抽屉原理_1459544441
- 格式:ppt
- 大小:1.41 MB
- 文档页数:12
六年级数学数学广角抽屉原理抽屉原理是数学中的一条重要原理,它在解决计数问题中起到了至关重要的作用。
在数学广角中,抽屉原理被广泛应用于解决各种排列组合、鸽巢原理等问题。
本文将详细介绍六年级数学中的抽屉原理以及其应用。
一、抽屉原理的概述抽屉原理,又称鸽巢原理或箱子原理,是由数学家约翰·拉默尔(Joseph-Louis Lagrange)在18世纪末提出的。
它基本思想是:如果有n+1个物体放入n个抽屉,那么至少有一个抽屉里会放置多于一个物体。
这条原理旨在说明当物体数量超过容器数量时,必然存在容器里有多个物体的情况。
二、六年级数学中的抽屉原理应用1. 排列组合问题在六年级数学中,有很多排列组合问题可以通过抽屉原理来解决。
例如,考虑如下问题:将8个苹果放入3个篮子里,每个篮子至少要放2个苹果,问有多少种放置方式?通过抽屉原理,我们可以将这个问题转化为将8-2×3=2个苹果放入3个篮子里的问题,即将2个相同的苹果和3个篮子进行排列组合,解得答案。
这个问题的解题思路正是基于抽屉原理的应用。
2. 数字盒子问题在六年级数学中,常常会涉及到将数字放入盒子的问题。
例如,有一组数字{1, 2, 3, 4, 5, 6, 7, 8, 9},我们需要从中选取至少5个数字,使得选取的数字之和能够被3整除。
这个问题可以通过抽屉原理来解决。
我们将这组数字中的每个数字除以3得到的余数作为抽屉,将数字放入对应的抽屉中,根据抽屉原理,至少存在一个抽屉里放置了至少5个数字。
将这些数字相加即可得到满足条件的数字之和。
3. 奇偶数问题六年级数学中,奇偶数问题也是抽屉原理的常见应用之一。
例如,考虑以下问题:将六个不同的奇数放入三个盒子里,使得每个盒子里的数字之和都是偶数,问有多少种放置方式。
通过抽屉原理,我们可以将这个问题转化为将三个偶数和六个奇数放入三个盒子里,并满足每个盒子里的数字之和都是偶数的问题。
然后通过排列组合的思路,得到问题的解答。
第一抽屉原理原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。
[证明](反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能。
原理2 把多于mn个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。
[证明](反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn 个物体,与题设不符,故不可能。
第二抽屉原理把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。
[证明](反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。
抽屉原理,又叫狄利克雷原则,它是一个重要而又基本的数学原理,应用它可以解决各种有趣的问题,并且常常能够得到令人惊奇的结果,许多看起来相当复杂,甚至无从下手的问题,利用它能很容易得到解决.那么,什么是抽屉原理呢?我们先从一个最简单的例子谈起.将三个苹果放到两只抽屉里,想一想,可能会有什么样的结果呢?要么在一只抽屉里放两个苹果,而另一只抽屉里放一个苹果;要么一只抽屉里放有三个苹果,而另一只抽屉里不放.这两种情况可用一句话概括:一定有一只抽屉里放入了两个或两个以上的苹果.虽然哪只抽屉里放入至少两个苹果我们无法断定,但这是无关紧要的,重要的是有这样一只抽屉放入了两个或两个以上的苹果.如果我们将上面问题做一下变动,例如不是将三个苹果放入两只抽屉里,而是将八个苹果放到七只抽屉里,我们不难发现,这八个苹果无论以怎样的方式放入抽屉,仍然一定会有一只抽屉里至少有两个苹果。
通过上面的分析,我们可以将上面问题中包含的基本原理写成下面的一般形式.抽屉原理(一):把多于几个的元素按任一确定的方式分成几个集合,那么一定至少有一个集合中,至少含有两个元素.应用抽屉原理来解题,首先要审题,即分清什么作为“元素”,什么作为“抽屉”;其次要根据题目的条件和结论,结合有关的数学知识,来设计抽屉,在应用抽屉原理解题时,正确地设计抽屉是解题的关键.例1 有红、黄、绿三种颜色的小球各四颗混放在一只盒子里,为了保证一次能取到两颗颜色相同的小球,一次至少要取几颗?A、3B、4C、5D、6分析:将三种不同的颜色看作三个抽屉,为了保证一次能取到两颗颜色相同的小球,即要求至少有两颗小球出自同一抽屉,因此一次至少要取4颗小球.例2 某班有30名学生,班里建立一个小书库,同学们可以任意借阅,问小书库中至少要有多少本书,才能保证至少有一个同学一次能至少借到两本书?A、28B、29C、30D、31分析:将30名同学看作30个“抽屉”,而将书看作“苹果”,根据抽屉原理,“苹果”数目要比“抽屉”数目大,才能保证至少有一个抽屉里有两个或两个以上的“苹果”,因此,小书库中至少要有31本书,才能保证至少有一位同学一次能借到两本或两本以上的图书。
小学数学公式大全抽屉原理抽屉原理是数学中一个重要的定理,也称为鸽巢原理。
它是指如果有n个物品放入m个抽屉中,其中n>m,那么至少有一个抽屉中会放多于一个物品。
抽屉原理的应用非常广泛,特别是在组合数学、概率论和计算机科学等领域中。
以下是一些与抽屉原理相关的例子和公式:1.投票原理(多数派原理):如果n个选项中,超过一半的选项选择了同一个选项,那么这个选项将成为多数派。
2.求余定理:对于任意整数a和b,其中b不等于0,存在唯一的整数q和r,使得a = bq + r,其中q是商,r是余数,并且0 <= r < ,b。
3.相反数的乘积:如果a和b是两个整数,那么-a和-b的乘积等于ab。
4.加法逆元:对于任意整数a,存在唯一的整数-b,使得a+b=0。
这个整数-b被称为a的加法逆元。
5.乘法逆元:对于任意非零整数a,存在唯一的倒数-b,使得a*b=1、这个倒数-b被称为a的乘法逆元。
6.平方差公式(差平方公式):对于任意两个数a和b,有(a+b)(a-b)=a^2-b^27.同底数幂的乘法:对于任意三个数a、b和c,且a不等于0和1,有a^b*a^c=a^(b+c)。
8.同底数幂的除法:对于任意三个数a、b和c,且a不等于0和1,有a^b/a^c=a^(b-c)。
9.幂的乘法:对于任意三个数a、b和c,有(a^b)^c=a^(b*c)。
10.幂的除法:对于任意三个数a、b和c,有(a^b)/(a^c)=a^(b-c)。
11.幂的幂:对于任意四个数a、b、c和d,有(a^b)^(c^d)=a^(b*c^d)。
12.组合公式(二项式定理):对于任意两个数a和b,有(a+b)^n=C(n,0)*a^n+C(n,1)*a^(n-1)*b+...+C(n,n)*b^n,其中C(n,k)表示从n个物品中选取k个的组合数。
13.分配律:对于任意三个数a、b和c,有a*(b+c)=a*b+a*c;(a+b)*c=a*c+b*c。
抽屉原理的应用有哪些例子什么是抽屉原理抽屉原理,又称鸽巢原理,是数学中常用的一种思维工具。
其核心思想是“如果有n+1个物体放入n个抽屉中,必然有个抽屉里至少放了两个物体”。
抽屉原理的应用案例抽屉原理在各个领域中都有广泛的应用,以下是几个常见的例子:1. 生日悖论生日悖论是抽屉原理的典型应用之一。
根据悖论,当一个房间里的人数量超过23个时,至少有两个人生日相同的概率超过一半。
这是因为如果有超过23个人,根据抽屉原理,至少有一个生日相同的抽屉,而每个人对应抽屉中的一个物体,生日相同的人相当于抽屉中的两个物体。
2. 网络社交圈重叠在社交网络中,人与人之间都会存在一定的连接关系。
根据抽屉原理,如果一个人有超过n个朋友,那么至少有两个朋友在他的朋友圈中相互认识。
这是因为一个人的朋友圈相当于抽屉,而朋友关系相当于物体,当一个人有超过n个朋友时,不同的朋友之间会重叠。
3. 数据库中的冲突在数据库设计中,抽屉原理可以应用于冲突检测和解决。
当多个事务同时对数据库进行操作时,根据抽屉原理,至少有两个事务会读取或写入相同的数据项,从而导致冲突。
这时需要通过并发控制的方式解决冲突。
4. 信用卡盗刷检测在信用卡盗刷检测中,抽屉原理被用于检测异常交易。
银行通过对持卡人过去一段时间内的交易数据进行分析,根据抽屉原理,如果持卡人发生了异常交易,也会存在其他异常交易的概率。
通过抽屉原理,银行可以更容易地检测到潜在的盗刷行为。
5. 赛马比赛的预测在赛马比赛中,抽屉原理可以用来预测某匹马是否会取得好成绩。
根据抽屉原理,如果某匹马在过去的比赛中总是排在前几名,那么在未来的比赛中,该马依然有很高的概率能够取得好成绩。
这是因为前几名的马相当于抽屉,而马的成绩相当于物体。
6. 北京市车牌尾号限行在北京市,根据尾号限行规定,每天不同的尾号车辆限制出行。
抽屉原理在这里的应用是,根据车牌尾号的分布情况,可以预测在特定工作日,哪些尾号的车辆会同时上路,从而更好地管理交通拥堵问题。
抽屉原理及其简单应用一、知识要点抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确地提出来的,因此,也称为狄利克雷原理。
把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果。
这个人所皆知的常识就是抽屉原理在日常生活中的体现。
用它可以解决一些相当复杂甚至无从下手的问题。
原理1:把n+1个元素分成n类,不管怎么分,则一定有一类中有2个或2个以上的元素。
原理2:把m个元素任意放入n(n≤m)个集合,则一定有一个集合至少要有k个元素。
其中k=m/n(当n能整除m时)或k=〔m/n〕+1(当n不能整除m时),这里〔m/n〕表示不大于m/n的最大整数,即m/n的整数部分。
原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。
原理2也可以变为:把m个元素任意放入n(n≤m)个集合,则一定有一个集合至多要有k个元素。
其中k=〔m/n〕,这里〔m/n〕表示不大于m/n的最大整数,即m/n的整数部分。
二、应用抽屉原理解题的步骤第一步:分析题意。
分清什么是“东西”,什么是“抽屉”,也就是什么作“东西”,什么可作“抽屉”。
第二步:制造抽屉。
这个是关键的一步,这一步就是如何设计抽屉。
根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。
第三步:运用抽屉原理。
观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。
三、应用抽屉原理解题例1 有367名2012年出生的学生,是否一定能找到同一天生日的同学,为什么?分析与解答是,一定能。
2012年是闰年共366天,把366天看作抽屉,367名学生看作物品,比抽屉个数多,所以根据抽屉原理,至少有两个物品在同一个抽屉里。
因此,有两名同学生日相同。
习题1.某年级有32名同学在五月份出生,是否至少有2个同学在同一天过生日?例2 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
抽屉原理课件抽屉原理课件抽屉原理,也被称为鸽巢原理,是一个在离散数学中被广泛应用的概念。
它的基本思想是:如果有十个苹果放入九个抽屉中,那么至少有一个抽屉中会有两个苹果。
虽然这个原理看起来很简单,但它在解决很多实际问题中起着重要的作用。
在本文中,我们将探讨抽屉原理的应用以及它对我们日常生活的影响。
抽屉原理最早由德国数学家约瑟夫·斯图尔特在19世纪末提出。
他认为,当我们将苹果放入抽屉中时,我们可以将苹果视为物体,抽屉视为容器。
这个原理可以用来解决很多实际问题,比如密码学、计算机科学、概率论等等。
在密码学中,抽屉原理可以用来解释为什么在一组随机生成的密码中,总会有一些密码是相同的。
在计算机科学中,抽屉原理可以用来解释为什么在一组数据中,总会有一些数据具有相同的特征。
在概率论中,抽屉原理可以用来解释为什么在一组随机事件中,总会有一些事件具有相同的概率。
抽屉原理的应用不仅限于数学领域,它还可以用来解释一些日常生活中的现象。
比如,我们常常会发现,当我们去购买衣服时,总会有一些衣服的尺寸不合适。
这可以用抽屉原理来解释,因为在一组不同尺寸的衣服中,总会有一些尺寸与我们的身体尺寸相匹配。
又比如,当我们在超市购买水果时,总会发现一些水果有瑕疵。
这可以用抽屉原理来解释,因为在一组水果中,总会有一些水果因为各种原因而变质或者损坏。
抽屉原理的深层次含义在于,它告诉我们世界上的事物是有规律可循的。
无论是数学中的问题,还是生活中的现象,都可以通过抽屉原理来解释和理解。
这也意味着我们需要保持警觉,不要被表面现象所迷惑,而要去寻找问题的本质和规律。
只有这样,我们才能更好地应对挑战和解决问题。
在教育领域,抽屉原理也有着重要的应用价值。
通过将抽屉原理引入课堂教学,可以帮助学生培养逻辑思维和问题解决能力。
例如,在数学课上,老师可以通过抽屉原理的例子来教授概率论,让学生更好地理解概率的概念和计算方法。
在物理课上,老师可以通过抽屉原理的例子来教授力学的基本原理,让学生了解物体在受力作用下的运动规律。
抽屉原理给抽屉
抽屉原理是讲述了一个有限数量的物体被放入一定数量的抽屉中,那么必然会有至少一个抽屉中有超过一个物体的情况。
简单来说,假设有n个物体要放入m个抽屉,若n>m,则至少会有一个抽屉中放有不止一个物体。
抽屉原理的一个常见例子是在生日问题中。
假设有一个班级有30个学生,那么至少有两个学生生日是在同一天。
这是由于365天的日子被30个学生占据,而抽屉的数量是365天,根据抽屉原理,至少有一个抽屉会放有不止一个学生。
抽屉原理在数学、计算机科学等领域有重要的应用。
在密码学中,抽屉原理被用于证明一些密码学算法的安全性。
在算法设计中,抽屉原理通常被用来证明一些问题的存在性和上下界。
总之,抽屉原理是一种简单而有用的原理,它告诉我们在一定条件下,必然会出现某种情况。
这个原理在理解和解决问题时经常被使用,帮助我们深入思考和推理。
一、抽屉原理简介抽屉原理又称鸽巢原理,“抽屉原理”最先是由19世纪的德国数学家狄里克雷(Dirichlet)运用于解决数学问题的,所以又称“狄里克雷原理”原理1:把m个物体任意分放进n个空抽屉里(m>n,n是非0自然数),那么一定有一个抽屉中放进了至少2个物体。
原理2:把多于个kn物体任意分放进n个空抽屉里(k是正整数),那么一定有一个抽屉中放进了至少(k+1)个物体。
原理3:无穷多个元素分成n个集合,则至少有一个集合中含有无穷多个元素。
在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明是通过什么方式把这个存在的物体(或人)找出来。
现行的小学课本中只编排了抽屉原理1、2的教学。
二、运用抽屉原理解题的步骤第一步:分析题意。
分清什么是“东西”,什么是“抽屉”,也就是什么作“要分的物体”,什么可作“抽屉”。
第二步:制造抽屉。
这个是关键的一步,这一步就是如何设计抽屉。
根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。
第三步:运用原理。
观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。
三、理解抽屉原理要注意几点(1)抽屉原理是讨论物品与抽屉的关系,要求物品数比抽屉数或抽屉数的倍数多,至于多多少,这倒无妨。
(2)“任意放”的意思是不限制把物品放进抽屉里的方法,不规定每个抽屉中都要放物品,即有些抽屉可以是空的,也不限制每个抽屉放物品的个数。
(3)抽屉原理只能用来解决存在性问题,“至少有一个”的意思就是存在,满足要求的抽屉可能有多个,但这里只需保证存在一个达到要求的抽屉就够了。
(4)将a件物品放入n个抽屉中,如果a÷n= m……b,其中b是自然数,那么由抽屉原理2就可得到,至少有一个抽屉中的物品数不少于(m+1)件。
四、教学建议1.应让学生初步经历“数学证明”的过程。
抽屉原理
抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:
①4=4+0+0②4=3+1+0③4=2+2+0④4=2+1+1
观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。
抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:
①k=[n/m]+1个物体:当n不能被m整除时。
②k=n/m个物体:当n能被m整除时。
例题:把97件玩具分给幼儿园大班的小朋友,不管怎样分都至少有一位小朋友得5件或5件以上的玩具。
问:这个班最多有多少个小朋友?
根据抽屉原理,不管怎样分都至少有一位小朋友得5件或5件以上的玩具,就是说每位小朋友都得到4个玩具后,玩具至少还要剩余1件。
97/4=24余1
也就是说最多24位小朋友。