与该冰雪路面间的动摩擦因数均为0.10,两车碰撞时间极短,在碰撞后车轮均没有滚动,重力加速度大小g =10 m/s 2.求:(1)碰撞后的瞬间B 车速度的大小;(2)碰撞前的瞬间A 车速度的大小.解析:(1)设B 车的质量为m B ,碰后加速度大小为a B ,根据牛顿第二定律有 μm B g =m B a B ①式中μ是汽车与路面间的动摩擦因数.设碰撞后瞬间B车速度的大小为v B′,碰撞后滑行的距离为s B.由运动学公式有v B′2=2a B s B②联立①②式并利用题给数据得v B′=3.0 m/s③(2)设A车的质量为m A,碰后加速度大小为a A.根据牛顿第二定律有μm A g=m A a A④设碰撞后瞬间A车速度的大小为v A′,碰撞后滑行的距离为s A.由运动学公式有v A′2=2a A s A⑤设碰撞前瞬间A车速度的大小为v A,两车在碰撞过程中动量守恒,有m A v A=m A v A′+m B v B′⑥联立③④⑤⑥式并利用题给数据得v A=4.25 m/s答案:(1)3.0 m/s(2)4.25 m/s。