七中育才2021届初二下期数学第8周周练答案
- 格式:docx
- 大小:1.24 MB
- 文档页数:2
成都七中育才学校2021届八下数学第十周周练出题人:李施颖 审题人:冯婷班级: 姓名: 学号:一、选择题:(每小题3分,共30分) 1. 把23x x c +-分解因式得23(1)(2)x x c x x +-=++,则c 的值是( )A .2B .3C .3-D .2-2. 若分式2242x x x ---的值为零,则x 的值为( )A .2或2-B .2C .2-D .43. 下列命题正确的是( ) A .平行四边形是轴对称图形 B .对角线互相垂直的四边形是菱形 C .菱形的对角线相等 D .矩形的对角线相等。
4. 如果关于x 的方程2337x m x +-=+的解为不大于2的非负数,那么m 的取值范围是( )A . 7m ≥或5m ≤B .5,6,7m =C .无解D .57x ≤≤5. 已知方程355x a x x =---有增根,则a 的值为( ) A .5B .﹣5C .6D .46. 将多项式2()10()25x y y x ---+因式分解的结果是( )A .2(5)x y -- B .2(5)x y -+ C .2(5)x y ++D .2(5)x y +-7.如图,在四边形ABCD 中,E 是BC 的中点,连结DE 并延长,交AB的延长线于点F ,AB BF =。
添加一个条件,使四边形ABCD 是平行四边形,你认为下面四个条件中可选择的是( )A .AD BC =B .CD BF =C .A C ∠=∠D .F CDE ∠=∠ 8.如图,已知:矩形ABCD 中,CE BD ⊥于E ,:3:1DCE ECB ∠∠=,则ACE ∠=( )A .30oB .45oC .60oD .40o 9.对于非零的两个实数a 、b ,规定11a b b a⊗=-,若1(1)2x ⊗+=,则x 的值为( ) A .32 B .23C .23-D .32-10.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达。
八年级下期期末数学模拟试题A 卷(共100分)1. 不等式250x +>的解集是( )A .52x <B .52x >C .52x >-D .52x <-2. 下列多项式能用完全平方公式进行分解因式的是( )A .21x +B .224x x ++C .221x x -+D .21x x ++3. 若分式||11x x -+的值为0,则( ) A .1x =± B .1x = C .1x =- D .0x =4. 要使分式11x +有意义,则x 应满足的条件是( )A .1x ≠B .0x ≠C .1x ≠D .1x > 5. 计算:22()ab a b-的结果是( )A .aB .bC .b -D .16. 如图,已知直线1y ax b =+与2y mx n =+相交于点A (2,1-),若12y y >,则x 的取值范围是( )A .2x <B .2x >C .1x <-D .1x >-7. 如图,在ABC △中,D 、E 分别是BC 、AC 边的中点,若3DE =,则AB 的长是( )A .9B .5C .6D .4 8. 下列一元二次方程中,无实数根的是( )A .2440x x -+=B .2(2)1x -=C .2x x =-D .2220x x -+=9. 解关于x 的方程311x mx x -=--产生增根,则常数m 的值等于( ) A .2-B .1-C .1D .210. 如图,在ABC △中,75CAB ∠=,在同一平面内,将ABC△绕点A 旋转到AB C ''△的位置,使得CC AB '∥,则BAB '∠=( )A .30B .35C .40D .50二、填空题:(每小题4分,共20分)(第6题图)B C(第7题图) ABCB 'C '(第10题图)11. 已知关于x 的方程27x a x +=-的解为正数,则实数a 的取值范围是 。
四川省成都七中育才学校初2021届初二上数学第八周周练考试试卷(Word 版,无答案) 成都七中育才学校初 2021 届八年级上期第八周数学周练A 卷(共 100 分)一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分)1 )A .3B .±3C D2.下列各数中 3.14151π111 )个.A .2B .3C .4D .53.在数轴上表示不等式 x +5≥1 的解集,正确的是( )A .B .C .D .4.下列计算正确的是( )A .= C =D5.以下列各组数据为边长作三角形,其中不能组成直角三角形的是( )A .9、12、15B .1、1C .5、12、13D .13、14、156.若点 P 是第二象限内的点,且点 P 到 x 轴的距离是 4,到 y 轴的距离是 3,则点 P 的坐标是( )A .(﹣4,3)B .(4,﹣3)C .(﹣3,4)D .(3,﹣4)7 )A .5.5﹣6.0 之间B .6.0﹣6.5 之间C .6.5﹣7.0 之间D .7.0﹣7.5 之间8.若直角三角形两直角边长分别为 5,12,则斜边上的高为( )A .6B .8C .1813 D .60139.若1x y =⎧⎨=⎩是关于 x 、y 的方程 x +ay =3 的解,则 a 值为()A .1B .2C .3D .410.实数 a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )四川省成都七中育才学校初2021届初二上数学第八周周练考试试卷(Word版,无答案)A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>0二、填空题(本大题共 5 个小题,每小题 4 分,共 20 分) 11有意义,则 x 的取值范围是.127,则实数 a =.13.若(m﹣1)x |m |+3>0 是关于 x 的一元一次不等式,则 m =.14.将点A (3,2)沿 x 轴负方向向左平移4 个单位长度后得到点 A ′,则点 A '关于 x轴的对称点的坐标是.15.如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点 C 与点 A 重合,折痕为 DE ,则△ABE 的周长为.三、解答题(本大题共 5 个小题,共 50 分)16.(18 分)计算:(1 (2(2+(3)解方程组: 320x y x y -=⎧⎨+=⎩ (4)解不等式组253(2)123x x x x +≤+⎧⎪-⎨<⎪⎩并写出不等式组的整数解.17.(6 分)已知 2a ﹣1 的平方根是±3,3a ﹣b ﹣1 的立方根是 2,求 a + 12b 的平方根.18.(8 分)如图,在直角坐标平面内,△ABC 的三个顶点的坐标分别为 A(0,3),B (3,4),C (2,2).(1)填空:AB =,S △ABC = ;(2)画出△ABC 关于 x 轴的对称图形△A 1B 1C 1,再画出△A 1B 1C 1 关于y 轴的对称图形△A 1B 2C 2;(3)若 M 是△ABC 内一点,具坐标是(a ,b ),则△A 1B 2C 2 中,点 M的对应点的坐标为.19.(8 分)已知关于 x , y 的方程组34x y m x y m -=⎧⎨+=+⎩的解满足不等式 x + 2 y > 1 ,求满足条件的 m 的负. 整.数.值..20.(10 分)如图,△ABC 是等腰直角三角形,∠ACB =90°,AC =BC ,D 在 BC 上且∠BAD =15°,E是 AD 上的一点,现以 CE 为直角边,C 为直角顶点在 CE 的下方作等腰直角三角形 ECF ,连接 BF .(1)请问当 E 在 AD 上运动时(不与 A 、D 重合),∠ABF 的大小是否发生改变?若不改变,请求出∠ABF 的度数;若要改变,请说出它是如何改变的;(2)若 AB =62,点 G 为射线 BF 上的一点,当 CG =5 时,求 BG 的长.B 卷(共 20 分)一、填空題(每小题 3 分,共 9 分)21.已知2731240x x x +>-⎧⎨-≥⎩,则8x -+= .22.已知关于 x ,y 的二元一次组21022x y m x y m +=+⎧⎨-=⎩的解是斜边长为 5 的直角三角形两直角边长,则 m = . 23.如图所示把多块大小不同的 30°直角三角板,摆放在平面直角坐标系中,第一块三角板 AOB 的一条 直角边与 x 轴重合且点 A 的坐标为(2,0),∠ABO =30°;第二块三角板的斜边 BB 1 与第一块三角板的斜边 AB 垂直且交 x 轴于点 B 1;第三块三角板的斜边 B 1B 2 与第二块三角板的斜边 BB 1垂直且交 y 轴于点 B 2;第四块三角板斜边 B 2B 3 与第三块三角板的斜边 B 1B 2 垂直且交 x 轴于点 B 3;…按此规律继续下去,则点B 2018 的坐标为 .二、解答题(共 11 分)24. 如图,AD ∥BC ,∠DAB =90°,E 是 AB 上的一点,且 AD =BE ,∠1=∠2,作△BEC 关于直线 AB的对称图形△BEF ,连接 DC 、DF ,DF 与 AB 交于 P 点.(1)求证:△ADE ≌△BEC ;(2)若AE AD =3,计算DC DF的值; (3)设 AD =m ,若AE AD =k (k >1),取 DC 中点 O ,连接 OP ,用 m 、k 表示 S △ODP ,并说明理由.。
2020-2021成都七中实验学校八年级数学下期中模拟试卷含答案一、选择题1.如图,四边形ABCD是长方形,AB=3,AD=4.已知A(﹣32,﹣1),则点C的坐标是()A.(﹣3,32)B.(32,﹣3)C.(3,32)D.(32,3)2.如图,数轴上点A,B表示的数分别是1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M表示的数是( )A.3B.5C.6D.73.平行四边形的对角线长为x、y,一边长为12,则x、y的值可能是()A.8和14B.10和14C.18和20D.10和344.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是()A.3B.2C.20D.255.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A .115°B .120°C .130°D .140°6.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是AB ,BC 边上的中点,连接EF.若3EF =,BD=4,则菱形ABCD 的周长为( )A .4B .46C .47D .28 7.下列各式正确的是( ) A .()255-=- B .()20.50.5-=- C .()2255-= D .()20.50.5-= 8.如图,在菱形ABCD 中,AB=5,对角线AC=6.若过点A 作AE⊥BC,垂足为E,则AE 的长为( )A .4B .2.4C .4.8D .5 9.菱形周长为40cm ,它的条对角线长12cm , 则该菱形的面积为( )A .24B .48C .96D .36 10.下列运算正确的是( )A 235+=B 362=C 235=gD 1333= 11.下列各式不成立的是( )A 8718293=B 22233+=C .8184952+=+=D .13232=-+ 12.如图,在Rt ABC △中,90B ∠=︒,6AB =,9BC =,将ABC △折叠,使点C 与AB 的中点D 重合,折痕交AC 于点M ,交BC 于点N ,则线段BN 的长为( )A .3B .4C .5D .6二、填空题13.对于任意不相等的两个数a ,b ,定义一种运算※如下:a ※b =+a b ,如3※2=325+=.那么12※4=_____. 14.小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试的平均成绩不少于80分的目标,他第三次数学考试至少得____分.15.比较大小:52_____13.16.如图,点E 在正方形ABCD 的边AB 上,若1EB =,2EC =,那么正方形ABCD 的面积为_.17.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多出1m ,当它把绳子的下端拉开旗杆4m 后,发现下端刚好接触地面,则旗杆的高为________18.已知:如图,∠ABC =∠ADC =90°,M 、N 分别是AC 、BD 的中点,AC =10,BD =8,则MN =_____.19.如图,连接四边形ABCD 各边中点,得到四边形EFGH ,对角线AC ,BD 满足________,才能使四边形EFGH 是矩形.20.设2a =,3b =,用含,a b 的代数式表示0.54,结果为________.三、解答题21.先化简,再求值:2222211()a ab b a b a b-+÷--,其中21a =+,21b =- 22.计算:322223÷⨯÷.23.D E 、分别是三角形ABC 的边AB AC 、的中点,O 是ABC V 所在平面上的动点,连接OB OC 、,点G F 、分别是OB OC 、的中点,顺次连接点.D G F E 、、、(1)如图,当点O 在ABC V 的内部时,求证:四边形DGFE 是平行四边形;(2)若四边形DGFE 是菱形,则OA 与BC 应满足怎样的关系?若四边形DGFE 是矩形,则OA 与BC 应满足怎样的关系?(直接写出答案,不需要说明理由)24.(1)用>=<、、填空 32 21②23 3252 2365 5220182017 20172016(2)观察.上式,请用含1)1,(,1n n n n -+≥的式子,把你发现的规律表示出来,并证明结论的正确性.25.阅读下面材料:在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD 的四边中点E ,F ,G ,H 依次连接起来得到的四边形EFGH 是平行四边形吗.小敏在思考问题时,有如下思路:连接AC .结合小敏的思路作答:(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由,参考小敏思考问题的方法解决一下问题;(2)如图2,在(1)的条件下,若连接AC,BD.①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由矩形的性质可知CD=AB= 3,BC=AD= 4,结合A点坐标即可求得C点坐标.【详解】∵四边形ABCD是长方形,∴CD=AB= 3,BC=AD= 4,∵点A(﹣32,﹣1),∴点C的坐标为(﹣32+3,﹣1+4),即点C的坐标为(32,3),故选D.【点睛】本题考查了矩形的性质和坐标的平移,根据平移的性质解决问题是解答此题的关键.2.B解析:B【解析】【分析】先依据勾股定理可求得OC 的长,从而得到OM 的长,于是可得到点M 对应的数.【详解】解:由题意得可知:OB=2,BC=1,依据勾股定理可知:OC=22OB BC =5. ∴OM=5.故选:B .【点睛】本题考查勾股定理、实数与数轴,熟练掌握相关知识是解题的关键.3.C解析:C【解析】【分析】【详解】解:平行四边形的两条对角线的一半,和平行四边形的一边能够构成三角形, ∴2x 、y 2、6能组成三角形,令x>y ∴x-y<6<x+y20-18<6<20+18 故选C .【点睛】本题考查平行四边形的性质.4.D解析:D【解析】分析:本题考查的是利用勾股定理求线段的长度.解析:根据题意,得出如下图形,最短路径为AB 的长,AC=20,BC=15,∴AB=25故选D.点睛:本题的关键是变曲为直,画出矩形,利用勾股定理得出对角线的长度.5.A解析:A【解析】解:∵把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A ′处,点B 落在点B ′处,∴∠BFE =∠EFB ',∠B '=∠B =90°.∵∠2=40°,∴∠CFB '=50°,∴∠1+∠EFB '﹣∠CFB '=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A .6.C解析:C【解析】【分析】首先利用三角形的中位线定理得出AC ,进一步利用菱形的性质和勾股定理求得边长,得出周长即可.【详解】解:∵E ,F 分别是AB ,BC 边上的中点,∴∵四边形ABCD 是菱形,∴AC ⊥BD ,OA=12OB=12BD=2,∴,∴菱形ABCD 的周长为.故选C .7.D解析:D【解析】【分析】【详解】解:因为(250.5===,所以A ,B ,C 选项均错, 故选D 8.C解析:C【解析】【分析】连接BD ,根据菱形的性质可得AC ⊥BD ,AO=12AC ,然后根据勾股定理计算出BO 长,再算出菱形的面积,然后再根据面积公式BC•AE=12AC•BD 可得答案. 【详解】连接BD ,交AC 于O 点,∵四边形ABCD 是菱形,∴AB =BC =CD =AD =5, ∴1,22AC BD AO AC BD BO ⊥==,, ∴90AOB ∠=o ,∵AC =6,∴AO =3,∴2594BO =-=, ∴DB =8,∴菱形ABCD 的面积是11682422AC DB ⨯⋅=⨯⨯=, ∴BC ⋅AE =24, 245AE =, 故选C.9.C解析:C【解析】【分析】根据菱形的性质,四条边相等且对角线互相平分且互相垂直,由勾股定理得出BO 的长,进而得其对角线BD 的长,再根据菱形的面积等于对角线乘积的一半计算即可.【详解】解:如图:四边形ABCD 是菱形,对角线AC 与BD 相交于点O ,∵菱形的周长为40,∴AB=BC=CD=AD=10,∵一条对角线的长为12,当AC=12,∴AO=CO=6,在Rt △AOB 中,根据勾股定理,得BO=8,∴BD=2BO=16,∴菱形的面积=12AC•BD=96,故选:C.【点睛】此题主要考查了菱形的性质、菱形的面积公式以及勾股定理等知识,根据题意得出BO的长是解题关键.10.D解析:D【解析】【分析】根据二次根式的运算法则即可求出答案.【详解】A、原式+B2=,故错误;C、原式,故C错误;D3=,正确;故选:D.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的运算,本题属于基础题型.11.C解析:C【解析】【分析】根据二次根式的性质、二次根式的加法法则、除法法则计算,判断即可.【详解】33==,A选项成立,不符合题意;==B选项成立,不符合题意;22==,C选项不成立,符合题意;==D选项成立,不符合题意;故选C.【点睛】本题考查的是二次根式的混合运算,掌握二次根式的性质、二次根式的混合运算法则是解题的关键.12.B解析:B【解析】【分析】由折叠的性质可得DN CN =,根据勾股定理可求DN 的长,即可求BN 的长.【详解】D Q 是AB 中点,6AB =,3AD BD ∴==,根据折叠的性质得,DN CN =,9BN BC CN DN ∴=-=-,在Rt DBN V 中,222DN BN DB =+,22(9)9DN DN ∴=-+,5DN ∴=4BN ∴=,故选B .【点睛】本题考查了翻折变换,折叠的性质,勾股定理,熟练运用折叠的性质是本题的关键.二、填空题13.【解析】试题解析:根据题意可得:故答案为 解析:12【解析】试题解析:根据题意可得:41124.82====※ 故答案为1.214.82【解析】【分析】设第三次考试成绩为x 根据三次考试的平均成绩不少于80分列不等式求出x 的取值范围即可得答案【详解】设第三次考试成绩为x∵三次考试的平均成绩不少于80分∴解得:∴他第三次数学考试至少 解析:82【解析】【分析】设第三次考试成绩为x ,根据三次考试的平均成绩不少于80分列不等式,求出x 的取值范围即可得答案.设第三次考试成绩为x,∵三次考试的平均成绩不少于80分,∴7286803x++≥,解得:82x≥,∴他第三次数学考试至少得82分,故答案为:82【点睛】本题考查了一元一次不等式的应用.熟练掌握求平均数的方法,根据不等关系正确列出不等式是解题关键.15.>【解析】【分析】根据实数大小比较的方法比较即可【详解】解:∵5=∴5故答案为>【点睛】本题考查实数大小的比较熟练掌握实数大小的比较方法是解题关键解析:>【解析】【分析】根据实数大小比较的方法比较即可.【详解】解:∵∴故答案为>.【点睛】本题考查实数大小的比较,熟练掌握实数大小的比较方法是解题关键16.【解析】【分析】根据勾股定理求出BC根据正方形的面积公式计算即可【详解】解:由勾股定理得正方形的面积故答案为:【点睛】本题考查了勾股定理如果直角三角形的两条直角边长分别是ab斜边长为c那么a2+b2解析:3.【解析】【分析】根据勾股定理求出BC,根据正方形的面积公式计算即可.【详解】解:由勾股定理得,BC==∴正方形ABCD的面积23BC==,故答案为:3.【点睛】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么17.【解析】【分析】根据题意画出示意图利用勾股定理可求出旗杆的高【详解】解:如图所示:设旗杆米则米在中即解得:旗杆的高为75米故答案为:75【点睛】本题考查了勾股定理的应用解答本题的关键是画出示意图熟练 解析:7.5m【解析】【分析】根据题意画出示意图,利用勾股定理可求出旗杆的高.【详解】解:如图所示:设旗杆AB x =米,则(1)AC x =+米,在Rt ABC ∆中,222AC AB BC =+,即222(1)4x x +=+,解得:7.5x =.∴旗杆的高为7.5米故答案为:7.5.【点睛】本题考查了勾股定理的应用,解答本题的关键是画出示意图,熟练运用勾股定理. 18.3【解析】【分析】根据在直角三角形中斜边上的中线等于斜边的一半得到BM =DM =5根据等腰三角形的性质得到BN =4根据勾股定理得到答案【详解】解:连接BMDM ∵∠ABC =∠ADC =90°M 是AC 的中点解析:3【解析】【分析】根据在直角三角形中,斜边上的中线等于斜边的一半得到BM =DM =5,根据等腰三角形的性质得到BN =4,根据勾股定理得到答案.【详解】解:连接BM 、DM ,∵∠ABC =∠ADC =90°,M 是AC 的中点,∴BM =DM =12AC =5, ∵N 是BD 的中点,∴MN ⊥BD ,∴BN=12BD=4,由勾股定理得:MN=22BM BN-=2254-=3,故答案为:3.【点睛】此题主要考查矩形性质、等腰三角形的性质及勾股定理的应用,解题的关键是熟知直角三角形中,斜边上的中线等于斜边的一半.19.AC⊥BD【解析】【分析】本题首先根据三角形中位线的性质得出四边形为平行四边形然后根据矩形的性质得出AC⊥BD【详解】解:∵GHE分别是BCCDAD 的中点∴HG∥BDEH∥AC∴∠EHG=∠1∠1=解析:AC⊥BD【解析】【分析】本题首先根据三角形中位线的性质得出四边形为平行四边形,然后根据矩形的性质得出AC⊥BD.【详解】解:∵G、H、E分别是BC、CD、AD的中点,∴HG∥BD,EH∥AC,∴∠EHG=∠1,∠1=∠2,∴∠2=∠EHG,∵四边形EFGH是矩形,∴∠EHG=90°,∴∠2=90°,∴AC⊥BD.故还要添加AC⊥BD,才能保证四边形EFGH是矩形.【点睛】本题主要综合考查了三角形中位线定理及矩形的判定定理,属于中等难度题型.解答这个问题的关键就是要明确矩形的性质以及中位线的性质.20.【解析】【分析】将化简后代入ab即可【详解】解:∵∴故答案为:【点睛】本题考查了二次根式的乘除法法则的应用解题的关键是将化简变形本题属于中等题型解析:3 10 ab【解析】【分析】化简后,代入a,b即可.【详解】====a=b=,301=ab故答案为:310ab.【点睛】化简变形,本题属于中等题型.三、解答题21.aba b-+,4-.【解析】【分析】首先通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.【详解】解:原式=a b ab aba b b a a b-⋅=-+-+.∵ab=)111=,a+b==.22.1【解析】【分析】直接利用二次根式的乘法运算法则计算得出答案.【详解】原式1==【点睛】此题主要考查了实数运算,正确掌握相关运算法则是解题关键.23.(1)见解析;(2)OA=OB,OA BC ⊥【解析】【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE ∥BC 且DE =12BC ,GF ∥BC 且GF =12BC ,从而得到DE ∥GF ,DE =GF ,再利用一组对边平行且相等的四边形是平行四边形证明即可;(2)根据邻边相等的平行四边形是菱形,有一个角是直角的平行四边形是矩形解答.【详解】()1,D E Q 分别是,AB AC 的中点.1//,2DE BC DE BC ∴= ,G F Q 分别是,OB OC 的中点1//,2GF BC GF BC ∴= //,DE GF DE GF ∴=∴四边形DGFE 是平行四边形.()2若四边形DGFE 是菱形,则DG=GF ,由(1)中位线可知GF 平行且等于12BC,DG 平行且等于12AO ∴OA BC =若四边形DGFE 是矩形,则DG ⊥GF ,∵DG ∥AO,GF ∥BC∴OA BC ⊥【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及平行四边形与菱形的关系,熟记的定理和性质是解题的关键.24.(1)<,<,<,<,<;(2<【解析】【分析】(1)首先用1除以每个数,求出商是多少;再比较出它们商的大小;然后根据商越大,则原来的数就越小,判断出它们的大小关系即可;(2)根据(1<【详解】=解:(1)=1>11;=2=∵>∴2=22=>+22<2==2>22==>故答案为:<;<;<;<;<;(2<证明:因为()2211221n n n n ++-=+-① ()224n n =②②-①得()()222211221n n n n n -++-=--因为1n ≥,所以221n n -<,即21n n -<所以()()222110n n n -++->20110n n n >++->,Q211n n n ∴>++-所以11n n n n +-<--. 【点睛】此题主要考查了实数大小的比较,二次根式的性质,以及不等式的性质,解答此题的关键是要明确:被除数一定时,商越大,则除数越小.25.(1)是平行四边形;(2)①AC=BD ;证明见解析;②AC ⊥BD .【解析】【分析】(1)如图2,连接AC ,根据三角形中位线的性质及平行四边形判定定理即可得到结论; (2)①由(1)知,四边形EFGH 是平行四边形,且FG=12BD ,HG=12AC ,于是得到当AC=BD 时,FG=HG ,即可得到结论;②若四边形EFGH 是矩形,则∠HGF =90°,即GH ⊥GF ,又GH ∥AC ,GF ∥BD ,则AC ⊥BD .【详解】解::(1)是平行四边形.证明如下:如图2,连接AC ,∵E 是AB 的中点,F 是BC 的中点,∴EF ∥AC ,EF=12AC ,同理HG ∥AC ,HG=12AC , 综上可得:EF ∥HG ,EF=HG ,故四边形EFGH 是平行四边形;(2)①AC=BD.理由如下:由(1)知,四边形EFGH是平行四边形,且FG=12BD,HG=12AC,∴当AC=BD时,FG=HG,∴平行四边形EFGH是菱形;②当AC⊥BD时,四边形EFGH为矩形.理由如下:同(1)得:四边形EFGH是平行四边形,∵AC⊥BD,GH∥AC,∴GH⊥BD,∵GF∥BD,∴GH⊥GF,∴∠HGF=90°,∴四边形EFGH为矩形.【点睛】此题主要考查了中点四边形,关键是掌握三角形中位线定理,三角形的中位线平行于第三边且等于第三边的一半.。
2021-2021学年四川省成都七中育才学校八年级(下)期末数学试卷2021-2021学年四川省成都七中育才学校八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分) 1.(3分)(2021?安阳二模)下列图形中,是中心对称但不一定是轴对称图形的是() A.等边三角形 B.矩形C.菱形 D.平行四边形 2.(3分)(2021?东阳市)使分式A.x≥ B.x≤ C.x>D.x≠3.(3分)(2021春?成都校级期末)一元二次方程x��4x��1=0配方后正确的是()2222A.(x��2)=1 B.(x��2)=5 C.(x��4)=1 D.(x��4)=5 4.(3分)(2021秋?淮南期末)在平面直角坐标系xOy中,已知点A(2,3),若将OA绕原点O逆时针旋转90°得到OA′,则点A′的坐标为() A.(��2,3) B.(��3,2)C.(2,��3) D.(3,��2) 5.(3分)(2021春?成都校级期末)下列命题正确的是() A.一组对边相等,另一组对边平行的四边形一定是平行四边形 B.对角线相等的四边形一定是矩形C.两条对角线互相垂直的四边形一定是正方形D.两条对角线相等且互相垂直平分的四边形一定是正方形 6.(3分)(2021春?台儿庄区期末)如图,△ABC中,AB=AC,AD是角平分线,DE⊥AB,DF⊥AC,E、F为垂足,对于结论:①DE=DF;②BD=CD;③AD上任一点到AB、AC的距离相等;④AD上任一点到B、C的距离相等.其中正确的是()2有意义的x的取值范围是()A.仅①② B.仅③④ C.仅①②③ D.①②③④27.(3分)(2021?芜湖)关于x的方程(a��5)x��4x��1=0有实数根,则a满足() A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5 8.(3分)(2021春?成都校级期末)若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是()A.6 B.8 C.18 D.27 9.(3分)(2021?南宁校级模拟)甲、乙两人同时从A地出发,骑自行车行30千米到B地,甲比乙每小时少走3千米,结果乙先到40分钟.若设乙每小时走x千米,则可列方程() A.B.��= C.��= D.��=第1页(共6页)10.(3分)(2021春?成都校级期末)用边长相等的下列两种正多边形,不能进行平面镶嵌的是()A.等边三角形和正六边形 B.正方形和正八边形C.正五边形和正十边形 D.正六边形和正十二边形二、填空题11.(3分)(2021?丹东模拟)当x= 时,分式2的值为0.212.(3分)(2021?江宁区二模)若实数a满足a��2a��1=0,则2a��4a+5= . 13.(3分)(2021?烟台)如图,?ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为.14.(3分)(2021?浦东新区二模)如图,面积为12cm的△ABC沿BC方向平移至△DEF2位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积是 cm.215.(3分)(2021?滨州)如图,?ABCD中,∠ABC=60°,E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,DF=2,则EF的长为.三、解答题:16.(2021春?成都校级期末)解方程:2��1.17.(2021春?成都校级期末)解方程:(2x+3)=3(2x+3) 18.(2021春?成都校级期末)先化简,再求值:,其中.四、解答题 19.(2021春?成都校级期末)如图,方格纸中的最小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C坐标为(0,��1)①画出△ABC向上平移3个单位后得到的△A1B1C1;第2页(共6页)②画出△ABC绕点C顺时针旋转90°后得到的△A2B2C2;③画出△ABC关于点C中心对称后得到的△A3B3C3.20.(2021?营口)某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元? 21.(2021?株洲)已知关于x的一元二次方程(a+c)x+2bx+(a��c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=��1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根. 22.(2021春?成都校级期末)矩形ABCD中,M是BC的中点,DE⊥AM,E是垂足.(1)求证:△ABM∽△DEA;(2)求证:DC?AE=DE?MC;(3)若AB=4,BC=6,求ME的长.2五、填空题(共5小题,每小题3分,满分15分) 23.(3分)(2021?黄冈中学自主招生)若关于x的方程的解为正数,则a的取值范围是. 24.(3分)(2021?江西)如图,△DEF是由△ABC绕某点旋转得到的,则这点的坐标是.第3页(共6页)25.(3分)(2021?昆都仑区一模)若关于x的一元二次方程x+kx+4k��3=0的两个实数根x1,x2,且满足x1+x2=x1?x2,则k的值为. 26.(3分)(2021?福建)如图,在正方形纸片ABCD中,E,F分别是AD,BC的中点,沿过点B的直线折叠,使点C落在EF上,落点为N,折痕交CD边于点M,BM与EF交22于点P,再展开.则下列结论中:①CM=DM;②∠ABN=30°;③AB=3CM;④△PMN是等边三角形.正确的有()22A.1个 B.2个 C.3个 D.4个 27.(3分)(2021?苏州)如图,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于(结果保留根号).二、解答题 28.(2021秋?安岳县期末)为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2021年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2021年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求到2021年底共建设了多少万平方米廉租房. 29.(2021?盐城)情境观察第4页(共6页)将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.观察图2可知:与BC相等的线段是,∠CAC′= °.问题探究如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.拓展延伸如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由. 30.(2021?靖江市二模)如图,若四边形ABCD、四边形GFED都是正方形,显然图中有AG=CE,AG⊥CE.(1)当正方形GFED绕D旋转到如图2的位置时,AG=CE是否成立?若成立,请给出证明,若不成立,说明理由.(2)若正方形GFED绕D旋转到如图3的位置(F在线段AD上)时,延长CE交AG于H,交AD于M,①求证:AG⊥CH;②当AD=4,DG=时,求CH的长.第5页(共6页)(3)在(2)的条件下,在如图所示的平面上,是否存在以A、G、D、N为顶点的四边形为平行四边形的点N?如果存在,请在图中画出满足条件的所有点N的位置,并直接写出此时CN的长度;若不存在,请说明理由.第6页(共6页)感谢您的阅读,祝您生活愉快。