2019-2020年高中数学 第二章 算法初步 2.3 循环结构教学案 北师大版必修3
- 格式:doc
- 大小:599.00 KB
- 文档页数:12
2019-2020学年高中数学 第二章 算法初步 2.3 几种基本语句2.3.2 循环语句教案 北师大版必修3 本节教材分析一、三维目标1、知识与技能(1)理解、掌握循环语句;(2)能运用循环语句表达解决具体问题的过程;(3)培养学生逻辑思维能力与表达能力,进一步体会算法思想.2、过程与方法提出问题——自主学习——讨论结果.二、教学重点:循环语句的表示方法、结构和用法三、教学难点:循环语句的写法.四、教学建议通过前面的学习,学生学会了输入语句、输出语句、赋值语句和条件语句的基本用法,本节将介绍循环语句的用法. 程序中的循环语句与程序框图中的循环结构存在一一对应关系,这种对应关系对于学生理解循环语句的结构,进一步理解算法中的循环结构都是很有帮助的.我们可以给出循环语句的一般格式,让学生自己画出相应的程序框图,也可以给出程序框图,让学生写出算法语句,提高学生的应用能力. 新课导入设计导入一作为老师,我经常用Excel 来算每一次考试全班学生的总分、平均分,Excel 很神奇,它能在不到一秒钟的时间内就算出了全班学生的平均分.大家能不能帮我解释一下,Excel 是怎么实现这些功能的呢?学好本节我相信对大家解决这个问题有很大的帮助. 导入二一位同学不小心违反了学校纪律,班主任令其写检查,他写完后交给班主任,班主任看后说:“认识不深刻,拿回去重写,直到认识深刻为止”.这位同学一想,这不是一个循环结构吗?可惜我还没学循环语句,不然可以写一个算法语句输入计算机了.同学们,今天我们开始学习循环语句.导入三在上一节,我们学习了For 语句,它是用来解决循环次数一定时的循环结构的算法描述的,但我们在学习循环结构时,我们还见到了很多循环条件未知的循环结构,这样的循环结构该怎么用算法语句描述呢?【教学过程】 一、问题情境1.问题1:设计计算135799⨯⨯⨯⨯⨯的一个算法,并画出流程图.二、学生活动解决问题1的算法是:对于以上算法过程,我们可以用循环语句来实现.S1 S ←1S2 I ←3S3 S ←S ×IS4 I ←I+2S5 若I ≤99,则返回S3S6 输出S流程图:三、建构数学1.循环语句:循环语句一般有种:For 语句、Do Loop 语句.(1)“For 语句”是在循环次数已知时使用的循环, 其一般形式为:例如:问题1中算法可用For 语句表示为:说明:①上面 “For”和“Next ”之间缩进的步骤称为循环体;②如果省略“Step 2”,默认的“步长”为1,即循环时,I 的值每次增加1(步长也可以为负,例如,以上“For 循环”第1行可写成:For I = 99 To 1 Step -2); ③“For 循环”是直到型循环结构,即先执行后判断.(2)“Do Loop 语句” 是在循环次数未知时使用的循环,其一般形式为:例如:问题1中的算法可“While 循环”语句表示为:说明:①上面“Do ”和“Loop While”之间缩进的步骤称为循环体;②“While 循环”是当型循环结构,其特点是“前测试”,即先判断,后执行.若初始条件不成立,则一次也不执行循环体中的内容;③任何一种需要重复处理的问题都可以用这种前测试循环来实现.四、数学运用1.例题:例1.编写程序,计算自然数1+2+3+……+99+100的和。
§2.2.3循环结构一、课程标准:通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程.在具体问题的解决过程中,理解程序框图的三种基本逻辑结构:顺序、条件、循环.二、教学目标:1.进一步理解程序框图的概念;2.掌握运用程序框图表达循环结构的算法;3.培养学生逻辑思维能力与表达能力.三、教学重点:运用程序框图表达循环结构的算法。
教学难点:循环体的确定,计数变量与累加变量的理解.四、教学过程(一)、回顾练习:引例:1. 设计一个算法,从5个实数中找出最大数,画出算法框图.分析:解决这个问题其实很简单,只要取两个数比较取大,再与下一个数比较取大,一直这样下去,最后的一个结构就是最大数。
用顺序结构如下:2.设计一个算法,求100个实数中的最大数,画出算法框图.能用上述方法吗?在本题中如果我们仍然用顺序结构和选择结构来画流程图,就显得比较繁琐,为了使得算法简洁我们今天学习循环往复的逻辑结构――循环结构。
(二)、新课例1 (见课本P93 例7)归纳:循环结构:在一些算法中,也经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这种结构称为循环结构..计数变量:在循环结构中,通常都有一个起到循环计数作用的变量,这个变量的取值一般都含在执行或终止循环体的条件中. 例2 ( 见课本P94 例8)解:(1)变量y是循环变量,控制着循环的开始和结束.(2)虚线所框部分,其功能是判断年份y是否是闰年,并输出结果.(3)算法的处理功能是:判断2000~2500(包括2500)年中,哪些年份是闰年,哪些年份不是闰年,并输出结果.例3 (见课本P94 例9)例9 设计一个算法,求100个实数中的最大数,画出算法框图.分析:点评:需要反复进行的相同操作,如果按照顺序结构来描述,算法显的十分烦琐,不利于阅读,如果采取循环结构来描述,算法就显得简洁,清楚。
循环结构是一种简化算法叙述的结构。
练习1:画出100321⨯⨯⨯⨯ 的程序框图. 练习2;见课件课时训练小结:画循环结构程序框图前:①确定循环变量和初始条件;②确定算法中反复执行的部分,即循环体;③确定循环的转向位置;④确定循环的终止条件. (四)、课堂小结1. 理解循环结构的逻辑,主要用在反复做某项工作的问题中;2. 画循环结构程序框图前:①确定循环变量和初始条件;②确定算法中反复执行的部分,即循环体;③确定循环的转向位置;④确定循环的终止条件。
<<循环结构>>教学设计一、教学目标1.知识与技能目标①理解循环结构,能识别和理解简单的框图的功能。
②能运用循环结构设计程序框图解决简单的问题。
2.过程与方法目标通过模仿、操作、探索,学习设计程序框图表达,解决问题的过程,发展有条理的思考与表达的能力,提高逻辑思维能力。
3.情感、态度与价值观目标通过本节的自主性学习,让学生感受和体会算法思想在解决具体问题中的意义,增强学生的创新能力和应用数学.二、教学重点与难点重点:理解循环结构,能识别和画出简单的循环结构框图。
难点:循环结构中循环条件和循环体的确定。
三、教学过程设计(一)【创设情境】引列:试求自然数1+2+3+……+99+100的和。
显然大家都能准确地口算出它的答案:5050。
而能不能将这项计算工作交给计算机来完成呢?你能写出它的一个算法,并用框图表示你的算法吗?【设计意图】这是一个累加问题,解决问题的方法不是惟一的,当然程序的设计也是有多种的,只是程序简单与复杂的问题。
此环节旨在提出递推求和的方法,复习顺序结构,导入新课。
目的是提升学生的求知欲、探索欲,使学生保持良好、积极的情感体验。
(二)【探究新知】1.循序渐进,理解知识①将“递推求和”转化为“循环求和”的方法和途径通常,我们按照下列过程计算的值。
第1步,0+1=1第2步,1+2=3第3步,3+3=6即21324312,3,4(2,3,,100)i i S S S S S S S S i i -=+=+=+=+=用递推公式表示为:111(2,3,100)ii S i S S i -=⎧=⎨=+⎩ 即第i 步的结果=第(i -1)步的结果+i 。
为了方便,有效地表示上述过程,我们用一个累加变量S 来表示每一步的计算结果,即把i S +的结果仍记为S ,从而把第i 步表示为i S S +=, 其中S 的初始值为0, 依次取1,2,……,100.由于i 同时记录了循环的次数,所以也称为计数变量.② 对赋值语句“1i i =+”、“ i S S +=”含义的解释赋值语句, 用来表明赋给某一个变量一个具体的确定值的语句。
3.2 循环语句整体设计教学分析教科书通过实例介绍了循环语句,For语句和Do Loop语句的区别是For语句适用于预先知道循环次数的循环结构,而Do Loop语句适用于预先不知道循环次数的循环结构.值得注意的是尽可能借助于信息技术,上机实习,以便学习更为准确的算法大体语句.三维目标1.掌握循环语句及其用法,提高解决问题的能力.2.通过学习循环语句,进一步体会算法的思想.重点难点教学重点:循环语句及其应用.教学难点:设计循环语句.课时安排1课时教学过程导入新课思路1(情境导入).一名同窗不小心违背了学校纪律,班主任令其写检查,他写完后交给班主任,班主任看后说:“熟悉不深刻,拿归去重写,直到熟悉深刻为止.”这位同窗一想,这不是一个循环结构吗?可惜我还没学循环语句,不然可以写一个算法语句输入计算机了.同窗们,今天咱们开始学习循环语句.思路2(直接导入).2006年年末,我国互联网上大规模暴发“熊猫烧香”病毒及其变种,该病毒通过量种方式进行传播,并将感染的所有程序文件改成熊猫举着三根香的样子,同时该病毒还具有盗取用户游戏账号等功能.该病毒传播速度快,危害范围广,全国有上百万个人用户、网吧及企业局域网用户蒙受感染和破坏.经查,“熊猫烧香”病毒的制作者为湖北省武汉市人李俊,据李俊交代,其于2006年10月16日编写了“熊猫烧香”病毒并在网上普遍传播,而且还以自己出售和由他人代卖的方式,在网络上将该病毒销售给120余人,非法获利10万余元.经病毒购买者进一步传播,致使该病毒的各类变种在网上大面积传播,对互联网用户计算机安全造成了严重破坏.其实电脑病毒就是循环语句,你知道循环语句有几种吗?教师点出课题.推动新课新知探究提出问题阅读教科书指出两种循环语句的格式、各自适用范围和区别.讨论结果:语句(1)格式:For 循环变量=初始值To 终值循环体Next(2)适用于预先知道循环次数的循环结构.2.Do Loop语句(1)格式:Do循环体Loop While 条件为真(2)适用于预先不知道循环次数的循环结构.3.两种循环语句的区别是For语句先从循环变量的初始值开始执行一次循环体后,直到循环变量取到其终值则结束循环,适用于预先知道循环次数的循环结构;而Do Loop语句则是先判断条件,当条件为真时,执行循环体,不然结束循环,适用于预先不知道循环次数的循环结构.应用示例思路1例1 设计算法,输出菲波那契数列的前50项,利用For语句描述该算法.f1=0f2=1输出”菲波那契数列为”,f1,f2For i=3 To 50f3=f1+f2输出f3f1=f2f2=f3Next变式训练请阅读下列用For语句写出的算法,说明该算法的处置功能.S=0T=1For i=1 To 20S=S+iT=T iNext输出S输出T分析:由For语句的形式,咱们知道i是循环变量,初始值为1,终止值为20,循环体为:S=S+i;T=T i.解:算法的算法框图如图1.图1因此,这个算法实际上处置的是求和S=1+2+3+…+20及求积T=1×2×3×…×20这两件事情.例2 二分法算法求方程近似解,算法框图如图2所示.用Do Loop语句描述这个算法.图2解:用语句描述为:输入ε;a =0;b =1;DoIf f ⎝ ⎛⎭⎪⎫a +b 2=0 Then 跳出循环ElseIf f (a )·f ⎝ ⎛⎭⎪⎫a +b 2<0 Then b =a +b 2Elsea =a +b 2End IfEnd IfLoop While b -a ≥ε输出a +b 2. 点评:在Do Loop 语句中,每一次重复后,都需要查验While 后的条件是不是被知足,一旦不知足条件,循环停止.思路2例1 下列程序执行后输出的结果是__________.S =1For i =9 To 11S =S iNext输出S分析:该程序的运行进程是:S=1 9=9,S=9 10=90,S=90 11=990.答案:990点评:按照循环语句讨论其执行结果时,通常按照循环语句所表达的意义,具体执行程序,明确程序的功能,就可以够取得其程序结果;已知循环次数用For循环,无法预知循环次数时用Do Loop循环.变式训练1.下列程序:A=1DoA=A+1Loop While A≤100输出A程序运行的结果是( ).A.99 B.100 C.101 D.102答案:C2.下列程序:B=1For A=1 To 5B=A B;Next输出B该程序的功能是__________.答案:计算1×2×3×4×5的值例2 编写程序计算12+22+32+…+1002的值.分析:由于重复做加法运算,所以用循环语句来实现.算法框图如图3所示.图3解:程序1(Do Loop循环语句):i=1sum=0Dosum=sum+i^ 2i=i+1Loop While i≤100输出sum程序2(For循环语句):sum=0For i=1 to 100sum=sum+i^ 2i=i+1Next输出sum点评:若是事前不知道循环的次数时,通常常利用Do Loop循环语句来实现.对于重复做一个动作时,一般用循环语句来实现.变式训练编写程序,求知足1+3+5+…+n>500的最小自然数n.分析:结束循环的条件即和大于500,可以用累加的方式,一个数一个数地加到累加器中,每加一个数就把累加器的值与500比较,直到大于500为止,用Do Loop循环.注意:最后输出的是i的值,此时i的值不是知足条件的最小..自然数.解:用Do Loop循环结构的算法框图,如图4所示.图4程序如下:i=1sum=0Dosum=sum+ii=i+2Loop While sum≤500i=i-2输出i知能训练1.循环语句对应的大体逻辑结构是( ).A.模块结构B.顺序结构C.选择结构D.循环结构答案:D2.以下程序:x=-1Dox=x xLoop While x<10输出xA.输出结果是1B.能执行一次C.能执行10次D.是“死循环”,有语法错误分析:从循环语句的格式看,这个循环语句是Do Loop循环语句,那么当知足条件x>10时,终止循环体,可是第一次执行循环体后x=1,由于x=1<10成立,则再次执行循环体后,x=1,这样无穷循环下去,是一个“死循环”,有语法错误,循环终止的条件永远不能知足.答案:D3.若是程序运行后输出的结果是720,则在横线处应填入的正整数是______.t=10S=1DoS=S* tt=t-1Loop While t>______输出S答案:7拓展提升某班50人参加数学单元测试,统计出所得分数在80分或80分以上的人数,画出算法框图,编写程序.解:算法框图如图5所示.图5程序如下:t=0For n=1 To 50输入mIf m≥80t=t+1End IfNext输出t课堂小结这节课学习了利用大体语句描述算法,和自然语言相较,大体语句描述的算法显得直观、清楚、明了,它的另一个长处是比较接近程序语言,便于编写程序,上机实现.作业习题2-3 A组6,B组 1.设计感想本节的导入符合学生心理要求,能够激发学生的学习兴趣.算法像一个故事,循环语句就是故事的高潮,它以前面的内容为基础,是前面内容的总结和发展.本节选用了大量的出色例题为故事高潮的到来作好了铺垫,出色的点评把本节推向了高潮,所以本节教案值得期待.备课资料备选习题1.设计一个计算1×3×5×7×…×99的算法,并编写算法程序.解:算法如下:1.S =1.2.i =3.3.S =S ×i.4.i =i +2.5.若是i≤99,那么转到第3步.6.输出S .程序如下:(“Do Loop 型”循环语句)S =1i =3DoS =S *ii =i +2Loop While i≤99输出S2.已知S =1+12+13+ (1),输入n 的值,输出S 的值.画出算法框图,并编写程序. 解:算法框图如图6所示.图6程序如下:输入ni =1sum =0Dosum =sum +1/ii =i +1Loop While i≤n输出sum。
高中数学第二章算法初步2.2.3 循环结构教案北师大版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章算法初步2.2.3 循环结构教案北师大版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章算法初步2.2.3 循环结构教案北师大版必修3的全部内容。
2。
3 循环结构错误!教学分析教科书通过实例介绍了循环结构.在教学过程中,教师应注意通过实例来分析循环结构,以加深学生的感性认识.三维目标掌握循环结构及其相应的算法框图,提高学生分析问题和解决问题的能力.重点难点教学重点:理解循环结构,会设计循环结构.教学难点:设计循环结构.课时安排1课时错误!导入新课思路1(情境导入).我们都想生活在一个优美的环境中,希望看到的是碧水蓝天,大家知道工厂的污水是怎样处理的吗?污水进入处理装置后进行第一次处理,如果达不到排放标准,则需要再进入处理装置进行处理,直到达到排放标准.污水处理装置是一个循环系统,对于处理需要反复操作的事情有很大的优势.我们数学中有很多问题需要反复操作,今天我们学习能够反复操作的逻辑结构——循环结构.思路2(直接导入).前面我们学习了顺序结构,顺序结构像一条没有分支的河流,奔流到海不复回;上一节我们学习了选择结构,选择结构像有分支的河流最后归入大海.事实上,很多水系是循环往复的,今天我们开始学习循环往复的逻辑结构-—循环结构.推进新课错误!错误!1.请大家举出一些常见的需要反复计算的例子.2.什么是循环结构、循环体?3.试用算法框图表示循环结构.讨论结果:1.例如用二分法求方程的近似解、数列求和等.2.在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.反复执行的步骤称为循环体.3.在一些算法中要求重复执行同一操作的结构称为循环结构,即从算法某处开始,按照一定条件重复执行某一处理的过程.重复执行的处理步骤称为循环体.循环结构,如图1所示,它的功能是先执行重复执行的A框,然后判断给定的条件P是否成立,如果P仍然不成立,则返回来继续执行A框,再判断条件P是否成立.继续重复操作,直到某一次给定的判断条件P成立时为止,此时不再返回来执行A框,离开循环结构.继续执行下面的框图.图1错误!思路1例1 设计算法,输出1 000以内能被3和5整除的所有正整数,画出算法框图.分析:这个问题很简单,凡是能被3和5整除的正整数都是15的倍数,由于1 000=15×66+10,因此1 000以内一共有66个这样的正整数.解:引入变量a表示待输出的数,则a=15n(n=1,2,3,…,66).n从1变到66,反复输出a,就能输出1 000以内的所有能被3和5整除的正整数.算法框图如图2所示.图2点评:像这样的算法结构称为循环结构,其中反复执行的第②部分称为循环体.变量n控制着循环的开始和结束,称为循环变量,第①部分就是赋予循环变量初始值,预示循环开始.第③部分判断是否继续执行循环体,称为循环的终止条件。
循环结构一、教学内容分析《循环结构》是北师大版必修3第二章第三节的内容,它与顺序结构,选接结构是算法的三种基本逻辑结构,特别是循环结构,是整章的重点和难点,它的优点在于能够让计算机快速的重复计算。
二、学生学情分析学生已经掌握了算法的思想以及框图的基本含义,还有顺序结构,大部分学生对算法感兴趣,这就大大的提升了学生的学习兴趣,但是学生的自主探索能力还有待提高。
三、教学目标1知识与技能(1)理解循环结构的概念,把握循环结构的三个要素。
(2)体会循环结构在有关重复计算的算法设计中的重要作用,能识别和理解循环结构的框图以及功能。
(3)掌握三种算法结构的区别与联系。
2过程与方法通过模仿,探索,操作,学习设计程序框图的表达,解决问题,提高逻辑思维能力。
3情感态度与价值观通过启发,自主探究,让学生感受体会算法思想在解决实际问题中的三、教学重难点重点:循环结构的概念及构成要素。
难点:循环结构三要素的确定以及循环执行时变量的变化规律。
四、教学方式教师启发与学生探究相结合。
五、教学手段多媒体辅助教学。
六、教学过程1情景引入日本取得2020奥运会主办权的投票过程:对遴选出的五个城市进行投票表决的操作程序:首先进行第一轮投票,如果有一个城市得票超过一半,那么这个城市取得主办权;如果没有一个城市得票超过一半,那么将其中得票最少的城市淘汰,然后重复上述过程,直到选出一个城市为止。
(请学生思考并回答奥运会主办权投票过程的算法)1、投票;2、计票:如果有一个城市得票超过一半,那么这个城市取得主办权,进入3;否则淘汰得票数最少的城市,转入1;3、宣布主办城市。
奥运会主办权投票表决程序框图:设计意图:通过大家熟知的奥运会举办城市选取的具体事例,让学生明确整个选取的步骤,用框图的形式表达来引入课题。
其实这种程序的设计有多种,区别在于复杂与简单。
这此环节的目的是提升学生的求知欲,兴趣,使学生保持良好的学习氛围。
2概念探究例1如何画出1+2+3+……+100的框图?(这是一个数累加的过程,我们都知道它的结果是5050,但是能否设计程序让计算机快速的把它算出来呢?)通常,我们按照下列过程计算1+2+3+…+100的值第1步,0+1=1第2步,1+2=3第3步,3+3=6……第100步,4950+100=5050也就是21324312,3,4(2,3,,100)i i S S S S S S S S i i -=+=+=+=+= 即第i 步的结果=第(i -1)步的结果+i 。
2.3 循环结构整体设计教学分析教材通过实例介绍了循环结构.在教学过程中,教师应注意通过实例来分析循环结构,以加深学生的感性认识.三维目标掌握循环结构及其相应的流程图,提高学生分析问题和解决问题的能力.重点难点教学重点:理解循环结构,会设计循环结构.教学难点:设计循环结构.课时安排1课时教学过程导入新课思路1(情境导入).我们都想生活在一个优美的环境中,希望看到的是碧水蓝天,大家知道工厂的污水是怎样处理的吗?污水进入处理装置后进行第一次处理,如果达不到排放标准,则需要再进入处理装置进行处理,直到达到排放标准.污水处理装置是一个循环系统,对于处理需要反复操作的事情有很大的优势.我们数学中有很多问题需要反复操作,今天我们学习能够反复操作的逻辑结构——循环结构.思路2(直接导入).前面我们学习了顺序结构,顺序结构像一条没有分支的河流,奔流到海不复回;上一节我们学习了选择结构,选择结构像有分支的河流最后归入大海.事实上,很多水系是循环往复的,今天我们开始学习循环往复的逻辑结构——循环结构.推进新课新知探究提出问题(1)请大家举出一些常见的需要反复计算的例子.(2)什么是循环结构、循环体?(3)试用流程图表示循环结构.讨论结果:(1)例如用二分法求方程的近似解、数列求和等.(2)在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.反复执行的步骤称为循环体.(3)在一些算法中要求重复执行同一操作的结构称为循环结构,即从算法某处开始,按照一定条件重复执行某一处理的过程.重复执行的处理步骤称为循环体.循环结构,如下图所示,它的功能是先执行重复执行的A框,然后判断给定的条件P是否成立,如果P仍然不成立,则返回来继续执行A框,再判断条件P是否成立.继续重复操作,直到某一次给定的判断条件P成立时为止,此时不再返回来执行A框,离开循环结构.继续执行下面的框图.图1应用示例思路1例1 设计算法,输出1 000以内能被3和5整除的所有正整数,画出算法流程图.这个问题很简单,凡是能被3和5整除的正整数都是15的倍数,由于1 000=15×66+10,因此1 000以内一共有66个这样的正整数.解:引入变量a表示待输出的数,则a=15n (n=1,2,3,…,66).n从1变到66,反复输出a,就能输出1 000以内的所有能被3和5整除的正整数.算法流程图如图2所示.图2点评:像这样的算法结构称为循环结构,其中反复执行的第②部分称为循环体.变量n控制着循环的开始和结束,称为循环变量,第①部分就是赋予循环变量初始值,预示循环开始.第③部分判断是否继续执行循环体,称为循环的终止条件.变式训练请用流程图表示前面讲过的“判断整数n(n>2)是否为质数”的算法.解:算法流程图如下:图3例2 阅读下图中所示的流程图,回答下列问题:(1)变量y在这个算法中的作用是什么?(2)这个算法的循环体是哪一部分,功能是什么?(3)这个算法的处理功能是什么?图4解:(1)变量y 是循环变量,控制着循环的开始和结束;(2)流程图中的第②部分是循环体,其功能是判断年份y 是否是闰年,并输出结果;(3)由前面的分析,我们知道,这个算法的处理功能是:判断2000—2500年中,哪些年份是闰年,哪些年份不是闰年,并输出结果.点评:需要反复进行相同的操作,如果按照顺序结构来描述,算法显得十分烦琐,不利于阅读,如果采取循环结构来描述,算法就显得简洁、清楚.循环结构是一种简化算法叙述的结构. 变式训练观察下面的流程图,指出该算法解决的问题.图5解:这是一个累加求和问题,共99项相加,该算法是求100991431321211⨯++⨯+⨯+⨯ 的值.思路2例1 设计一个计算1+2+……+100的值的算法,并画出流程图.算法分析:通常,我们按照下列过程计算1+2+……+100的值.第1步,0+1=1.第2步,1+2=3.第3步,3+3=6.第4步,6+4=10.……第100步,4 950+100=5 050.显然,这个过程中包含重复操作的步骤,可以用循环结构表示.分析上述计算过程,可以发现每一步都可以表示为第(i-1)步的结果+i=第i 步的结果.为了方便、有效地表示上述过程,我们用一个累加变量S 来表示第一步的计算结果,即把S+i 的结果仍记为S ,从而把第i 步表示为S=S+i ,其中S 的初始值为0,i 依次取1,2,…,100,由于i 同时记录了循环的次数,所以也称为计数变量.流程图如下:图6点评:这是一个典型的用循环结构解决求和的问题,有典型的代表意义,可把它作为一个范例,仔细体会三种逻辑结构在流程图中的作用,学会画流程图.变式训练已知有一列数1,,43,32,21+n n ,设计流程图实现求该列数前20项的和. 分析:该列数中每一项的分母是分子数加1,单独观察分子,恰好是1,2,3,4,…,n ,因此可用循环结构实现,设计数器i ,用i=i+1实现分子,设累加器S ,用S=S+1+i i ,可实现累加,注意i 只能加到20.解:流程图如下:图7例2 某厂2005年的年生产总值为200万元,技术革新后预计以后每年的年生产总值都比上一年增长5%,设计一个流程图,输出预计年生产总值超过300万元的最早年份.算法分析:先写出解决本例的算法步骤:1.输入2005年的年生产总值.2.计算下一年的年生产总值.3.判断所得的结果是否大于300,若是,则输出该年的年份;否则,返回第2步.4.算法结束.由于“第2步”是重复操作的步骤,所以本例可以用循环结构来实现.我们按照“确定循环”“初始化变量”“设定循环控制条件”的顺序来构造循环结构.(1)确定循环体:设a为某年的年生产总值,t为年生产总值的年增长量,n为年份,则循环体为t=0.05a,a=a+t,n=n+1.(2)初始化变量:若将2005年的年生产总值看成计算的起始点,则n的初始值为2005,a 的初始值为200.(3)设定循环控制条件:当“年生产总值超过300万元”时终止循环,所以可通过判断“a>300”是否成立来控制循环体.流程图如下:图8变式训练1.设计流程图实现1+3+5+7+…+131的算法.分析:由于需加的数较多,所以要引入循环结构来实现累加.观察所加的数是一组有规律的数(每相邻两数相差2),那么可考虑在循环过程中,设一个变量i,用i=i+2来实现这些有规律的数,设一个累加器sum,用来实现数的累加,在执行时,每循环一次,就产生一个需加的数,然后加到累加器sum中.解:算法如下:1.赋初值i=1,sum=0.2.sum=sum+i,i=i+2.3.如果i≤131,则反复执行第2步;否则,执行下一步.4.输出sum.5.结束.流程图如下图.图9点评:(1)设计流程图要分步进行,把一个大的流程图分割成几个小的部分,按照三个基本结构即顺序、条件、循环结构来局部安排,然后把流程图进行整合.(2)流程图画完后,要进行验证,按设计的流程分析是否能实现所求的数的累加,分析条件是否加到131就结束循环,所以我们要注意初始值的设置、循环条件的确定以及循环体内语句的先后顺序,三者要有机地结合起来.最关键的是循环条件,它决定循环次数,可以想一想,为什么条件不是“i<131”或“i=131”,如果是“i<131”,那么会少执行一次循环,131就加不上了.2.高中某班一共有40名学生,设计算法流程图,统计班级数学成绩良好(分数>80)和优秀(分数>90)的人数.分析:用循环结构实现40个成绩的输入,每循环一次就输入一个成绩s,然后对s的值进行判断.设两个计数器m,n,如果s>90,则m=m+1,如果80<s≤90,则n=n+1.设计数器i,用来控制40个成绩的输入,注意循环条件的确定.解:流程图如下图:知能训练由相应的流程图如图11,补充完整一个计算1+2+3+…+100的值的算法.图111.设i的值为____________.2.设sum的值为____________.3.如果i≤100执行第____________步,否则,转去执行第____________步.4.计算sum+i并将结果代替____________.5.计算____________并将结果代替i.6.转去执行第3步.7.输出sum的值并结束算法.分析:流程图各图框的内容(语言和符号)要与算法步骤相对应,在流程图中算法执行的顺序应按箭头方向进行.解:1.设i的值为1.2.设sum的值为0.3.如果i≤100,执行第四步,否则,转去执行第7步.4.计算sum+i并将结果代替sum.5.计算i+1并将结果代替i.6.转去执行第3步.7.输出sum的值并结束算法.拓展提升设计一个算法,求1+2+4+…+249的值,并画出流程图.解:算法步骤:1.sum=0.2.i=0.3.sum=sum+2i.4.i=i+1.5.判断i是否大于49,若成立,则输出sum,结束.否则,返回第3步重新执行.流程图如图12.点评:(1)如果算法问题里涉及的运算进行了许多次重复的操作,且先后参与运算的数之间有相同的规律,就可引入变量循环参与运算(我们称之为循环变量),应用于循环结构.在循环结构中,要注意根据条件设计合理的计数变量、累加和累乘变量及其个数等,特别要求条件的表述要恰当、精确.(2)累加变量的初始值一般取成0,而累乘变量的初始值一般取成1.课堂小结(1)熟练掌握循环结构的特点及功能.(2)能用循环结构画出求和等实际问题的流程图,进一步理解学习算法的意义.作业习题2—2 A组 8、9.设计感想本节的引入抓住了本节的特点,利用计算机进行循环往复运算,解决累加、累乘等问题.循环结构是逻辑结构中的难点,它一定包含一个选择结构,它能解决很多有趣的问题.本节选用了大量精彩的例题,对我们系统掌握流程图有很大的帮助.。
第3课时循环结构[核心必知]1.循环结构的概念在算法中,从某处开始,按照一定的条件反复执行某些步骤的结构称为循环结构,用算法框图如下图.反复执行的部分称为循环体,控制着循环的开始和结束的变量,称为循环变量,决定是否继续执行循环体的判断条件,称为循环的终止条件.2.循环结构的设计过程设计循环结构之前需要确定的三件事:(1)确定循环变量和初始值;(2)确定算法中反复执行的部分,即循环体;(3)确定循环的终止条件.循环结构的算法框图的基本模式,如下图.[问题思考]1.循环结构中一定含有选择结构吗?提示:在循环结构中需要判断是否继续循环,故循环结构中一定含有选择结构.2.循环结构中判断框中条件是唯一的吗?提示:不是,在具体的算法框图设计时,判断框中的条件可以不同,但不同的表示应该有共同的确定的结果.3.算法框图的基本结构有哪些?提示:顺序结构、选择结构和循环结构.讲一讲1.利用循环结构写出12+23+…+100101的算法并画出相应的算法框图.[尝试解答] 算法如下: 1.S =0; 2.i =1; 3.S =S +ii +1;4.i =i +1;5.如果i 不大于100,转第3步,否那么输出S . 相应框图如以下图表示:1.如果算法问题中涉及到的运算进行了多次重复,且参与运算的数前后有规律可循,就可以引入变量以参与循环结构.2.在不同的循环结构中,应注意判断条件的差别,及计数变量和累加(乘)变量的初始值与运算框先后关系的对应性.练一练1.利用循环结构写出1×2×3×…×100的算法.并画出相应的框图. 解:算法步骤如下:1.S=1;2.i=1;3.S=S×i;4.i=i+1;5.判断i是否大于100,假设成立,那么输出S,结束算法;否那么返回第3步重新执行.算法框图如下图:讲一讲2.1×3×5×…×n>1000.问:如何寻找满足条件的n的最小正整数值?请设计算法框图.[尝试解答] 算法框图如以下图所示:解决该类问题一般分以下几个步骤:(1)根据题目条件写出算法并画出相应的框图;(2)依据框图确定循环结束时,循环变量的取值;(3)得出结论.练一练2.看下面的问题:1+2+3+…+( )>10 000,这个问题的答案虽然不唯一,但我们只要确定出满足条件的最小正整数n0,括号内填写的数字只要大于或等于n0即可.画出寻找满足条件的最小正整数n0的算法的算法框图.解:1.S=0;2.n=0;3.n=n+1;4.S=S+n;5.如果S>10 000,那么输出n,否那么执行6;6.回到3,重新执行4,5.框图如右图:讲一讲3.某高中男子田径队的50 m赛跑成绩(单位:s)如下:6.3,6.6,7.1,6.8,7.1,7.4,6.9,7.4,7.5,7.6,7.8, 6.4, 6.5,6.4,6.5,6.7,7.0,6.9,6.4,7.1,7.0,7.2.设计一个算法,从这些成绩中搜索出成绩小于6.8 s的队员,并画出算法框图.[尝试解答] 此男子田径队有22人,要解决该问题必须先对运动员进行编号.设第i个运动员编号为N i,成绩为G i,设计的算法如下:1.i=1.2.输入N i,G i.3.如果G i<6.8,那么输出N i,G i,并执行4;否那么直接执行4.4.i=i+1.5.如果i≤22,那么返回2;否那么,算法结束.该算法的框图如下图.解决此类问题的关键是读懂题目,建立合适的模型,注意循环结构与选择结构的灵活运用.练一练3.2000年底我国人口总数约为13亿,现在我国人口平均年增长率为1%,写出计算多少年后我国的人口总数将达到或超过18亿的算法框图.解:[解题高手][易错题]阅读如下图的算法框图,假设输出S的值为-7,那么判断框内可填写( )A.i<3 B.i<4C.i<5 D.i<6[错解]i=1,S=2;S=2-1=1,i=1+2=3;S=1-3=-2,i=3+2=5;S=-2-5=-7.由题意可知,S=-7.故应填“i<5〞.选C.[错因] 循环终止的条件写错,没有将循环进行彻底,计算完S值后,忽略了i值的计算,假设填“i<5〞,那么输出S值为-2.[正解]i=1,S=2;S=2-1=1,i=1+2=3;S=1-3=-2,i=3+2=5;S=-2-5=-7,i=5+2=7.假设终止循环后输出s值为-7,那么判断框内应填“i<6〞.[答案] D1.以下说法不.正确的选项是( ) A .顺序结构是由假设干个依次执行的处理步骤组成的,每一个算法都离不开顺序结构 B .循环结构是在一些算法中从某处开始按照一定的条件,反复执行某些处理步骤,故循环结构一定包含选择结构C .循环结构不一定包含选择结构D .用算法框图表示的算法更形象、直观,容易理解 解析:选C 显然循环结构一定包含选择结构.2.用二分法求方程x 2-2=0的近似解的算法中要用到的算法结构是( ) A .顺序结构 B .选择结构C .循环结构 D .以上都用解析:选D 任何一个算法都有顺序结构,循环结构一定包含选择结构,二分法用到循环结构. 3.(某某高考)执行两次如下图的算法框图,假设第一次输入的a 的值为-1.2,第二次输入的a 的值为1.2,那么第一次、第二次输出的a 的值分别为( )A .0.2,0.2B .0.2,0.8C .0.8,0.2D .0.8,0.8解析:选C 两次运行结果如下:第一次:-1.2→-1.2+1→-0.2+1→0.8; 第二次:1.2→1.2-1→0.2.4.如下图,该框图是计算12+14+16+…+120的值的一个算法框图,其中判断框内应填入的条件是________.解析:要实现算法,算法框图中最后一次执行循环体时,i 的值应为10,当条件i =11>10时就会终止循环,所以条件为i ≤10.答案:i ≤105.(某某高考)假设某程序框图如下图,那么该程序运行后输出的值是________.解析:运行程序后,i =1,T =1;i =2,T =12;i =3,T =16;i =4,T =124;i =5,T =1120;i =6>5,循环结束.那么输出的值为1120. 答案:11206.给出以下10个数:5,9,80,43,95,73,28,17,60,36,要求把大于40的数找出来并输出,试画出解决该问题的算法框图.解:一、选择题1.下面的框图中是循环结构的是( )A.①②B.②③C.③④D.②④解析:选C①是顺序结构,②是选择结构,③④是循环结构.2.(某某高考)阅读下边的程序框图,运行相应的程序,那么输出S的值为( )A.8 B.18C.26 D.80解析:选C程序执行情况为S=31-30=2,n=2;S=2+32-31=8,n=3;S=8+33-32=26,n=4≥4,跳出循环.故输出26.3.(高考)执行如下图的程序框图,输出的S值为( )A.2 B.4 C.8 D.16解析:选C框图的功能为计算S=1·20·21·22的值,计算结果为8. 4.图中所示的是一个算法的框图,那么其表达式为( )A.11+2+3+…+99B.11+2+3+…+100C.199D.1100解析:选 A依题意当i≤99时,S=1+2+…+99,当i=100时,S=11+2+3+…+99.5.(某某高考)阅读如下图的算法框图,运行相应的算法.假设输入x的值为1, 那么输出S的值为( )A.64 B.73 C.512 D.585解析:选B 第1次循环,S =1,不满足判断框内的条件,x =2;第2次循环,S =9,不满足判断框内的条件,x =4;第3次循环,S =73,满足判断框内的条件,跳出循环,输出S =73.二、填空题6.阅读如下图的框图,假设输入m =4,n =3,那么输出a =________,i =________.解析:由算法框图可知,当a =m ×i =4×i 能被n =3整除时输出a 和i 并结束程序.显然,当i =3时,a 可以被3整除,故i =3,此时a =4×3=12.答案:12 37.(某某高考)以下图是某算法的程序框图,那么程序运行后输出的结果是________.解析:此框图依次执行如下循环:第一次:T =0,k =1,sin π2>sin 0成立,a =1,T =T +a =1,k =2,2<6,继续循环; 第二次:sin π>sin π2不成立,a =0,T =T +a =1,k =3,3<6,继续循环; 第三次:sin 3π2>sin π不成立,a =0,T =T +a =1,k =4,4<6,继续循环; 第四次:sin 2π>sin 3π2成立,a =1,T =T +a =2,k =5,5<6,继续循环; 第五次:sin 5π2>sin 2π成立,a =1,T =T +a =3,k =6,跳出循环,输出的结果是3. 答案:38.假设算法框图所给的程序运行的结果为S =90,那么判断框中应填入的关于k 的判断条件是________.解析:由算法框图可知其作用是计算S=1×10×9×…,当运行结果为S=90时,应有S=1×10×9,∴当k=8时应符合条件且k>8不符合条件,∴条件应为k≤8或k<9.答案:k≤8或k<9三、解答题9.设计求1+4+7+10+…+40的一个算法,并画出相应的算法框图.解:算法:1.令S=0,i=1.2.S=S+i.3.i=i+3.4.假设i≤40,返回第2步;重新执行第2、3、4步;假设i>40,执行第5步.5.输出S的值.算法框图如下图:法一:法二:10.以下是某次考试中某班15名同学的数学成绩:72,91,58,63,84,88,90,55,61,73,64,77,82,94,60.要求将80分以上的同学的平均分求出来,画出算法框图.解:算法框图如下所示:。
《循环结构》教学设计1、教材及学情分析(1)教材地位:本节是北师版必修三第二章第二节第三课时内容,本节所在章节“算法”是高中数学课程中新内容,而循环结构是算法这一部分的重点和难点,它的重要性就是能使计算机以极快的速度进行重复计算。
同时,本节在教材中起着承上启下的作用:一方面它与顺序结构、选择结构是算法的三种基本逻辑结构,可以表示任何一个算法;另一方面,把算法转化为框图,为后面算法语句打下基础。
(2)学生状况分析:学生在学习本课以前,已经学习了算法的概念、顺序结构、选择结构及简单的赋值问题,顺序结构和选择结构学生比较容易理解,而在循环结构中更多的涉及了变量和对变量的处理,正是这些内容使得循环结构的理解和使用变得困难,为了分散难点,教材在讲循环结构之前已利用一个课时来分析变量和赋值,但在这节课中这些依然是学生的难点,因此,在教学中通过对实例的分析,学生逐步经历循环结构设计的全过程(确定循环变量、循环体和循环终止的条件),学会有条理的思考问题,正确表达循环结构,并尝试整理成程序框图。
根据以上对教材和学生的分析,考虑到学生已有的认知规律,学生应达到以下三个教学目标。
2、教学目标(1)知识与技能:学生理解循环结构概念;学生把握循环三要素:循环变量赋初值、循环体、循环的终止条件;并能运用循环结构设计简单的算法框图。
(2)过程与方法:通过模仿、操作、探究,学习设计循环结构程序框图,体会算法思想(程序化思想),发展有条理的思考与表达能力,提高逻辑思维能力,增强识图用图的能力。
(3)情感、态度与价值观:通过本节课的学习,学生感受和体会算法思想在解决具体问题中的意义,增强学生的创新能力、应用数学能力以及程序化的思想意识。
3、教学重难点(1)重难点的制定:重点:理解循环结构,能识别和画出简单的循环结构框图难点:循环结构中的循环变量、循环体和循环终止条件的确定(2)重难点的突破:本课的重点主要是理解循环结构,能识别和画出简单的循环结构框图。
2019-2020年高中数学第二章算法初步 2.3 循环结构教学案北师大版必修3预习课本P93~101,思考并完成以下问题(1)什么样的算法结构是循环结构?(2)循环体、循环变量、循环的终止条件的定义各是什么?(3)画循环结构的算法框图时,应确定哪三件事?[新知初探]1.循环结构的有关概念(1)定义:在算法中,从某处开始,按照一定的条件反复执行某些步骤的结构称为循环结构,用算法框图表示如下.(2)循环体:反复执行的部分称为循环体.(3)循环变量:控制着循环的开始和结束的变量称为循环变量.(4)循环的终止条件:判断是否继续执行循环体的判断条件,称为循环的终止条件.[点睛] 循环结构的三要素:循环变量、循环体、循环的终止条件,三者缺一不可.“循环变量”在构造循环结构中发挥了关键性的作用,其实质就是“函数思想”.2.画循环结构的算法框图应注意的问题一般来说,在画出用循环结构描述的算法框图之前,需要确定三件事:(1)确定循环变量和初始条件;(2)确定算法中反复执行的部分,即循环体;(3)确定循环的终止条件.循环结构的算法框图的基本模式,如图所示.[小试身手]1.判断正误.(正确的打“√”,错误的打“×”) (1)循环结构中,根据条件是否成立有不同的流向.( ) (2)循环体是指按照一定条件,反复执行的某一处理步骤.( ) (3)循环结构中一定有选择结构,选择结构中一定有循环结构.( ) 答案:(1)√ (2)√ (3)×2.解决下列问题的算法框图中,必须用到循环结构的是( ) A .解一元二次方程x 2-1=0B .解方程组⎩⎪⎨⎪⎧x +y -1=0x -y +1=0C .求lg 2+lg 3+lg 4+lg 5的值D .求满足1×2×3×…×n >2 0162的最小正整数n解析:选D A 、B 、C 中都可以只用顺序结构设计程序框图,D 中是累乘问题,需要确定正整数n 的最小值,因此必须用到循环结构设计算法框图.3.如图给出了三个算法框图,选择结构、顺序结构、循环结构依次是( )A .①②③B .②①③C .②③①D .③①②解析:选B 依据三种基本结构的框图的形式易得B 正确.累加求和、累乘求积的算法框图[典例][解]算法如下:1.设i的值为1;2.设sum的值为0;3.计算sum+i并用结果代替sum;4.计算i+1并用结果代替i;5.如果i>100,执行第6步,否则转去执行第3步;6.输出sum的值.算法框图如图所示.对于加(乘)数众多,不易采用逐一相加(乘)的方法处理的问题,常通过循环结构解决,方法是引用两个变量i和S,其中i一般称为计数变量,用来计算和控制运算次数,S称为累积变量,它表示所求得的和或积,它是不断地将前一个结果与新数相加或相乘得到的,这两个变量的表示形式一般为i=i+m(m为每次增加的数值)和S=S+A(A为所加的数)或S=S*A(A为所乘的数).[活学活用]写出一个求满足1×3×5×7×…×n>60 000的最小正整数n的算法,并画出相应的算法框图.解:算法如下:1.s=1.2.n=1.3.如果s≤60 000,那么n=n+2,s=s×n,重复执行第3步;否则,执行第4步.4.输出n.算法框图如图所示.查找类(寻找特定数)的算法框图[典例] 50的数找出来并输出.试画出该算法的框图.[解] 算法步骤如下:1.i=1.2.输入a.3.如果a>50,则输出a;否则,执行第4步.4.i=i+1.5.如果i>10,结束算法;否则,返回第2步.算法框图如图所示.利用循环结构设计查找问题的算法时,需把握以下几点:(1)引入循环变量i,并确定初始值;(2)确定问题满足的条件,即第一个判断框的内容;(3)确定在什么范围内解决问题,即i的取值限制,即第二个判断框的内容.[活学活用]一个两位数,十位数字比个位数字大,且个位数字为质数.设计一个找出所有符合条件的两位数的算法框图.解:两位数i 的十位数字a =⎣⎢⎡⎦⎥⎤i 10⎝ ⎛⎭⎪⎫表示i10的整数部分,个位数字b =i -10a .下面我们来设计循环结构:循环变量为i ,i 的初始值为10,每次递增1,用i =i +1表示;判断条件是b <a 且b 是质数,如果满足条件则输出i ;循环的终止条件是i >99.算法框图如图所示.循环结构的读图问题[典例]A.16 B.2524 C.34D.1112[解析] 第一次循环,s =12,n =4;第二次循环,s =34,n =6;第三次循环,s =1112,n=8.此时跳出循环,输出s =1112.[答案] D(1)根据算法框图确定输出结果的方法是读懂算法框图,明确判断条件和循环次数,然后依次写出运行的结果.(2)在某些问题中,会给出算法框图的输出结果或算法框图的功能,要求对算法框图中缺失的地方进行补充.对于这类问题,最常见的是要求补充循环结构的判断条件,解决此类问题的关键是找出运算结果与判断条件的关系.[活学活用]如图所示的算法框图,若输出k 的值为6,则判断框内可填入的条件是( )A .s >12B .s >35C .s >710D .s >45解析:选C 第一次循环:s =1×910=910,k =8;第二次循环:s =910×89=45,k =7;第三次循环:s =45×78=710,k =6,此时退出循环,输出k =6.故判断框内可填s >710.[层级一 学业水平达标]1.下列说法不正确的是( )A .顺序结构的特征是完成一个步骤再进行另一个步骤B .选择结构的特征是根据对条件的判断决定下一步工作,故选择结构一定包含顺序结构C .循环结构是在一些算法中从某处开始按照一定的条件,反复执行某些处理步骤,故循环结构一定包含顺序结构和选择结构D .循环结构不一定包含选择结构解析:选D 依据算法框图的三种基本结构的特征易得D 不正确.2.执行两次如图所示的算法框图,若第一次输入的a 的值为-1.2,第二次输入的a 的值为1.2,则第一次、第二次输出的a 的值分别为( )A.0.2,0.2 B.0.2,0.8C.0.8,0.2 D.0.8,0.8解析:选C 两次运行结果如下:第一次:-1.2→-1.2+1→-0.2+1→0.8;第二次:1.2→1.2-1→0.2.3.如图,给出的是计算13+23+33+…+n3的值的一个算法框图,其中判断框内应填入的条件是( )A.i≤n B.i≥nC.i<n D.i>n解析:选D 按要求程序运行至S=13+23+33+…+n3以后,紧接着i=i+1即i=n +1,此时要输出S,即判断框内应填i>n.4.如图所示,算法框图的输出结果是________.解析:由算法框图可知,变量的取值情况如下: 第一次循环,x =1,y =1,z =2; 第二次循环,x =1,y =2,z =3; 第三次循环,x =2,y =3,z =5; 第四次循环,x =3,y =5,z =8; 第五次循环,x =5,y =8,z =13; 第六次循环,x =8,y =13,z =21; 第七次循环,x =13,y =21,z =34;第八次循环,x =21,y =34,z =55,不满足条件,跳出循环. 答案:55[层级二 应试能力达标]1.执行如图所示的算法框图,若输入n =8,则输出S =( )A.49 B.67 C.89D.1011解析:选A S =S +1i 2-1的意义在于对1i 2-1求和. 因为1i 2-1=12⎝ ⎛⎭⎪⎫1i -1-1i +1,同时注意i =i +2,所以所求的S =12⎣⎢⎡ ⎝ ⎛⎭⎪⎫11-13+⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫17-19=49.2.阅读如图所示的算法框图,若输入m =4,n =6,则输出的a ,i 分别等于( )A .12,2B .12,3C .24,2D .24,3解析:选B 当i =3时,a =4×3=12能被6整除.3.执行如图所示的算法框图,若输入的a ,b ,k 分别为1,2,3,则输出的M =( )A.203B.165C.72D.158解析:选D 逐次计算,依次可得:M =32,a =2,b =32,n =2;M =83,a =32,b =83,n=3;M =158,a =83,b =158,n =4,结束循环,输出的M =158.4.如图是计算某年级500名学生期末考试(满分为100分)及格率q 的算法框图,则图中空白框内应填入( )A .q =N MB .q =M NC .q =N M +ND .q =MM +N解析:选D 算法执行的过程:如果输入的成绩不小于60分即及格,就把变量M 的值增加1,即变量M 为统计成绩及格的人数;否则,由变量N 统计不及格的人数,但总人数由变量i 进行统计,不超过500就继续输入成绩,直到输入完500个成绩终止循环,输出变量q .由q 代表的含义可得q =及格人数总人数=MM +N.5.如图所示,箭头a 指向①时,输出的结果是________;指向②时,输出的结果是________.解析:箭头a 指向①时,每次循环S 的初值都是0,i 由初值1依次增加1,从而输出结果是S =5;箭头指向②时,是求1+2+3+4+5的算法框图,所以输出结果是S =15.答案:5 156.某展览馆每天9:00开馆,20:00停止入馆.在如图所示的框图中,S 表示该展览馆官方网站在每个整点报道的入馆总人数,a 表示整点报道前1个小时内入馆人数,则空白的执行框内应填入________.解析:因为S 表示该展览馆官方网站在每个整点报道的入馆总人数,所以显然是累加求和,故空白的执行框内应填入S =S +a .答案:S =S +a7.某高中男子体育小组的50 m 赛跑成绩(单位:s)为6.4,6.5,7.0,6.8,7.1,7.3,6.9,7.4,7.5,7.6,6.3,6.4,6.4,6.5,6.7,7.1,6.9,6.4,7.1,7.0.设计一个算法,从这些成绩中搜索出小于6.8 s 的成绩,并画出算法框图.解:该体育小组共20人,要解决问题必须对运动员进行编号,设第i 个运动员的编号为N i ,成绩为G i .算法如下:(1)i =1;(2)输入N i ,G i ;(3)如果G i <6.8,那么输出N i ,G i ,并执行第4步,否则,也执行第4步;(4)i =i +1;(5)如果i ≤20,那么返回第(2)步,否则结束.算法框图如图所示.8.设计一个求 12+12+1 2+12+12的值的算法并画出算法框图.解:算法步骤如下:(1)A =12;(2)i=1;(3)A=12+A;(4)i=i+1;(5)如果i不大于或等于5,转去执行第(3)步,否则,输出A,算法结束.算法框图如图所示.。