光纤通信实验报告
- 格式:doc
- 大小:544.40 KB
- 文档页数:11
第1篇一、前言随着信息技术的飞速发展,光纤通信技术因其高速、稳定、安全的特点,已成为现代社会信息传输的主要方式。
为了深入了解光纤通信技术的原理和应用,我们开展了为期一个月的光纤实践项目。
本次实践旨在通过实际操作,加深对光纤通信技术的理解,提升动手能力和工程实践能力。
以下是本次实践总结报告。
二、项目背景与目标1. 项目背景光纤通信技术自20世纪60年代诞生以来,凭借其优越的性能,逐渐取代了传统的铜线通信方式,成为现代通信的主要手段。
我国在光纤通信领域取得了举世瞩目的成就,但仍有很大的发展空间。
2. 项目目标(1)掌握光纤通信的基本原理和关键技术;(2)了解光纤通信系统的组成和结构;(3)提高动手能力,学会光纤通信设备的安装、调试和维护;(4)培养团队协作精神和创新意识。
三、实践内容与过程1. 光纤通信基本原理学习(1)光纤的类型与特性:本次实践主要学习了单模光纤和多模光纤的特点、应用场景等;(2)光纤传输原理:深入了解了光纤的传输机理,包括全反射、色散、损耗等;(3)光纤通信系统组成:学习了光纤通信系统的各个组成部分,如发射机、光纤、接收机等。
2. 光纤通信设备安装与调试(1)光纤熔接机操作:学习了光纤熔接机的使用方法,掌握了光纤熔接技术;(2)光纤跳线制作:学会了光纤跳线的制作方法,包括剥皮、清洗、熔接等;(3)光纤通信系统调试:对光纤通信系统进行了调试,确保其正常运行。
3. 光纤通信系统维护与故障排除(1)光纤通信系统日常维护:了解了光纤通信系统的日常维护方法,包括清洁、检查、更换等;(2)故障排除:针对光纤通信系统可能出现的故障,学习了故障排除方法,如查找故障点、更换设备等。
四、实践成果与体会1. 实践成果(1)掌握了光纤通信的基本原理和关键技术;(2)熟悉了光纤通信设备的安装、调试和维护;(3)提高了动手能力和团队协作精神;(4)培养了创新意识和工程实践能力。
2. 实践体会(1)理论知识与实践操作相结合的重要性:通过本次实践,深刻体会到理论知识与实践操作相结合的重要性,只有将所学知识应用于实际,才能真正掌握技能;(2)团队协作精神的重要性:在实践过程中,团队成员分工合作,共同解决问题,体现了团队协作精神的重要性;(3)创新意识的重要性:在实践过程中,我们不断尝试新的方法和技术,培养了创新意识。
XX学号时间地点实验题目半导体激光器P-I特性测试实验一、实验目的1、学习半导体激光器发光原理和光纤通信中激光光源工作原理2、了解半导体激光器平均输出光功率与注入驱动电流的关系3、掌握半导体激光器P(平均发送光功率)-I(注入电流)曲线的测试方法二、实验内容1、测量半导体激光器输出功率和注入电流,并画出P-I关系曲线2、根据P-I特性曲线,找出半导体激光器阈值电流,计算半导体激光器斜率效率三、实验仪器1、ZY12OFCom23BH1型光纤通信原理实验箱1台2、FC接口光功率计1台3、FC-FC单模光跳线 1根4、万用表1台5、连接导线 20根四、实验步骤1、用导线连接电终端模块T68(M)和T94(13_DIN)。
2、将开关BM1拨为1310nm,将开关K43拨为“数字”,将电位器W44逆时针旋转到最小。
3、旋开光发端机光纤输出端口(1310nm T)防尘帽,用FC-FC光纤跳线将半导体激光器与光功率计输入端连接起来,并将光功率计测量波长调整到1310nm档。
4、用万用表测量T97(TV+)和T98(TV-)之间的电阻值(电阻焊接在PCB板的反面),找出所测电压与半导体激光器驱动电流之间的关系(V=IR110)。
5、将电位器W46(阈值电流调节)逆时针旋转到底。
6、打开交流电源,此时指示灯D4、D5、D6、D7、D8亮7、用万用表测量T97(TV+)和T98(TV-)两端电压(红表笔插T97,黑表笔插T98)。
8、慢慢调节电位器W44(数字驱动调节),使所测得的电压为下表中数值,依次测量对应的光功率值,并将测得的数据填入表格中,精确到0.1uW。
9、做完实验后先关闭交流电开关。
10、拆下光跳线与光功率计,用防尘帽盖住实验箱半导体激光器光纤输出端口,将实验箱还原。
五、实验报告结果1、根据测试结果,算出半导体激光器驱动电流,画出相应的光功率与注入电流的关系曲线。
2、根据所画的P-I特性曲线,找出半导体激光器阈值电流的大小。
光纤通信实验报告实验1.1了解和掌握了光纤的结构、分类和特性参数.能够快速准确的区分单模或者多模类型的光纤。
实验1.21.关闭系统电源.将光跳线分别连接TX1550、RX1550两法兰接口(选择工作波长为1550nm的光信道).注意收集好器件的防尘帽。
2.打开系统电源.液晶菜单选择“码型变换实验—CMI码PN”。
确认.即在P101铆孔输出32KHZ的15位m序列。
3.示波器测试P101铆孔波形.确认有相应的波形输出。
4.用信号连接线连接P101、P203两铆孔.示波器A通道测试TX1550测试点.确认有相应的波形输出.调节 W205 即改变送入光发端机信号(TX1550)幅度.最大不超过5V。
即将m序列电信号送入1550nm光发端机.并转换成光信号从TX1550法兰接口输出。
5.示波器B通道测试光收端机输出电信号的P204试点.看是否有与TX1550测试点一样或类似的信号波形。
6.按“返回”键.选择“码型变换实验—CMI码设置”并确认。
改变SW101拨码器设置(往上为1.往下为0).以同样的方法测试.验证P204和TX1550测试点波形是否跟着变化。
7.轻轻拧下TX1550或RX1550法兰接口的光跳线.观测P204测试点的示波器B通道是否还有信号波形?重新接好.此时是否出现信号波形。
8.以上实验都是在同一台实验箱上自环测试.如果要求两实验箱间进行双工通信.如何设计连接关系.设计出实验方案.并进行实验。
9.关闭系统电源.拆除各光器件并套好防尘帽。
实验2.11.关闭系统电源.按照图2.1.1将1550nm光发射端机的TX1550法兰接口、FC-FC单模尾纤、光功率计连接好(TX1550通过尾纤接到光功率计).注意收集好器件的防尘帽。
2.打开系统电源.液晶菜单选择“码型变换实验-- CMI码设置” 确认.即在P101铆孔输出32KHZ的SW101拨码器设置的8比特周期性序列.如10001000。
3.示波器测试P101铆孔波形.确认有相应的波形输出。
光纤通信实验报告实验报告:光纤通信技术引言:光纤通信技术是一种基于光传输原理的高速、大容量、低损耗的通信方式。
光纤通信以其优异的性能和广泛的应用领域受到了广泛的关注。
本次实验旨在探究光纤通信的基本原理和实验方法,以及光纤通信的特点和应用。
一、光纤通信的基本原理1.光纤通信的原理光纤通信是利用光纤作为传输介质,将光信号转换为电信号进行传输。
它主要包括光信号的产生、调制、传输和接收等过程。
光信号通过激光器发射端发出,经过光纤传输到接收端,然后通过光电转换器将光信号转换为电信号。
2.光纤的工作原理光纤是一种具有高折射率的细长光导纤维,主要由芯层、包层和包住层组成。
光信号在传输过程中会发生多次反射,利用全内反射原理将光信号在光纤内损耗尽可能小地传播。
二、光纤通信实验的步骤1.光信号的产生通过激光器发射端发出激光光束,光纤接收端接收光信号。
2.光信号的调制利用调制器对光信号进行调制,使其携带有用信息。
3.光信号的传输利用光纤的高折射率和全内反射的特点,将光信号传输到接收端。
4.光信号的接收通过光电转换器将光信号转换为电信号,进而进行信号处理,如放大、滤波等。
三、光纤通信的特点和应用1.高速传输光纤通信具有高传输速率和大容量的优势,可以满足现代通信的高速要求。
2.低损耗光纤通信中光信号的传输损耗非常小,可以远距离传输无衰减。
3.安全性强光信号在传输过程中不容易被窃听或干扰,保证了通信的安全性。
4.应用广泛结论:通过本次实验,我们深入了解了光纤通信的基本原理和实验方法。
光纤通信具有高速传输、低损耗、安全性强和应用广泛等特点,是现代通信领域的重要技术。
光纤通信的发展势头迅猛,未来有望取代传统的铜线通信,成为主流的通信技术。
光纤通信实验报告光纤通信是一种使用光信号传输数据的通信技术,它利用了光的高速传输和大带宽的特性,成为了现代通信领域的重要技术之一。
在本次实验中,我们对光纤通信的原理和实验验证进行了深入研究。
实验一: 光的传播特性我们首先对光的传播特性进行了研究。
选择了一根直径较细的光纤,并采用了迎射法和反射法进行传导实验。
通过在纤芯中投射光线,并观察传导的情况,我们验证了光在光纤中的传播路径并没有明显偏向,光线能够相对直线传播。
实验二: 光纤的损耗与色散在光纤通信中,损耗和色散是不可避免的问题。
我们通过实验对光纤中损耗和色散的影响进行了测试。
损耗实验中,我们通过分析在不同长度光纤中传输的光强度,发现随着距离的增加,光强度会逐渐减弱。
这是由于光纤中存在材料吸收和散射等因素造成的。
为了减小损耗,优化光纤的材料和结构是很重要的。
色散实验中,我们将不同波长的光信号通过光纤传输,并测量到达另一端的时间。
实验结果显示,不同波长的光信号到达时间存在差异。
这是由于光纤中折射率随波长变化而引起的色散效应。
为了减小色散,需要采用更先进的技术,如光纤衍生波导和光纤增益等手段。
实验三: 单模光纤与多模光纤光纤通信中,单模光纤和多模光纤是常用的两种类型。
通过实验,我们对这两种光纤的传输特性进行了研究。
我们首先测试了单模光纤。
结果显示,在单模光纤中,光信号会以单一光波传播,因此具有较低的色散和损耗,适用于远距离传输和高速通信。
然后我们进行了多模光纤的实验。
实验结果显示,多模光纤中存在多个模式的光信号传播,由于不同模式间的传播速度不同,会导致严重的色散和损耗问题。
因此,多模光纤适用于近距离传输和低速通信。
结论通过本次光纤通信实验,我们对光纤通信的原理和实际应用有了更深入的了解。
我们发现光纤通信具有高速率、低损耗和大带宽等优势,而不同类型的光纤对于不同的通信需求有着不同的适应性。
然而,我们也看到了光纤通信中存在的一些问题,如损耗、色散和设备成本等。
光通信实验报告实验一:测量光纤耦合效率【实验简介】:光线主要用于通信、光纤传感、图像传送以及光能传递等方面。
由于光纤制造技术的不断进步,光线内部的损耗越来越小,因此在实际应用中提高光源与光纤之间的耦合效率是提高系统传输效率的重要技术之一。
【实验目的】:1.了解光纤特性,种类2.掌握光纤耦合的基本技巧及提高耦合效率的手段3.熟悉常用的耦合方法【实验装置示意图】:【实验数据】:光纤输出光功率:0.78mW光纤输入光功率:1.9mW耦合效率为:0.78/1.9*100%=41.1%【实验思考总结】耦合时,因为起始的光强较弱,用探测器检测效果不明显。
可以先用目测法,观察输出光斑的亮度。
等到达到一定的亮度之后,在接入探测器,观察示数。
调节时,首先调节高度,然后调节俯仰角,最后在调节左右对准度与旋转方向。
实验二:测量光纤损耗【实验目的】:通过测量单模光纤的衰减值,了解测量光纤损耗的常用方法:插入法(实际测量中很多器件的插损、损耗都使用这种方法)。
【实验原理】:光源发出的光通过光的注入系统输入到短光纤中,并通过光纤活动连接器与光功率计接通。
首先测量短光纤的输出功率P1,然后通过光纤连接器接入被测光纤,测量长光纤的输出功率P2,则光纤的总损耗为被测光纤的长度为L,则光纤的损耗系数为【实验装置示意图】:【实验数据】:光纤长度L:6km波长为1310nm的数据电流(mA)22.5 17.0 7.3P1(dBm) -7.1 -9.9 -13.2 P2(dBm) -9.2 -12.8 -15.5 损耗A(dB) 2.1 2.9 2.5 损耗系数0.44 0.41 0.383 (dB/km)波长为1550nm的数据电流(mA)25.4 16.2 13.6 P1(dBm) -6.9 -10.0 -11.1 P2(dBm) -8.7 -11.9 -12.9 损耗A(dB) 1.8 1.9 1.8 损耗系数0.30 0.32 0.30 (dB/km)实验三:测量光纤的数值孔径【实验简介】:光纤的数值孔径大小与纤芯折射率、纤芯-包层相对折射率差有关。
光纤传输实验报告(共8篇)
1. 实验目的
通过本次实验,我们的目的是了解光纤传输的基本原理、结构和特点,并熟悉光纤通信系统的构成,掌握光纤传输实验的基本操作和注意事项。
2. 实验器材和材料
主要器材有:激光器、偏振器、光纤发射机、光纤接收机、光功率计、光纤、电缆等。
主要材料有:测试记录表格、实验手册等。
3. 实验原理
光纤传输是指利用光纤作为信号传输中介的通信方式。
光纤是一种用玻璃、塑料、石英等物质制成的细长、柔韧可弯曲的导光体,通过对光的全内反射来实现信号的传输。
在光纤传输中,激光作为载荷被发射机转换成光信号,经过光纤的传播和干扰、衰减和扩散、噪声和失真等影响后,到达接收机进行解码并转换为电信号输出。
4. 实验步骤
(1)接通设备并拟定实验计划:先接通激光器、光纤发射机和光纤接收机等设备,确定实验计划和实验要求。
(2)调整偏振器和测试光功率:首先需要调整偏振器并测量测试光功率,确保光信号的输出和传输。
(3)连接光纤并测试网络质量:将光纤连接到发射机或接收机并测试网络质量,计算信号的传输速度和误码率等参数。
(4)记录数据并分析结果:将实验过程中的数据记录下来,并进行数据分析和统计,得出结论并进行总结。
5. 实验注意事项
(1)实验操作时需严格遵守操作规程和安全规范,避免任何不必要的事故和安全隐患。
(2)实验时需认真检查设备连接,确保连接正确和稳定,以免出现信号的传输失败和误差。
(3)实验过程中需注意环境干扰和噪声干扰,以免影响实验结果和数据测量的准确性。
(4)实验结束后需及时关闭设备并整理实验器材、材料、记录表格等,保持实验室的整洁和安全。
课程名称:光纤通信实验名称:实验3 接收机灵敏度和动态范围测量实验姓名:班级:学号:实验时间:指导教师:得分:一、实验目的1、了解和掌握光收端机灵敏度的指标要求和测试方法。
2、掌握误码仪的使用方法。
二、实验器材主控&信号源模块25 号光收发模块23 号光功率计 & 误码仪模块三、实验原理光接收机的性能指标主要包括灵敏度和动态范围。
(1)灵敏度灵敏度是光端机的重要特性指标之一,它表示了光接收机接收微弱信号的能力,是系统设计的重要依据。
光接收机灵敏度的定义是:在给定误码率或信噪比条件下,光接收机所能接收的最小平均光功率。
在测灵敏度时应注意 3 点:1、在测量光接收机灵敏度时,首先要确定系统所要求的误码率指标。
对不同长度和不同应用的光纤数字通信系统,其误码率指标是不一样的。
例如,在短距离光纤数字通信系统中,要求误码率一般为,而在 420km 数字段中,则要求每个中继器的误码率为。
对同一个光接收机来说,当要求的误码率指标不同时,其接收机的灵敏度也就不同。
要求误码率越小,则灵敏度就越低,即要求接收的光功率就越大。
因此,必须明确,对某一接收机来说,灵敏度不是一个固定不变的值,它与误码率的要求有关。
测量时,首先要确定系统设计要求的误码率,然后再测该误码率条件下的光接收机灵敏度的数值。
2、要注意光接收机灵敏度定义中的光功率是指最小平均光功率,而不是指任何一个在达到系统要求的误码率时所对应的光功率。
因此,要特别注意“最小”的概念。
所谓“最小”,就是指当接收的光功率只要小于此值,误码率立即增加而达不到要求。
应该指出,对某一接收机来说,光功率只要在它的动态范围内变化,都能保证系统要求的误码率。
但灵敏度只有一个,即接收机所能接收的最小光功率。
3、灵敏度指的是平均光功率,而不是光脉冲的峰值功率。
这样,光接收机的灵敏度就与传输信号的码型有关。
码型不同,占空比不同,平均光功率也不同,即灵敏度不同。
在光纤数字传输系统中常用的 2 种码型 NRZ 码和 RZ 码的占空比分别为100%和 50%。
光纤通信实验报告
实验目的:通过实际操作,了解光纤通信的基本原理和技术特点,
掌握光纤通信系统的组成和工作过程,以及光纤连接的方法。
实验仪器:光纤通信实验箱、光纤收发器、光纤跳线、示波器、光
功率计等。
实验步骤:
1. 搭建光纤通信实验箱,将光纤收发器连接至实验箱主机。
2. 用光纤跳线将实验箱主机与光功率计连接,以便实时监测光功率
的变化。
3. 调节实验箱主机的光发射功率和接收灵敏度,使其达到最佳状态。
4. 在示波器上观察传输信号的波形,分析信号的稳定性和传输质量。
5. 采用不同的光纤连接方法,比较它们对信号传输的影响,验证光
纤连接的重要性。
实验结果与分析:
经过实验操作,我们可以明显地感受到光纤通信系统的高速传输、
低损耗、抗干扰等优点。
同时,我们也发现光纤连接的质量对信号传
输有着至关重要的影响,需要谨慎处理光纤的清洁、固定和连接方式,以确保信号传输的稳定性和可靠性。
实验总结:
通过本次实验,我们深入了解了光纤通信的基本原理和技术特点,掌握了光纤通信系统的组成和工作过程,以及光纤连接的方法。
同时也加深了对光纤通信技术在现代通信领域中的广泛应用和重要性的认识,为我们今后的学习和研究打下了坚实的基础。
希望通过持续的实践和探索,我们能够进一步提升对光纤通信技术的理解和应用水平,为推动通信技术的发展做出更大的贡献。
光纤通信实验报告全一、实验目的1. 学习光纤通信的基本原理;2. 掌握光纤通信实验的基本步骤和方法;3. 熟悉光纤通信系统所需的主要元器件。
二、实验原理1. 光纤通信的基本原理光纤通信是指利用光纤作为传输介质,将信号进行传输和接收的通信方式。
它的原理基于光的全反射和光纤的全内反射,将光信号从一端传输到另一端。
光纤通信和其他传输方式相比,具有传输速度快、传输距离远、容量大等特点。
2. 光纤通信的主要元器件光纤通信系统的主要元器件有:光源、光纤、光学耦合器、接收器等。
其中,光源是产生光信号的元器件;光纤是光信号传输的介质;光学耦合器是将光源产生的光信号耦合到光纤中的元器件;接收器是将光纤中传输的光信号转换成电信号的元器件。
三、实验步骤1. 实验前准备先检查实验中所需的仪器设备是否齐全,包括光源、光纤、光学耦合器、接收器等。
接着,将实验仪器逐一放置在实验室桌面上,并保证其正常工作。
2. 测试单模光纤的传输性能选用单模光纤,将光源输出的光信号通过光学耦合器输入到光纤中,然后将光纤输出端的光信号转换成电信号进行检测并记录。
在实验中,可以通过检测光信号的衰减程度、频率响应等参数,测试单模光纤的传输性能。
4. 测试光纤模式发射器的输出功率和频率特性5. 测试光纤接收器的灵敏度和非线性特点四、实验结果在实验中,我们通过测试单模光纤和多模光纤的传输性能,以及光纤模式发射器和光纤接收器的性能特点,得到了丰富的实验数据。
通过对实验数据的分析,我们得出了以下结论:1. 单模光纤相比于多模光纤,具有更小的光信号衰减和更高的频率响应;2. 光纤模式发射器的输出功率和频率特性较为稳定,可以满足长距离信号传输的需求;3. 光纤接收器的灵敏度和非线性特点对于信号传输的质量影响较大,应予以重视。
通过本次实验,我们更深入地了解了光纤通信的原理和应用,掌握了基本的光纤通信实验技能和方法。
在实验中,我们也发现了光纤通信系统所需的主要元器件,以及它们的性能特点和应用范围。
光纤通信实验报告课程名称光纤通信实验实验一光源的P-I特性、光发射机消光比测试一、实验目的1、了解半导体激光器LD的P-I特性、光发射机消光比。
特性曲线、光发射机消光比的测试方法。
P-I、掌握光源2.二、实验器材1、主控&信号源模块、2号、25号模块各一块2、23号模块(光功率计)一块3、FC/PC型光纤跳线、连接线若干4、万用表一个三、实验原理数字光发射机的指标包括:半导体光源的P-I特性曲线测试、消光比(EXT)测试和平均光功率的测试。
1、半导体光源的P-I特性P(mW)I(mA)I thLD半导体激光器P-I曲线示意图半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,激光二极管可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即启动介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。
半导体激光器的输出光功率与驱动电流的关系如上图所示,该特性有一个转折点,相应的驱动电流称为门限电流(或称阈值电流),用I表示。
在门限电流以下,th激光器工作于自发辐射,输出(荧光)光功率很小,通常小于100pW;在门限电流以上,激光器工作于受激辐射,输出激光功率随电流迅速上升,基本上成直线关系。
激光器的电流与电压的关系类似于正向二极管的特性。
该实验就是对该线性关系进行测量,以验证P-I的线性关系。
.P-I特性是选择半导体激光器的重要依据。
在选择时,应选阈值电流I尽可能小,没有th扭折点,P-I曲线的斜率适当的半导体激光器:I小,对应P值就小,这样的激光器工作电th流小,工作稳定性高,消光比大;没有扭折点,不易产生光信号失真;斜率太小,则要求驱动信号太大,给驱动电路带来麻烦;斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。
2、光发射机消光比P0010lg EXT?。
消光比定义为:P11式中P是光发射机输入全“0”时输出的平均光功率即无输入信号时的输出光功率。
00P是光发射机输入全“1”时输出的平均光功率。
从激光器的注入电流(I)和输出功率(P)11的关系,即P-I特性可以清楚地看出消光比的物理概念,如下图所示。
ADPPΔPINEXT消光比对灵敏度的影响由图可知,当输入信号为“0”时,光源的输出光功率为P,它将由直流偏置电流I b00来确定。
无信号时光源输出的光功率对接收机来说是一种噪声,将降低光接收机的灵敏度。
所以从接收机角度考虑,希望消光比越小越好。
但是,应该指出,当I减小时,光源的输出b功率将降低,光源的谱线宽度增加,同时,还会对光源的其它特性产生不良影响,因此,必须全面考虑I的影响,一般取I= ~I(I为激光器的阈值电流)。
在此范围内,能比较好thb bth地处理消光比与其它指标之间的矛盾。
考虑各种因素的影响,一般要求发送机的消光比不超过-1dB。
在光源为LED的条件下,一般不考虑消光比,因为它不加直流偏置电流I,电b信号直接加到LED上,无输入信号时的输出功率为零。
因此,只有以LD作光源的光发射机才要求测试消光比。
.四、实验步骤1、关闭系统电源,按如下说明进行连线:(1)用连接线将2号模块TH7(DoutD)连至25号光收发模块的TH2(数字输入),并把2号模块的拨码开关S4设置为“ON”,使输入信号为全1电平。
(2)用光纤跳线连接25号光收发模块的光发输出端和光收接入端,并将光收发模块的功能选择开关S1打到“光功率计”。
(3)用同轴电缆线将25号光收发模块P4(光探测器输出)连至23号模块P1(光探测器输入)。
2、将25号光收发模块开关J1拨为“10”,即无APC控制状态。
开关S3拨为“数字”,即数字光发送。
3、将25号光收发模块的电位器W4和W2顺时针旋至底,即设置光发射机的输出光功率为最大状态;4、开电,设置主控模块菜单,选择主菜单【光纤通信】→【光源的P-I特性测试】功能。
5、用万用表测量R7两端的电压(测量方法:先将万用表打到直流电压档,然后将红表笔接TP3,黑表笔接TP2)。
读出万用表读数U,代入公式I=U/R7,其中R7=33Ω, 读出光功率计读数P。
调节功率输出W4,将测得的参数填入下表:6、将25号光收发模块的电位器W4顺时针旋至底;设置主控模块菜单,选择【光功率计】功能。
7、将2号模块的拨码开关S4设置为“ON”,使输入信号为全1电平。
测得此时光发端机输出的光功率为P。
11电平。
测得此时光发0,使输入信号为全”OFF设置为“S4号模块的拨码开关2、将8.端机输出的光功率为P。
00P0010lg EXT? 9,即得光发射机消光比。
、代入公式P1110、调节W4,重复7~9步骤,并将所测数据填入下表。
P(uW)00P(uW) 11EXT 五.实验记录及结果分析特性曲线:P-I绘制光源.消光比:(uW)P 00P(uW) 11P(uW)00P (uW)11.EXT实验结果及分析:1.半导体激光器工作原理是:激励方式,利用半导体物质(既利用电子)在能带间跃迁发光,用半导体晶体的解理面形成两个平行反射镜面作为反射镜,组成谐振腔,使光振荡、反馈、产生光的辐射放大,输出激光。
半导体激光二极管(LD)或简称半导体激光器,它通过受激辐射发光,(处于高能级E2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E1,这个过程称为光的受激辐射2.环境温度的改变对半导体激光器P-I特性的影响:随着温度的上升,阈值电流越来越大,功率随电流变化越来越缓慢。
3.以半导体激光器为光源的光纤通信系统中,半导体激光器P-I特性对系统传输性能的影响是:当注入电流较小时,激活区不能实现粒子束反转,自发发射占主导地位。
,激光器发射普通的荧光。
随着注入电流的增加,激活器里实现了粒子束反转,受激辐射占主导地位。
但当注入电流小于阈值电流时,谐振腔内的增益还不足以克服如介质的吸收、镜面反射不完全等引起的谐振腔的损耗时,不能在腔内建立起振荡,激光器只发射较强荧光。
只有当注入电流大于阈值电流时才能产生功率很强的激光。
4.阈值电流随着温度的升高而增大,外微分量子效率减小,输出光功率明显下降。
5.当注入电流较小时,激活区不能实现粒子束反转,自发发射占主导地位。
激光器发射普通的荧光。
随着注入电流的增加,激活器里实现了粒子束反转,受激辐射占主导地位。
但当注入电流小于阈值电流时,谐振腔内的增益还不足以克服如介质的吸收、镜面反射不完全等引起的谐振腔的损耗时,不能在腔内建立起振荡,激光器只发射较强荧光。
只有当注入电流大于阈值电流时才能产生功率很强的激光。
“1”和全p0时平均光功率“0”它定义为全消光比这个指标很重要,对于数字脉冲光发射机,6.时平均光功率p1之比,可用EXT表示,定义式如EXT=10lg(p1/p0)(dB) ,消光比的不足容易引起对码元的误判等一系列问题。
在实际生产中,由于设备及环境差异的问题,消光比很难控制,只能将消光比控制在某一范围。
通过本实验,我学习了解半导体激光器发光原理和激光光源工作原理,掌握了半导体激光器P-I 曲线的测试方法,同时了解数字光发射机平均输出光功率和消光比的指标要求,通过动手操作,掌握了数字光发射机平均输出光功率和消光比的测试方法,为以后的学习奠定了基础。
实验二模拟信号光纤传输系统一、实验目的1、了解模拟信号(正弦波、三角波、方波等)光纤传输系统。
二、实验器材1、主控&信号源模块、25号模块各一块2、双踪示波器一台3、FC型光纤跳线、连接线若干三、实验原理、实验原理框图1.光纤跳线信号源光发射机光接收机TH4A-OUTTH125#模块25#模块模拟信号光纤传输系统2、实验框图说明主控信号源模块可输出正弦波、三角波、方波等模拟信号,信号送入光发射机的模拟输入端,经过光调制电路转换成光信号,完成电光转换;光信号经光纤跳线传输后,由接收机接收,并完成光电转换,输出原始信号。
注:由于实验设备配置模块情况不同,光收发模块的波长类型有所不同,比如1310nm、1550nm 等,需根据实际情况确定。
四、实验步骤1、关闭系统电源,用光纤跳线连接25号光收发模块的光发输出端和光收接入端,并将光收发模块的功能选择开关S1打到“光接收机”。
2、将信号源&主控模块的模拟输出A-out连接到25号光收发模块的模拟信号输入端TH1。
3、把25号光收发模块的S3设置为“模拟”。
4、将25号光收发模块的W5(接收灵敏度的调节旋钮,顺时针旋转时输出信号减小)逆时针旋到最大,适当调节W6(调节电平判决电路的门限电压)。
5、打开系统电源开关及各模块电源开关。
在主控模块中设置实验参数主菜单【光纤通信】→【模拟信号光纤传输系统】6、用示波器观测模拟信号源模块的A-out,调节信号源模块的“输出幅度”旋钮,使信。
号为适当大小(保证输出信号最大且不失真).7、用示波器观测模拟信号源的A-out和25号光收发模块的TH4,适当调节W5,使得观测到的两处波形相同。
此时,25号光收发模块无失真的传输模拟信号(可以通过“主控”模块中“信号源”进入“模拟信号源”菜单选择所需波型)。
五.实验记录及结果分析示波器显示图正弦波三角波.方波实验结果及分析:1、光纤传输系统能传输数字信号,因为光纤传输的是光能量。
像我们所说的光功率,一台光源发出光信号并有一定的功率可以支持传输到终端,光源或者说这个一定功率的光信号则是一个载体,在传输前需要将数字信号调制进去,也就是附加在光信号上面。
这时数字信号通过光纤进行传播。
当然,传至终端的时候,则需要另一个解调器,将数字信号还原成我们可识别的信息继续进行传播。
、通过本次实验了解了模拟信号光纤系统的通信原理,了解了完整的模拟信号光纤通3.信系统的基本结构。
实验三PN序列光纤传输系统一、实验目的1、了解PN序列光纤传输系统的原理。
二、实验器材1、主控&信号源模块、25号模块各一块2、双踪示波器一台3、FC型光纤跳线、连接线若干三、实验原理1、实验原理框图光纤跳线信号源光发射机光接收机TH3TH2PN1525#模块25#模块PN序列光纤传输系统实验框图2、实验框图说明本实验是了解和验证数字序列光纤传输系统的原理。
由主控信号源模块提供输入信号PN序列,PN序列经过光发射机完成电光转换,送入到光纤媒介中传输,最后通过光接收机完成光电转换以及门限判决,恢复出原始码元信号。
、1310nm比如光收发模块的波长类型有所不同,由于实验设备配置模块情况不同,注:1550nm等,需根据实际情况确定。
四、实验步骤1、关闭系统电源,用光纤跳线连接25号光收发模块的光发和光收,并将25号光收发模块的功能选择开关S1打到“光接收机”。
2、将信号源&主控模块的数字信号PN15连接到25号光收发模块的数字信号输入端TH2。