四年级下册运算律与简便运算
- 格式:doc
- 大小:16.00 KB
- 文档页数:3
小学四年级数学运算律及简便计算技巧运算律方法介绍及例题解析一、加法:1、加法交换律:几个数相加,交换加数的位置,它们的和不变。
a+b=b+a例如:248+175+252+825引导孩子观察发现248与252相加可以凑成整百,于是交换158和252两个加数的位置,变成248+252+(185+815).注意要改变运算顺序得添上括号。
即:248+175+252+815=(248+252)+(175+815)=500+1000=1500539+572+361 引导孩子观察发现539与631相加可以凑成整百,于是交换572和361两个加数的位置,变成539+361+572即:539+572+461=539+461+572=1572小试牛刀1158+262+138 375+219+225 276+228+324375+1034+966 378+114+222 732+580+2682、加法结合律三个数相加,先把前两个数相加,或者先把后两个数相加。
和不变,这叫做加法结合律。
用字母表示为:(a+b)+c=a+(b+c)。
例如:365+458+242观察发现后两个加数可以相加成整百数,于是变成365+(458+242)。
即: 365+458+242=365+(458+242)=365+700=1065小试牛刀21034+780+966 375+219+381+225 2214+638+286 (181+2564)+2819 78+44+114+242+222 276+381+224+219二、减法的性质1、从一个数里连续减去两个数,可以减去这两个数的和,也可以先减去第一个减数,再减去第二个减数。
例如:895-342-458 解析:孩子在理解方法后,=895-(342+458)如果先算342与158的和最后再减,=895-800 比较简便也比较容易。
=952、一个数里连续减去两个数,可以先减第一个数,也可以先减第二个数。
运算定律及简便计算(一)加减法运算定律1.加法交换律定义:两个加数交换位置,和不变字母表示:a=a++bb例如:16+23=23+16 546+78=78+5462.加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)+a+b=++b(c)(ca注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24 (3)140+639+860举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+2453.减法交换律、结合律注:减法交换律、结合律是由加法交换律和结合律衍生出来的。
减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b---a-=abcc例2.简便计算:198-75-98减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)-=a+--b(cbac例 3.简便计算:(1)369-45-155 (2)896-580-1204.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千及一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算。
例如:97=100-3,998=1000-2,…注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就具有很大的简便了。
例4.计算下式,能简便的进行简便计算:(1)89+106 (2)56+98 (3)658+997随堂练习:计算下式,怎么简便怎么计算(1)730+895+170 (2)820-456+280 (3)900-456-244(4)89+997 (5)103-60 (6)458+996(7)876-580+220 (8)997+840+260 (9)956—197-56(二)乘除法运算定律1.乘法交换律定义:交换两个因数的位置,积不变。
数学整理与复习知识点一:加法交换律和结合律1.加法交换律:两个数相加,交换加数的位置,和不变。
用字母表示为:a+b=b+a 。
2.加法结合律:三个数相加,先把前两个数相加,再和第三个数相加,或者先把后两个数相加,再和第一个数相加,和不变。
用字母表示为:(a+b)+c=a+(b+c) 。
例: 81 +( )= 62 + 81 184 + 168 + 32 = 184 +( + 32 )知识点二:应用加法运算律进行简便计算口诀:连加计算仔细看,考虑加数是关键。
整十、整百与整千,结合起来更简单。
交换定律记心间,交换位置和不变。
结合定律应用广,加数凑整更简便。
例: 69+75+25 78+(47+22) 387+98(多加要减)387+102(少加要加) 387﹣98(多减要加)387﹣102(少减要减)知识点三:减法的运算性质1:一个数连续减去两个数等于这个数减去这两个减数的和。
用字母表示:a-b-c=a-(b+c)减法的运算性质2:一个数减去两个数的和等于这个数连续减去和里每个加数。
例: 324-58-42 670-25-75 159﹣(59+37) 268﹣(35+68)加减的规律:(1)先加后减等于先减后加。
(2)先减后加等于先加后减。
例:325+41﹣25 268+45﹣68 268﹣45+32 325﹣41+75知识点四:乘法的交换律和结合律1.乘法交换律:两个数相乘,交换乘数的位置,积不变。
用字母表示为:a×b=b×a 2.乘法结合律:三个数相乘,先把前两个数相乘,再和第三个数相乘;或者先把后两个数相乘,再和第一个数相乘,积不变。
用字母表示为:(a×b) ×c=a×(b×c) 例:16×19=19×( ) 35×8×4= ( )×( )× 8知识点五:应用乘法运算律进行简便计算在连乘计算中,当某两个乘数的积正好是整十、整百、整千的数时,运用乘法运算律可使计算简便。
四年级下册数学第三单元《运算定律》一、知识点总结1. 加法运算定律-加法交换律:两个数相加,交换加数的位置,和不变。
用字母表示为a + b = b + a。
-加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
用字母表示为(a + b) + c = a + (b + c)。
2. 乘法运算定律-乘法交换律:两个数相乘,交换两个因数的位置,积不变。
用字母表示为a×b = b×a。
-乘法结合律:三个数相乘,先乘前两个数,或者先乘后两个数,积不变。
用字母表示为(a×b)×c = a×(b×c)。
-乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
用字母表示为(a + b)×c = a×c + b×c。
二、典型例题解析1. 计算45 + 67 + 55。
-解法一:按照从左到右的顺序计算,45 + 67 = 112,112 + 55 = 167。
-解法二:运用加法交换律,先算45 + 55 = 100,再算100 + 67 = 167。
2. 计算25×13×4。
-解法一:先算25×13 = 325,再算325×4 = 1300。
-解法二:运用乘法交换律,先算25×4 = 100,再算100×13 = 1300。
3. 计算125×(8 + 4)。
-解法一:先算括号里的8 + 4 = 12,再算125×12 = 1500。
-解法二:运用乘法分配律,125×8 + 125×4 = 1000 + 500 = 1500。
三、易错点分析1. 在运用运算定律进行简便计算时,容易出现运算顺序错误。
例如:在计算25×(40 + 4)时,有的同学可能会先算25×40,再加上4,这是错误的。
运算定律与简便计算 (一)加减法运算定律1.加法交换律定义:两个加数交换位置,和不变 字母表示:a b b a +=+例如:16+23=23+16 546+78=78+5462.加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)()(c b a c b a ++=++注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24 (3)140+639+860举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+2453.减法交换律、结合律注:减法交换律、结合律是由加法交换律和结合律衍生出来的。
减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b c a c b a --=-- 例2.简便计算:198-75-98减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)(c b a c b a +-=--例3.简便计算:(1)369-45-155 (2)896-580-1204.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算。
例如:97=100-3,998=1000-2,…注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就具有很大的简便了。
4.计算下式,能简便的进行简便计算:(1)89+106 (2)56+98 (3)658+9975.计算下式,怎么简便怎么计算(1)730+895+170 (2)820-456+280 (3)900-456-244 (4)89+997 (5)103-60 (6)458+996 (7)876-580+220 (8)997+840+260 (9)956—197-56 (10)425+14+185 (11)67+25+33+75 (12)245+180+20+155 (13)75+168+25 (14)60+255+40 (15)13+46+55+54+87 (16)5+137+45+63+50 (17)548+52+468 (18)135+39+65+11 (19)282+41+1594、解决问题。
人教版四年级下册数学加、减法的速算与巧算( 基础篇 )1、加法运算定律(2个):☆加法交换律:两个数相加,交换加数的位置,和不变。
即:a + b = b + a☆加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。
即:(a + b) + c = a + (b + c)(提醒:运用加法结合律时,要注意把结合的两个数用括号括起来。
)连加的简便计算方法:①使用加法交换律、结合律凑整(把和是整十、整百、整千的数先交换再结合在一起。
)②个位:1与9,2与8,3与7,4与6,5与5,结合。
③十位:0与9,1与8,2与7,3与6,4与5,结合。
连加的简便计算例题:50+98+50 488+40+60 165+93+35 65+28+35+72=50+50+98 =488+(40+60)=93+165+35=(65+35)+(28+72)=100+98 =488+100 =93+(165+35)= 100+100=198 =588 =293 = 2002、连减的性质:☆一个数连续减去几个数等于这个数减去这几个数的和。
即:a – b – c = a – (b + c)注:连减的性质逆用:a – (b + c) = a – b – c = a – c – b☆一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
即:a-b-c=a—c-b连减的简便计算方法:①连续减去几个数就等于减去这几个数的和。
如:106-26-74 = 106-(26+74)②连续减去两个数可以先减去后一个数再减去前一个数。
如:226-58-26=226-26-58③减去几个数的和就等于连续减去这几个数。
如:106-(26+74) = 106-26-74连减的简便计算例题:528—65—35 528—89—128 528—(150+128)=528—(65+35) =528—128—89 =528—128—150=528—100 =400—89 =400—150=428 =311 =2503、加、减法混合运算的性质:在计算没有括号的加、减混合运算时,计算时可以带着运算符号“搬家”。
第三单元运算定律与简便计算一、教学内容:加法运算定律,乘法运算定律和简便计算.二、教学目标:1,使学生经历探索加法交换律和结合律的过程,理解并掌握加法交换律和结合律,初步感知加法运算律的价值,发展应用意识.2,使学生在学习用符号,字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳,推理的能力,逐步提高抽象思维能力.3,使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯.三、知识基础:学生在前面的数学学习中,已经接触到了反映这五条运算定律的大量例子,特别是对于加法,乘法的可交换性,可结合性,这些经验构成了学习本单元知识的认知基础.教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律.教学难点:使学生经历探索加法结合律和交换律的过程,发现并概括出运算律.四、教学重,难点:能运用运算定律进行一些简便运算.五、采取的措施:1,有关运算定律的知识相对集中,有利于学生形成比较完整的认知结构.2,从现实的问题情境中抽象概括出运算定律,便于学生理解和应用.3,重视简便计算在现实生活中的灵活应用,有利于提高学生解决实际问题的能力。
第一课时加法交换律教学内容:书第27-28页例1及练习五1-3题,教参第53-54页。
教学目标1. 通过尝试解决实际问题,观察、比较,发现并概括加法交换律。
2. 初步学习用加法运算定律进行简便计算,并用来解决实际问题。
3.进一步培养观察、概括和语言表达能力。
教学重点、难点1. 教学重点:通过尝试解决实际问题,观察、比较,发现并概括加法交换律;2. 教学难点:初步学习用加法运算定律进行简便计算,并用来解决实际问题。
教学准备:主题图教学时间:学情分析:教学过程:(一)基础训练【口算】48+36=75-29=21×3=52÷6=88÷4=60+70=150-90=4000÷5=3000+140=60×8×0=【解答题】(只列式不计算)学校里原有77棵梨树,12棵杏树,又栽了23棵桃树。