返回
延伸·拓展
4. 设 x≥0 , y≥0 , z≥0 , p=-3x+y+2z , q=x-2y+4z ,
x+y+z=1求点P(p,q)的活动范围.
【解题回顾】本题实际上是借助二元一次不等式表 示平面区域有关知识求解.不能将其转化为二元一次 不等式表示的平面区域问题是出错主要原因.
返回
5.某人上午7时,乘摩托艇以匀速V海里/时(4≤V≤20) 从A港出发到距50海里的B港去,然后乘汽车以匀速 W千米/时(30≤W≤100)自B港向距300千米的C市驶去, 应该在同一天下午4至9点到达C市.设汽车、摩托艇所
【解题回顾】(1)用线性规划的方法解题的一般步 骤是:设未知数、列出约束条件及目标函数、作 出可行域、求出最优解、写出答案.
(2)本例的关键是分析清楚在哪一个点取最大值. 可
以先将z=7x+12y化成 y- 7 x z ,利用直线的 12 12
斜截式方程可以看出在何处取得最大值.
3.要将两种大小不同的钢板截成A,B,C三种规 格,每张钢板可同时截成三种规格小钢板块数如下 表:
块数 规格
A
种类
第一种钢板
1
B
C
2
1
第二种钢板
1
1
3
每块钢板面积第一种1平方单位,第二种2平方单位, 今需要A,B,C三种规格的成品各式各12,15,27 块,问各截这两种钢板多少张,可得到所需三种规 格成品,且使所用钢板面积最小.
【解题回顾】由于钢板的张数为整数,所以必须寻 找最优整数解.调优的办法是在以z取得最值的附近 整数为基础通过解不等式组可以找出最优解.
2.线性规划 (1)对于变量x,y的约束条件,都是关于x,y的一次不 等式,称为线性约束条件,z=f(x,y)是欲达到最值 所涉及的变量x,y的解析式,叫做目标函数.当f(x,y) 是关于x,y的一次解析式时,z=f(x,y)叫做线性目标 函数. (2)求线性目标函数在约束条件下的最值问题称为 线性规划问题,满足线性约束条件的解(x,y)称为可 行解.由所有解组成的集合叫可行域,使目标函数 取得最值的可行解叫最优解.