不等式及线性规划
- 格式:ppt
- 大小:1.61 MB
- 文档页数:63
33. 不等式与线性规划的关系是什么?33、不等式与线性规划的关系是什么?在数学的广袤领域中,不等式和线性规划是两个重要的概念,它们之间存在着紧密而又独特的关系。
首先,让我们来理解一下不等式。
不等式是用不等号(大于“>”、小于“<”、大于等于“≥”、小于等于“≤”)来表示两个数或者表达式之间的大小关系的数学式子。
比如说,“x >5”,“y ≤ 2x +3”等等。
不等式反映了现实生活中数量之间的各种大小限制和范围。
那么线性规划又是什么呢?简单来说,线性规划是一种数学方法,用于在一定的约束条件下,找到一个目标函数的最优解。
这些约束条件通常就是由一系列的线性不等式组成的。
不等式为线性规划提供了约束的框架。
在线性规划问题中,我们需要在满足一系列不等式所限定的条件下,来优化某个目标。
例如,一个工厂生产两种产品 A 和 B,生产 A 产品每个需要 2 小时的加工时间和 3 单位的原材料,生产 B 产品每个需要 3 小时的加工时间和 2 单位的原材料。
总加工时间不能超过20 小时,原材料总量不超过15 单位。
我们可以用不等式来表示这些限制条件:2x +3y ≤ 20(加工时间限制),3x +2y ≤ 15(原材料限制),这里的 x 代表产品 A 的数量,y代表产品 B 的数量。
这些不等式就构成了线性规划问题的约束条件。
反过来,线性规划也可以帮助我们解决不等式的相关问题。
通过建立线性规划模型,我们可以找到在给定不等式约束下的最优解或者可行解的范围。
比如,给定一组不等式,我们想知道在这些条件下,某个变量的最大值或者最小值是多少,就可以将其转化为线性规划问题来求解。
从几何角度来看,不等式所表示的区域通常是在平面直角坐标系中的一个半平面或者区域。
例如,不等式 x + y < 5 表示的就是直线 x + y = 5 下方的区域。
而线性规划问题中的可行域,就是由多个这样的不等式所确定的区域的交集。
目标函数在这个可行域内进行优化,找到最优解所在的点。
线性不等式与线性规划的解法线性不等式和线性规划是数学中常见的问题类型,它们在日常生活和各个领域都有广泛的应用。
本文将介绍线性不等式与线性规划的定义、解法和一些应用示例。
一、线性不等式的定义和解法线性不等式是指一个或多个变量的线性函数与一个常数之间的不等关系。
其表达形式为:a₁x₁ + a₂x₂ + ... + aₙxₙ ≤ b其中,a₁, a₂, ..., aₙ是系数,x₁, x₂, ..., xₙ是变量,b是常数。
要解决线性不等式,我们需要确定变量的取值范围,使得不等式成立。
常用的解法有以下几种:1. 图形法:将线性不等式转化为几何图形,通过观察图形与坐标轴的交点来确定解集。
2. 代入法:将线性不等式转化为等式,找到其中一个变量的解,代入到不等式中求解其他变量。
重复此过程直至得到所有解。
3. 增减法:通过增减变量值来确定解集的上下界,进而找到满足不等式的解集。
二、线性规划的定义和解法线性规划是指在一定约束条件下,通过线性函数的优化求解最大值或最小值的问题。
其表达形式为:Maximize (or Minimize) f(x₁, x₂, ..., xₙ) = c₁x₁ + c₂x₂ + ... +cₙxₙsubject to:a₁x₁ + a₂x₂ + ... + aₙxₙ ≤ b₁d₁x₁ + d₂x₂ + ... + dₙxₙ ≤ b₂e₁x₁ + e₂x₂ + ... + eₙxₙ ≥ b₃...x₁, x₂, ..., xₙ ≥ 0其中,f(x₁, x₂, ..., xₙ)是目标函数,表示需要最大化或最小化的线性函数;约束条件由不等式给出,b₁, b₂, b₃是常数。
线性规划的解法主要有以下两种:1. 几何法:将约束条件转化为几何图形,通过观察图形与目标函数的相对位置关系,找到最优解。
2. 单纯形法:通过转化为标准形式,并利用单纯形表来进行迭代计算,逐步逼近最优解。
三、线性不等式和线性规划的应用示例线性不等式和线性规划广泛应用于经济学、管理学、工程学等领域。
基本不等式1. 若x >0,y >0,且x +y =18,则xy 的最大值是________.解析 由于x >0,y >0,则x +y ≥2xy ,所以xy ≤⎝⎛⎭⎪⎫x +y 22=81, 当且仅当x =y =9时,xy 取到最大值81.2. 已知t >0,则函数y =t 2-4t +1t的最小值为________.解析 ∵t >0,∴y =t 2-4t +1t =t +1t -4≥2-4=-2,且在t =1时取等号.3. 已知x >0,y >0,且2x +y =1,则1x +2y的最小值是_____________.解析 因为1x +2y =(2x +y )⎝⎛⎭⎫1x +2y =4+y x +4xy ≥4+2y x ·4x y =8,等号当且仅当y =12,x =14时成立. 4. (2012·浙江)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( )A.245B.285C .5D .6解析 ∵x >0,y >0,由x +3y =5xy 得15⎝⎛⎭⎫1y +3x =1. ∴3x +4y =15(3x +4y )⎝⎛⎭⎫1y +3x =15⎝⎛⎭⎫3x y +4+9+12y x =135+15⎝⎛⎭⎫3x y +12y x ≥135+15×23x y ·12yx=5(当且仅当x =2y 时取等号), ∴3x +4y 的最小值为5.5. 圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0 (a ,b ∈R )对称,则ab 的取值范围是( )A.⎝⎛⎦⎤-∞,14B.⎝⎛⎦⎤0,14C.⎝⎛⎭⎫-14,0D.⎝⎛⎭⎫-∞,14 解析 由题可知直线2ax -by +2=0过圆心(-1,2),故可得a +b =1,又因ab ≤⎝⎛⎭⎪⎫a +b 22=14 (a =b 时取等号).故ab 的取值范围是⎝⎛⎦⎤-∞,14.题型一 利用基本不等式证明简单不等式 例1 已知x >0,y >0,z >0.求证:⎝⎛⎭⎫y x +z x ⎝⎛⎭⎫x y +z y ⎝⎛⎭⎫x z +y z ≥8. 证.证明 ∵x >0,y >0,z >0,∴y x +z x ≥2yz x >0,x y +z y ≥2xz y >0,x z +y z ≥2xyz >0,∴⎝⎛⎭⎫y x +z x ⎝⎛⎭⎫x y +z y ⎝⎛⎭⎫x z +y z ≥8yz ·xz ·xy xyz =8. 当且仅当x =y =z 时等号成立.已知a >0,b >0,c >0,且a +b +c =1.求证:1a +1b +1c≥9.证明 ∵a >0,b >0,c >0,且a +b +c =1,∴1a +1b +1c =a +b +c a +a +b +c b +a +b +cc=3+b a +c a +a b +c b +a c +bc =3+⎝⎛⎭⎫b a +a b +⎝⎛⎭⎫c a +a c +⎝⎛⎭⎫c b +b c ≥3+2+2+2=9, 当且仅当a =b =c =13时,取等号.题型二 利用基本不等式求最值例2 (1)已知x >0,y >0,且2x +y =1,则1x +1y的最小值为________;(2)当x >0时,则f (x )=2xx 2+1的最大值为________. 解析 (1)∵x >0,y >0,且2x +y =1,∴1x +1y =2x +y x +2x +yy=3+y x +2x y ≥3+2 2.当且仅当y x =2xy时,取等号.(2)∵x >0,∴f (x )=2x x 2+1=2x +1x≤22=1,当且仅当x =1x ,即x =1时取等号.(1)已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( )A .3B .4C.92D.112(2)已知a >b >0,则a 2+16b (a -b )的最小值是________.解析 (1)依题意,得(x +1)(2y +1)=9,∴(x +1)+(2y +1)≥2(x +1)(2y +1)=6,即x +2y ≥4.当且仅当⎩⎪⎨⎪⎧ x +1=2y +1,x +2y +2xy =8,即⎩⎪⎨⎪⎧x =2,y =1时等号成立.∴x +2y 的最小值是4.(2)∵a >b >0,∴b (a -b )≤⎝ ⎛⎭⎪⎫b +a -b 22=a 24,当且仅当a =2b 时等号成立.∴a 2+16b (a -b )≥a 2+16a 24=a 2+64a 2≥2a 2·64a2=16,当且仅当a =22时等号成立. ∴当a =22,b =2时,a 2+16b (a -b )取得最小值16.题型三 基本不等式的实际应用1.(2010·惠州模拟)某商场中秋前30天月饼销售总量f (t )与时间t (0<t ≤30)的关系大致满足f (t )=t 2+10t +16,则该商场前t 天平均售出(如前10天的平均售出为f (10)10)的月饼最少为( )A .18B .27C .20D .16解析:平均销售量y =f (t )t =t 2+10t +16t =t +16t+10≥18.当且仅当t =16t,即t =4∈等号成立,即平均销售量的最小值为18.答案:A2.某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距离车站10千米处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么,要使这两项费用之和最小,仓库应建在离车站________千米处.解析:设仓库建在离车站d 千米处,由已知y 1=2=k 110,得k 1=20,∴y 1=20d ,y 2=8=k 2·10,得k 2=45,∴y 2=45d ,∴y 1+y 2=20d +4d5≥220d ·4d 5=8,当且仅当20d =4d5,即d =5时,费用之和最小.(2011·北京)某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件答案 B解析 设每件产品的平均费用为y 元,由题意得y =800x +x8≥2800x ·x8=20. 当且仅当800x =x8(x >0),即x =80时“=”成立,故选B.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (2011·陕西)设0<a <b ,则下列不等式中正确的是( )A .a <b <ab <a +b2B .a <ab <a +b2<bC .a <ab <b <a +b2D.ab <a <a +b2<b答案 B解析 ∵0<a <b ,∴a <a +b2<b ,A 、C 错误;ab -a =a (b -a )>0,即ab >a ,D 错误,故选B. 2. (2012·福建)下列不等式一定成立的是( )A .lg ⎝⎛⎭⎫x 2+14>lg x (x >0) B .sin x +1sin x ≥2(x ≠k π,k ∈Z )C .x 2+1≥2|x |(x ∈R ) D.1x 2+1>1(x ∈R ) 答案 C解析 当x >0时,x 2+14≥2·x ·12=x ,所以lg ⎝⎛⎭⎫x 2+14≥lg x (x >0),故选项A 不正确; 而当x ≠k π,k ∈Z 时,sin x 的正负不定,故选项B 不正确; 由基本不等式可知,选项C 正确;当x =0时,有1x 2+1=1,故选项D 不正确.3. 设x ,y ∈R ,a >1,b >1,若a x =b y =3,a +b =23,则1x +1y的最大值为( )A .2B.32C .1D.12答案 C解析 由a x =b y =3,得:x =log a 3,y =log b 3,由a >1,b >1知x >0,y >0,1x +1y=log 3a+log 3b =log 3ab ≤log 3⎝⎛⎭⎪⎫a +b 22=1,当且仅当a =b =3时“=”成立,则1x +1y 的最大值为1.4. 已知0<x <1,则x (3-3x )取得最大值时x 的值为( )A.13B.12C.34D.23答案 B解析 ∵0<x <1,∴1-x >0.∴x (3-3x )=3x (1-x )≤3⎝⎛⎭⎪⎫x +1-x 22=34.当x =1-x ,即x =12时取等号.二、填空题(每小题5分,共15分)5. 已知x ,y ∈R +,且满足x 3+y 4=1,则xy 的最大值为________.答案 3解析 ∵x >0,y >0且1=x 3+y4≥2xy 12,∴xy ≤3.当且仅当x 3=y4时取等号. 6. (2011·湖南)设x ,y ∈R ,且xy ≠0,则⎝⎛⎭⎫x 2+1y 2·⎝⎛⎭⎫1x 2+4y 2的最小值为________. 答案 9解析 ⎝⎛⎭⎫x 2+1y 2⎝⎛⎭⎫1x 2+4y 2=5+1x 2y2+4x 2y 2 ≥5+21x 2y2·4x 2y 2=9,当且仅当x 2y 2=12时“=”成立.7. 某公司一年需购买某种货物200吨,平均分成若干次进行购买,每次购买的运费为2万元,一年的总存储费用数值(单位:万元)恰好为每次的购买吨数数值,要使一年的总运费与总存储费用之和最小,则每次购买该种货物的吨数是_______. 答案 20解析 设每次购买该种货物x 吨,则需要购买200x 次,则一年的总运费为200x ×2=400x ,一年的总存储费用为x ,所以一年的总运费与总存储费用为400x+x ≥2400x·x =40,当且仅当400x =x ,即x =20时等号成立,故要使一年的总运费与总存储费用之和最小,每次应购买该种货物20吨. 三、解答题(共22分)8. (10分)已知a >0,b >0,a +b =1,求证:(1)1a +1b +1ab ≥8; (2)⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9. 证明 (1)1a +1b +1ab =1a +1b +a +b ab=2⎝⎛⎭⎫1a +1b ,∵a +b =1,a >0,b >0,∴1a +1b =a +b a +a +b b =2+a b +b a ≥2+2=4, ∴1a +1b +1ab ≥8(当且仅当a =b =12时等号成立). (2)方法一 ∵a >0,b >0,a +b =1,∴1+1a =1+a +b a =2+ba ,同理,1+1b =2+a b,∴⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =⎝⎛⎭⎫2+b a ⎝⎛⎭⎫2+ab =5+2⎝⎛⎭⎫b a +a b ≥5+4=9.∴⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9(当且仅当a =b =12时等号成立). 方法二 ⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =1+1a +1b +1ab . 由(1)知,1a +1b +1ab≥8,故⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =1+1a +1b +1ab≥9. B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. 不等式a 2+b 2≥2|ab |成立时,实数a ,b 一定是( )A .正数B .非负数C .实数D .不存在答案 C解析 原不等式可变形为a 2+b 2-2|ab |=|a |2+|b |2-2|ab |=(|a |-|b |)2≥0,对任意实数都成立.2. 如果0<a <b <1,P =log 12a +b 2,Q =12(log 12a +log 12b ),M =12log 12(a +b ),那么P ,Q ,M 的大小顺序是( )A .P >Q >MB .Q >P >MC .Q >M >PD .M >Q >P答案 B解析 因为P =log 12a +b 2,Q =12(log 12a +log 12b ),M =12log 12(a +b ),所以只需比较a +b 2,ab ,a +b 的大小,显然a +b 2>ab .又因为a +b2<a +b (因为a +b >(a +b )24,也就是a +b4<1),所以a +b >a +b2>ab ,而对数函数当底数大于0且小于1时为减函数,故Q >P >M .3. 函数y =log a (x +3)-1 (a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中m ,n 均大于0,则1m +2n 的最小值为( )A .2B .4C .8D .16答案 C解析 点A (-2,-1),所以2m +n =1.所以1m +2n =(2m +n )⎝⎛⎭⎫1m +2n =4+n m +4m n ≥8,当且仅当n =2m ,即m =14,n =12时等号成立.二、填空题(每小题5分,共15分)4. 若正实数x ,y 满足2x +y +6=xy ,则xy 的最小值是________.答案 18解析 由x >0,y >0,2x +y +6=xy ,得xy ≥22xy +6(当且仅当2x =y 时,取“=”), 即(xy )2-22xy -6≥0,∴(xy -32)·(xy +2)≥0. 又∵xy >0,∴xy ≥32,即xy ≥18.∴xy 的最小值为18.5. 已知m 、n 、s 、t ∈R +,m +n =2,m s +n t =9,其中m 、n 是常数,且s +t 的最小值是49,满足条件的点(m ,n )是圆(x -2)2+(y -2)2=4中一弦的中点,则此弦所在的直线方程为__________.解析 因(s +t )⎝⎛⎭⎫m s +n t =m +n +tm s +snt ≥m +n +2mn ,所以m +n +2mn =4, 从而mn =1,得m =n =1,即点(1,1),而已知圆的圆心为(2,2),所求弦的斜率为-1, 从而此弦的方程为x +y -2=0.6.已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为________.解析:因为x >a ,所以2x +2x -a =2(x -a )+2x -a +2a ≥2 2(x -a )·2x -a+2a =2a+4,即2a +4≥7,所以a ≥32,即a 的最小值为32.线性规划【母题一】已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的取值范围为( )A .[7,23]B .[8,23]C .[7,8]D .[7,25]求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-abx+z b ,通过求直线的截距zb的最值,间接求出z 的最值. 【解析】画出不等式组⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,表示的平面区域如图中阴影部分所示,由目标函数z =2x +3y 得y =-23x +z 3,平移直线y =-23x 知在点B 处目标函数取到最小值,解方程组⎩⎪⎨⎪⎧ x +y =3,2x -y =3,得⎩⎪⎨⎪⎧x =2,y =1,所以B (2,1),z min =2×2+3×1=7,在点A 处目标函数取到最大值,解方程组⎩⎪⎨⎪⎧ x -y =-1,2x -y =3,得⎩⎪⎨⎪⎧x =4,y =5,所以A (4,5),z max =2×4+3×5=23.【答案】A【母题二】变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,(1)设z =y2x -1,求z 的最小值;(2)设z =x 2+y 2,求z 的取值范围;(3)设z =x 2+y 2+6x -4y +13,求z 的取值范围. .【解析】(1)由约束条件⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,作出(x ,y )的可行域如图所示.由⎩⎪⎨⎪⎧ x =1,3x +5y -25=0,解得A ⎝⎛⎭⎫1,225.由⎩⎪⎨⎪⎧x =1,x -4y +3=0,解得C (1,1).由⎩⎪⎨⎪⎧x -4y +3=0,3x +5y -25=0,解得B (5,2). ∵z =y2x -1=y -0x -12×12∴z 的值即是可行域中的点与⎝⎛⎭⎫12,0连线的斜率,观察图形可知z min =2-05-12×12=29. (2)z =x 2+y 2的几何意义是可行域上的点到原点O 的距离的平方. 结合图形可知,可行域上的点到原点的距离中, d min =|OC |=2,d max =|OB |=29.∴2≤z ≤29.(3)z =x 2+y 2+6x -4y +13=(x +3)2+(y -2)2的几何意义是: 可行域上的点到点(-3,2)的距离的平方. 结合图形可知,可行域上的点到(-3,2)的距离中, d min =1-(-3)=4,d max =(-3-5)2+(2-2)2=8 ∴16≤z ≤64.1.求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义.2.常见的目标函数有: (1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +zb ,通过求直线的截距zb的最值,间接求出z 的最值.(2)距离型:形一:如z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离;形二:z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离的平方.(3)斜率型:形如z =y x ,z =ay -b cx -d ,z =ycx -d ,z =ay -b x ,此类目标函数常转化为点(x ,y )与定点所在直线的斜率.【提醒】 注意转化的等价性及几何意义.角度一:求线性目标函数的最值1.(2014·新课标全国Ⅱ卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .2【解析】作出可行域如图中阴影部分所示,由z =2x -y 得y =2x -z ,作出直线y =2x ,平移使之经过可行域,观察可知,当直线经过点A (5,2)时,对应的z 值最大.故z max =2×5-2=8. 【答案】B3.(2013·高考陕西卷)若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域,则2x -y 的最小值为( )A .-6B .-2C .0D .2【解析】如图,曲线y =|x |与y =2所围成的封闭区域如图中阴影部分,令z =2x -y ,则y =2x -z ,作直线y =2x ,在封闭区域内平行移动直线y =2x ,当经过点(-2,2)时,z 取得最小值,此时z =2×(-2)-2=-6.【答案】A角度二:求非线性目标的最值4.(2013·高考山东卷)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .-13D .-12【解析】已知的不等式组表示的平面区域如图中阴影所示,显然当点M 与点A 重合时直线OM 的斜率最小,由直线方程x +2y -1=0和3x +y -8=0,解得A (3,-1),故OM 斜率的最小值为-13.【解析】C5.已知实数x ,y 满足⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y ,则z =2x +y -1x -1的取值范围 . 【解】由不等式组画出可行域如图中阴影部分所示,目标函数z =2x +y -1x -1=2+y +1x -1的取值范围可转化为点(x ,y )与(1,-1)所在直线的斜率加上2的取值范围,由图形知,A 点坐标为(2,1),则点(1,-1)与(2,1)所在直线的斜率为22+2,点(0,0)与(1,-1)所在直线的斜率为-1,所以z 的取值范围为(-∞,1]∪[22+4,+∞).【答案】(-∞,1]∪[22+4,+∞)6.(2015·郑州质检)设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≤2y -x ≤2,y ≥1,则x 2+y 2的取值范围是( )A .[1,2]B .[1,4]C .[2,2]D .[2,4]【解析】如图所示,不等式组表示的平面区域是△ABC 的内部(含边界),x 2+y 2表示的是此区域内的点(x ,y )到原点距离的平方.从图中可知最短距离为原点到直线BC 的距离,其值为1;最远的距离为AO ,其值为2,故x 2+y 2的取值范围是[1,4].【答案】B7.(2013·高考北京卷)设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为________.【解析】作出可行域,如图中阴影部分所示,则根据图形可知,点B (1,0)到直线2x -y =0的距离最小,d =|2×1-0|22+1=255,故最小距离为255.【答案】255角度三:求线性规划中的参数 9.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是( )A .73B .37C .43D .34【解析】不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝⎛⎭⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A (1,1),B (0,4),所以AB 中点D ⎝⎛⎭⎫12,52.当y =kx +43过点⎝⎛⎭⎫12,52时,52=k 2+43,所以k =73.【解析】A10.(2014·高考北京卷)若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k的值为( )A .2B .-2C .12D .-12【解析】D作出线性约束条件⎩⎨⎧x +y -2≥0,kx -y +2≥0,y ≥0的可行域.当k >0时,如图①所示,此时可行域为y 轴上方、直线x +y -2=0的右上方、直线kx -y +2=0的右下方的区域,显然此时z =y -x 无最小值.当k <-1时,z =y -x 取得最小值2;当k =-1时,z =y -x 取得最小值-2,均不符合题意.当-1<k <0时,如图②所示,此时可行域为点A (2,0),B ⎝⎛⎭⎫-2k ,0,C (0,2)所围成的三角形区域,当直线z =y -x 经过点B ⎝⎛⎭⎫-2k ,0时,有最小值,即-⎝⎛⎭⎫-2k =-4⇒k =-12.【答案】D11.(2014·高考安徽卷)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )A .12或-1B .2或12C .2或1D .2或-1【解析】法一:由题中条件画出可行域如图中阴影部分所示,可知A (0,2),B (2,0),C (-2,-2),则z A =2,z B =-2a ,z C =2a -2,要使目标函数取得最大值的最优解不唯一,只要z A=z B>z C或z A=z C>z B或z B=z C>z A,解得a=-1或a=2.法二:目标函数z=y-ax可化为y=ax+z,令l0:y=ax,平移l0,则当l0∥AB或l0∥AC 时符合题意,故a=-1或a=2.【答案】D。
1.二元一次不等式(组)表示的平面区域满足二元一次不等式(组)的x和y的取值构成的有序数对(x,y),叫做二元一次不等式(组)的解,所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集.3.线性规划的有关概念1.画二元一次不等式表示的平面区域的直线定界,特殊点定域(1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线.(2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.2.利用“同号上,异号下”判断二元一次不等式表示的平面区域对于Ax+By+C>0或Ax+By+C<0,则有(1)当B(Ax+By+C)>0时,区域为直线Ax+By+C=0的上方;(2)当B(Ax+By+C)<0时,区域为直线Ax+By+C=0的下方.3.平移规律当b >0时,直线z =ax +by 向上平移z 变大,向下平移z 变小;当b <0时,直线z =ax +by 向上平移z 变小,向下平移z 变大.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( )(2)线性目标函数的最优解可能是不唯一的.( )(3)线性目标函数取得最值的点一定在可行域的顶点或边界上.( ) (4)在目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( )答案:(1)× (2)√ (3)√ (4)× 二、易错纠偏常见误区| (1)不会用代点法判断平面区域; (2)不明确目标函数的最值与等值线截距的关系; (3)不理解目标函数的几何意义; (4)对“最优解有无数个”理解有误.1.若点(-2,t )在直线2x -3y +6=0的上方,则t 的取值范围是__________. 解析:因为直线2x -3y +6=0的上方区域可以用不等式2x -3y +6<0表示,所以由点(-2,t )在直线2x -3y +6=0的上方得-4-3t +6<0,解得t >23.答案:⎝ ⎛⎭⎪⎫23,+∞2.设x ,y 满足约束条件⎩⎨⎧y +2≥0,x -2≤0,2x -y +1≥0.则z =x +y 的最大值与最小值的比值为________.解析:不等式组所表示的平面区域如图中阴影部分所示,z =x +y 可化为y =-x +z ,当直线y =-x +z 经过A 点时,z 最大,联立⎩⎪⎨⎪⎧x -2=0,2x -y +1=0.得⎩⎪⎨⎪⎧x =2,y =5,故A (2,5),此时z =7;当直线y =-x +z 经过B 点时,z 最小,联立⎩⎪⎨⎪⎧y +2=0,2x -y +1=0,得⎩⎨⎧x =-32,y =-2,故B ⎝ ⎛⎭⎪⎫-32,-2,此时z =-72,故最大值与最小值的比值为-2.答案:-23.已知x ,y 满足条件⎩⎨⎧x -y +5≥0,x +y ≥0,x ≤3,则z =y -1x +3的最大值为________.解析:作出可行域如图中阴影部分所示,问题转化为区域上哪一点与点M (-3,1)连线斜率最大,观察知点A ⎝ ⎛⎭⎪⎫-52,52,使k MA 最大,z max =k MA =52-1-52+3=3.答案:34.已知x ,y 满足⎩⎨⎧x -y +5≥0,x +y ≥0,x ≤3,若使得z =ax +y 取得最大值的点(x ,y )有无数个,则a 的值为________.解析:先根据约束条件画出可行域,如图中阴影部分所示,当直线z =ax +y 和直线AB 重合时,z 取得最大值的点(x ,y )有无数个,所以-a =k AB =1,所以a =-1.答案:-1二元一次不等式(组)表示的平面区域(多维探究) 角度一 平面区域的面积不等式组⎩⎨⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于()A .32B .23C .43D .34【解析】 由题意得不等式组表示的平面区域如图阴影部分所示,A ⎝ ⎛⎭⎪⎫0,43,B (1,1),C (0,4),则△ABC 的面积为12×1×83=43.故选C .【答案】 C角度二 平面区域的形状若不等式组⎩⎨⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域是一个三角形,则a 的取值范围是________.【解析】不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图所示(阴影部分).解⎩⎪⎨⎪⎧y =x ,2x +y =2得A ⎝ ⎛⎭⎪⎫23,23;解⎩⎪⎨⎪⎧y =0,2x +y =2得B (1,0).若原不等式组表示的平面区域是一个三角形,则直线x +y =a 中的a 的取值范围是0<a ≤1或a ≥43.【答案】 (0,1]∪⎣⎢⎡⎭⎪⎫43,+∞(1)求平面区域面积的方法①首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;②对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和.(2)根据平面区域确定参数的方法在含有参数的二元一次不等式组所表示的平面区域问题中,首先把不含参数的平面区域确定好,然后用数形结合的方法根据参数的不同取值情况画图观察区域的形状,根据求解要求确定问题的答案.1.已知约束条件⎩⎨⎧x ≥1,x +y -4≤0,kx -y ≤0表示面积为1的直角三角形区域,则实数k的值为( )A .1B .-1C .0D .-2解析:选A .作出约束条件表示的可行域如图中阴影部分所示,要使阴影部分为直角三角形,当k =0时,此三角形的面积为12×3×3=92≠1,所以不成立,所以k >0,则必有BC ⊥AB ,因为x +y -4=0的斜率为-1,所以直线kx -y =0的斜率为1,即k =1,满足题意,故选A .2.设不等式组⎩⎨⎧x ≥1,x -y ≤0,x +y ≤4表示的平面区域为M ,若直线y =kx -2上存在M内的点,则实数k 的取值范围是( )A .[1,3]B .(-∞,1]∪[3,+∞)C .[2,5]D .(-∞,2]∪[5,+∞)解析:选C .作出不等式组⎩⎪⎨⎪⎧x ≥1,x -y ≤0,x +y ≤4表示的平面区域,如图中阴影部分所示,因为直线l :y =kx -2的图象过定点A (0,-2),且斜率为k ,由图知,当直线l 过点B (1,3)时,k 取最大值3+21-0=5,当直线l 过点C (2,2)时,k 取最小值2+22-0=2,故实数k 的取值范围是[2,5].求目标函数的最值(多维探究) 角度一 求线性目标函数的最值(2021·郑州第一次质量预测)若变量x ,y 满足约束条件⎩⎨⎧x +y ≥0,x -y ≥0,3x +y -4≤0,则y -2x 的最小值是( ) A .-1 B .-6 C .-10D .-15【解析】不等式组⎩⎪⎨⎪⎧x +y ≥0,x -y ≥0,3x +y -4≤0表示的平面区域如图中阴影部分所示.令z =y -2x ,作出直线y =2x ,并平移,当直线z =y -2x 过点B (2,-2)时,z 的值最小,最小值为-6,故选B .【答案】 B(1)求目标函数的最值形如z =ax +by (b ≠0)的目标函数,可变形为斜截式y =-a b x +zb (b ≠0). ①若b >0,当直线过可行域且在y 轴上的截距最大时,z 值最大,在y 轴上截距最小时,z 值最小;②若b <0,当直线过可行域且在y 轴上的截距最大时,z 值最小,在y 轴上的截距最小时,z 值最大.(2)求目标函数最优解的常用方法如果可行域是一个多边形,那么一般在某顶点处使目标函数取得最优解,到底哪个顶点为最优解,可有两种方法判断:①将可行域各顶点的坐标代入目标函数,通过比较各顶点函数值大小即可求得最优解;②将目标函数的直线平移,最先通过或最后通过的顶点便是最优解. 角度二 求非线性目标函数的最值(范围)实数x ,y 满足⎩⎨⎧x -y +1≤0,x ≥0,y ≤2.(1)若z =yx ,则z 的取值范围为________;(2)若z =x 2+y 2,则z 的最大值为________,最小值为________.【解析】由⎩⎪⎨⎪⎧x -y +1≤0,x ≥0,y ≤2,作出可行域,如图中阴影部分所示.(1)z =yx 表示可行域内任一点与坐标原点连线的斜率,因此yx 的取值范围为直线OB 的斜率到直线OA 的斜率(直线OA 的斜率不存在,即z max 不存在).由⎩⎪⎨⎪⎧x -y +1=0,y =2,得B (1,2), 所以k OB =21=2,即z min =2, 所以z 的取值范围是[2,+∞).(2)z =x 2+y 2表示可行域内的任意一点与坐标原点之间距离的平方. 因此x 2+y 2的最小值为OA 2,最大值为OB 2. 由⎩⎪⎨⎪⎧x -y +1=0,x =0,得A (0,1), 所以OA 2=(02+12)2=1,OB 2=(12+22)2=5.【答案】 (1)[2,+∞) (2)5 1【迁移探究1】 (变问法)本例条件不变,求目标函数z =y -1x -1的取值范围.解:z =y -1x -1可以看作过点P (1,1)及(x ,y )两点的直线的斜率.所以z 的取值范围是(-∞,0].【迁移探究2】 (变问法)本例条件不变,求目标函数z =x 2+y 2-2x -2y +3的最值.解:z =x 2+y 2-2x -2y +3 =(x -1)2+(y -1)2+1,而(x -1)2+(y -1)2表示点P (1,1)与Q (x ,y )的距离的平方PQ 2,PQ 2max =(0-1)2+(2-1)2=2,PQ 2min =⎝⎛⎭⎪⎪⎫|1-1+1|12+(-1)22=12,所以z max =2+1=3,z min =12+1=32.常见两类非线性目标函数的几何意义(1)x 2+y 2表示点(x ,y )与原点(0,0)间的距离,(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )间的距离;(2)yx 表示点(x ,y )与原点(0,0)连线的斜率,y -b x -a 表示点(x ,y )与点(a ,b )连线的斜率.角度三 求参数值或取值范围(2021·贵阳市第一学期监测考试)已知实数x ,y 满足⎩⎨⎧x +2≥y ,x ≤2,y -1≥0,若z=x +ay (a >0)的最大值为10,则a = ( )A .1B .2C .3D .4【解析】 不等式组表示的平面区域如图中阴影部分所示.由⎩⎪⎨⎪⎧x =2,x -y +2=0, 解得⎩⎪⎨⎪⎧x =2,y =4,所以A (2,4),由⎩⎪⎨⎪⎧x =2,y -1=0,解得⎩⎪⎨⎪⎧x =2,y =1,所以B (2,1),由⎩⎪⎨⎪⎧y -1=0,x -y +2=0,解得⎩⎪⎨⎪⎧x =-1,y =1,所以C (-1,1).若(2,4)是最优解,则2+4a =10,a =2,经检验符合题意;若(2,1)是最优解,则2+a =10,a =8,经检验不符合题意;若(-1,1)是最优解,则-1+a =10,a =11,经检验不符合题意.综上所述,a =2,故选B .【答案】 B求解线性规划中含参数问题的基本方法有两种:一是把参数当成常数用,根据线性规划问题的求解方法求出最优解,代入目标函数确定最值,通过构造方程或不等式求解参数的值或取值范围;二是先分离含有参数的式子,通过观察的方法确定含参的式子所满足的条件,确定最优解的位置,从而求出参数.1.若x ,y 满足约束条件⎩⎨⎧x +y ≥1,x +2y ≤2,x ≤a ,目标函数z =2x +3y 的最小值为2,则a =________.解析:作出不等式组⎩⎪⎨⎪⎧x +y ≥1,x +2y ≤2,x ≤a 表示的平面区域如图中阴影部分所示,作出直线2x +3y =0,平移直线2x +3y =0,显然过A (a ,1-a )时,z =2x +3y 取得最小值,则2a +3(1-a )=2,解得a =1.答案:12.(2021·开封市第一次模拟考试)已知点A (0,2),动点P (x ,y )的坐标满足条件⎩⎨⎧x ≥0,y ≤x ,则|P A |的最小值是________.解析:依题意,画出不等式组⎩⎨⎧x ≥0,y ≤x 表示的平面区域,如图中阴影部分所示,结合图形可知,|P A |的最小值等于点A (0,2)到直线x -y =0的距离,即|0-2|2= 2.答案: 23.(2021·湖北八校第一次联考)已知实数x ,y 满足⎩⎨⎧2x -y +3≥0,2x +y -5≤0,y ≥1,则z =|x-y |的取值范围为________.解析:画出可行域如图中阴影部分所示,z =|x -y |=|x -y |2·2表示可行域内的点(x ,y )到直线x -y =0的距离的2倍.作出直线x -y =0,由图可得可行域内的点(x ,y )到直线x -y =0的距离的最小值为0,最大值为直线2x -y +3=0与2x +y -5=0的交点C ⎝ ⎛⎭⎪⎫12,4到直线x -y =0的距离,即724,所以z 的取值范围为⎣⎢⎡⎦⎥⎤0,72.答案:⎣⎢⎡⎦⎥⎤0,72线性规划的实际应用(师生共研)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的限量如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )甲 乙 原料限量 A /吨 3 2 12 B /吨128A .16万元 C .18万元D .19万元【解析】 设该企业每天生产x 吨甲产品,y 吨乙产品,可获得利润为z 万元,则z =3x +4y ,且x ,y 满足不等式组⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,作出不等式组表示的可行域如图中阴影部分所示,作出直线3x +4y =0并平移,可知当直线经过点(2,3)时,z 取得最大值,z max =3×2+4×3=18(万元).故选C .【答案】 C利用线性规划解决实际问题的五步曲某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为________元.解析:设租用A 型车x 辆,B 型车y 辆,目标函数为z =1 600x +2 400y ,则约束条件为⎩⎪⎨⎪⎧36x +60y ≥900,x +y ≤21,y -x ≤7,x ,y ∈N ,作出可行域,如图中阴影部分所示,可知目标函数过点A (5,12)时,有最小值z min =36 800(元).答案:36 800[A 级 基础练]1.不等式组⎩⎨⎧x -3y +6≤0,x -y +2>0表示的平面区域是( )解析:选C .用特殊点代入,比如(0,0),容易判断为C . 2.设集合A ={(x ,y )|x -y ≥1,ax +y >4,x -ay ≤2},则( ) A .对任意实数a ,(2,1)∈A B .对任意实数a ,(2,1)∉A C .当且仅当a <0时,(2,1)∉A D .当且仅当a ≤32时,(2,1)∉A解析:选D .若(2,1)∈A ,则⎩⎪⎨⎪⎧2a +1>4,2-a ≤2,解得a >32,所以当且仅当a ≤32时,(2,1)∉A ,故选D .3.(2020·高考浙江卷)若实数x ,y 满足约束条件⎩⎨⎧x -3y +1≤0,x +y -3≥0,则z =x +2y的取值范围是( )A .(-∞,4]B .[4,+∞)C .[5,+∞)D .(-∞,+∞)解析:选B .画出可行域如图中阴影部分所示,作出直线x +2y =0,平移该直线,易知当直线经过点A (2,1)时,z 取得最小值,z min =2+2×1=4,再数形结合可得z =x +2y 的取值范围是[4,+∞).故选B .4.若M 为不等式组⎩⎨⎧x ≤0,y ≥0,y -x ≤2表示的平面区域,则当a 从-2 连续变化到1时,动直线x +y =a 扫过M 中的那部分区域的面积为( )A .1B .32C .34D .74解析:选D .在平面直角坐标系中作出区域M 如图中阴影部分所示,当a 从-2连续变化到1时,动直线x +y =a 扫过M 中的那部分区域为图中的四边形AODE ,所以其面积S =S △AOC -S △DEC =12×2×2-12×1×12=74,故选D .5.若x ,y 满足约束条件⎩⎨⎧x -y +2≥0,x +y -m ≥0,x -3≤0,若z =2x -3y 的最大值为9,则正实数m 的值为( )A .2B .3C .4D .8解析:选A .作出x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x +y -m ≥0,x -3≤0表示的可行域如图中阴影部分所示,由图可知z =2x -3y 在点A 处取得最大值, 由⎩⎪⎨⎪⎧x +y -m =0,x =3解得A (3,m -3), 由z max =2×3-3(m -3)=9,解得m =2. 故选A .6.(2021·广州市阶段训练)设x ,y 满足约束条件⎩⎨⎧1≤x ≤3,0≤x +y ≤2,则z =x -2y的最小值为________.解析:依题意,在平面直角坐标系内作出不等式组表示的平面区域如图中阴影部分所示,作出直线x -2y =0,并平移,当平移到经过该平面区域内的点(1,1)时,相应直线在x 轴上的截距最小,此时z =x -2y 取得最小值,最小值为-1.答案:-17.(2021·合肥第一次教学检测)已知实数x ,y 满足⎩⎨⎧x ≥y ,x ≤2y ,x +y -6≤0,则z =2x+y 取得最大值时的最优解为________.解析:方法一:作不等式组⎩⎪⎨⎪⎧x ≥y ,x ≤2y ,x +y -6≤0表示的平面区域,如图中阴影部分所示,作出直线2x +y =0,并平移,根据z 的几何意义,很容易看出当直线平移到点B 处时z 取得最大值,联立⎩⎪⎨⎪⎧x -2y =0,x +y -6=0,得B (4,2).方法二:易知目标函数z =2x +y 的最大值在交点处取得,只需求出两两相交的三个交点的坐标,代入z =2x +y ,即可求得最大值.联立⎩⎪⎨⎪⎧x =y ,x -2y =0,解得⎩⎪⎨⎪⎧x =0,y =0为原点,代入可得z =0;联立得⎩⎪⎨⎪⎧x =y ,x +y -6=0,解得⎩⎪⎨⎪⎧x =3,y =3,将(3,3)代入可得z =9;联立⎩⎪⎨⎪⎧x -2y =0,x +y -6=0,解得⎩⎪⎨⎪⎧x =4,y =2,将(4,2)代入可得z =10.通过比较可知,z 的最大值为10,故最优解为(4,2).答案:(4,2)8.(2021·四省八校第二次质量检测)已知变量x ,y 满足约束条件⎩⎨⎧x -2≤0,x -2y +2≥0,x +y +1≥0,若-x +y ≥-m 2+4m 恒成立,则实数m 的取值范围为________. 解析:设z =-x +y ,作出可行域如图中阴影部分所示,作出直线-x +y =0,并平移可知当直线过点B (2,-3)时z 取得最小值,所以z min =-5,所以-m 2+4m ≤-5,m 2-4m -5≥0⇒m ≤-1或m ≥5,所以m 的取值范围为(-∞,-1]∪[5,+∞).答案:(-∞,-1]∪[5,+∞)9.如图所示,已知D 是以点A (4,1),B (-1,-6),C (-3,2)为顶点的三角形区域(包括边界与内部).(1)写出表示区域D 的不等式组;(2)设点B (-1,-6),C (-3,2)在直线4x -3y -a =0的异侧,求a 的取值范围.解:(1)直线AB ,AC ,BC 的方程分别为7x -5y -23=0,x +7y -11=0,4x +y +10=0.原点(0,0)在区域D 内,故表示区域D 的不等式组为⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.(2)根据题意有[4×(-1)-3×(-6)-a ]·[4×(-3)-3×2-a ]<0,即(14-a )(-18-a )<0,解得-18<a <14.故a 的取值范围是(-18,14).10.已知x ,y 满足⎩⎨⎧y >0,x +y +1<0,3x +y +9>0,记点(x ,y )对应的平面区域为P .(1)设z =y +1x +3,求z 的取值范围; (2)过点(-5,1)的一束光线,射到x 轴被反射后经过区域P ,当反射光线所在直线l 经过区域P 内的整点(即横纵坐标均是整数的点)时,求直线l 的方程.解:平面区域如图所示(阴影部分),易得A ,B ,C 三点坐标分别为A (-4,3),B (-3,0),C (-1,0).(1)由z =y +1x +3知z 的值即是定点M (-3,-1)与区域内的点Q (x ,y )连接的直线的斜率,当直线过A (-4,3)时,z =-4; 当直线过C (-1,0)时,z =12.故z 的取值范围是(-∞,-4)∪⎝ ⎛⎭⎪⎫12,+∞.(2)过点(-5,1)的光线被x 轴反射后的光线所在直线必经过点(-5,-1),由题设可得区域内坐标为整数点仅有点(-3,1),故直线l 的方程是y -1(-1)-1=x +3(-5)+3,即x -y +4=0.[B 级 综合练]11.已知点(x ,y )满足⎩⎨⎧x +y ≥1,x -y ≥-1,2x -y ≤2,目标函数z =ax +y 仅在点(1,0)处取得最小值,则a 的取值范围为( )A .(-1,2)B .(-2,1)C .⎝ ⎛⎭⎪⎫12,+∞D .⎝ ⎛⎭⎪⎫-∞,-12解析:选B .作出不等式组对应的平面区域,如图中阴影部分所示,由z =ax +y 可得y =-ax +z ,直线的斜率k =-a , 因为k AC =2,k AB =-1,目标函数z =ax +y 仅在点A (1,0)处取得最小值,则有k AB <k <k AC , 即-1<-a <2,所以-2<a <1,即实数a 的取值范围是(-2,1).故选B .12.若点M (x ,y )满足⎩⎨⎧x 2+y 2-2x -2y +1=0,1≤x ≤2,0≤y ≤2,则x +y 的取值集合是( )A .[1,2+2]B .[1,3]C .[2+2,4]D .[1,4]解析:选A .x 2+y 2-2x -2y +1=(x -1)2+(y -1)2=1,根据约束条件画出可行域,如图中阴影部分所示,令z =x +y ,则y =-x +z ,根据图象得到当直线过点(1,0)时目标函数取得最小值,为1,当直线和半圆相切时,取得最大值,根据点到直线的距离等于半径得到|2-z |2=1⇒z =2±2,易知2-2不符合题意,故z =2+2,所以x +y 的取值范围为[1,2+2].故选A .13.已知点A (2,1),O 是坐标原点,P (x ,y )的坐标满足⎩⎨⎧2x -y ≤0x -2y +3≥0y ≥0,设z =OP →·OA→,则z 的最大值是________. 解析:方法一:由题意,作出可行域,如图中阴影部分所示.z =OP →·OA →=2x +y ,作出直线2x +y =0并平移,可知当直线过点C 时,z 取得最大值,由⎩⎪⎨⎪⎧2x -y =0,x -2y +3=0,得⎩⎪⎨⎪⎧x =1,y =2,即C (1,2),则z 的最大值是4.方法二:由题意,作出可行域,如图中阴影部分所示,可知可行域是三角形封闭区域.z =OP →·OA →=2x +y ,易知目标函数z =2x +y 的最大值在顶点处取得,求出三个顶点的坐标分别为(0,0),(1,2),(-3,0),分别将(0,0),(1,2),(-3,0)代入z =2x +y ,对应z 的值为0,4,-6,故z 的最大值是4.答案:414.某化肥厂生产甲、乙两种混合肥料,需要A ,B ,C 三种主要原料.生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:原料 肥料ABC甲 4 8 3 乙5510现有A 种原料200吨,B 种原料360吨,C 种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x ,y 表示计划生产甲、乙两种肥料的车皮数.(1)用x ,y 列出满足生产条件的数学关系式,并画出相应的平面区域; (2)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.解:(1)由已知得,x ,y 满足的数学关系式为⎩⎪⎨⎪⎧4x +5y ≤200,8x +5y ≤360,3x +10y ≤300,x ≥0,y ≥0.二元一次不等式组所表示的平面区域为图1中的阴影部分.(2)设利润为z 万元,则目标函数为z =2x +3y .考虑z =2x +3y ,将它变形为y =-23x +z 3, 这是斜率为-23,随z 变化的一族平行直线.z 3为直线在y 轴上的截距,当z3取最大值时,z 的值最大.又因为x ,y 满足约束条件,所以由图2可知,当直线z =2x +3y 经过可行域上的点M 时,截距z3最大,即z 最大.解方程组⎩⎪⎨⎪⎧4x +5y =200,3x +10y =300,得点M 的坐标为(20,24). 所以z max =2×20+3×24=112.即生产甲种肥料20车皮、乙种肥料24车皮时利润最大,且最大利润为112万元.[C 级 提升练]15.已知实数x ,y 满足⎩⎨⎧6x +y -1≥0,x -y -3≤0,y ≤0,则z =y -ln x 的取值范围为________.解析:作出可行域如图(阴影部分),其中A (16,0),B (3,0),C (47,-177).由图可知,当y =ln x +z 过点A (16,0)时z 取得最大值,z max =0-ln 16=ln 6.设y =ln x +z 的图象与直线y =x -3相切于点M (x 0,y 0),由y =ln x +z 得y ′=1x ,令1x 0=1得x 0=1∈⎝ ⎛⎭⎪⎫47,3,故y =ln x +z 与y =x -3切于点M (1,-2)时,z 取得最小值,z min =-2-ln 1=-2.所以z =y -ln x 的取值范围为[-2,ln 6]. 答案:[-2,ln 6]16.已知点A (53,5),直线l :x =my +n (n >0)过点A .若可行域⎩⎨⎧x ≤my +n ,x -3y ≥0,y ≥0的外接圆的直径为20,则n =________.解析:注意到直线l ′:x -3y =0也经过点A ,所以点A 为直线l 与l ′的交点. 画出不等式组⎩⎪⎨⎪⎧x ≤my +n ,x -3y ≥0,y ≥0表示的可行域,如图中阴影部分所示.设直线l 的倾斜角为α,则∠ABO =π-α. 在△OAB 中,OA =(53)2+52=10.根据正弦定理,得10sin (π-α)=20,解得α=5π6或π6.当α=5π6时,1m =tan 5π6,得m =- 3. 又直线l 过点A (53,5), 所以53=-3×5+n , 解得n =10 3.当α=π6时,同理可得m =3,n =0(舍去). 综上,n =10 3. 答案:10 3。
第3讲不等式及线性规划本资料分享自千人教师QQ 群323031380 期待你的加入与分享「考情研析」 1.对不等式的性质及不等式解法的考查一般不单独命题,常与集合、函数图象与性质等相结合命题,也常渗透在三角函数、数列、解析几何、导数等题目中. 2.基本不等式主要渗透在其他知识点中求最值. 3.简单的线性规划常以选填题形式呈现,一般难度不大.核心知识回顾1.不等式的一些常用性质(1)a>b,c>0⇒;a>b,c<0⇒.(2)a>b,c>d⇒a++d.(3)a>b>0,c>d>0⇒.(4)a>b>0,n∈N*⇒a n.(5)a>b>0n∈N,n≥2).(6)a>b,ab>0a<0<b a>b>0,d>c>02.不等式的解法(1)一元二次不等式的解法先化为一般形式ax2+bx+c>0(a≠0),再求相应一元二次方程ax2+bx+c=0(a≠0)的根,最后根据相应二次函数图象与x轴的位置关系,确定一元二次不等式的解集.(2)简单分式不等式的解法f(x) g(x)>0(<0)⇔f(x)g(x)>0(<0);f(x)g(x)≥0(≤0)⇔f(x)g(x)≥0(≤0)且g(x)≠0.3.基本不等式ab≤a+b 2(1)(2) 4.几个重要的不等式(1)a 2+b 2a ,b ∈R );(2)b a +ab ≥a ,b 同号); (3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ); (4)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ). 5.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值P ,x +y 2P .(简记:积定和最小)(2)如果和x +y 是定值P ,xy 大值是P 24.(简记:和定积最大)6.二元一次不等式表示的平面区域一般地,在平面直角坐标系中,二元一次不等式Ax +By +C >0表示直线Ax +By +C =0某一侧所有点组成的平面区域.我们把直线画成虚线以表示区域不包括边界直线.当我们在坐标系中画不等式Ax +By +C ≥0所表示的平面区域时,此区域包括边界直线,则把边界直线画成实线.对于直线Ax +By +C =0同一侧的所有点,把坐标(x ,y )代入Ax +By +C 中,所得实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x 0,y 0),由Ax 0+By 0+C 的正负即可判断Ax +By +C >0表示直线哪一侧的平面区域.说明:直线同侧同号,异侧异号.热点考向探究考向1 不等式的性质及解法例1 (1)(多选)十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若a ,b ,c ∈R ,则下列命题正确的是( )A .若ab ≠0且a <b ,则1a >1b B .若0<a <1,则a 3<a C .若a >b >0,则b +1a +1>baD .若c <b <a 且ac <0,则cb 2<ab 2 答案 BC解析 A 项,取a =-2,b =1,则1a >1b 不成立;B 项,若0<a <1,则a 3-a =a (a 2-1)<0,∴a 3<a ,因此正确;C 项,若a >b >0,则a (b +1)-b (a +1)=a -b >0,∴a (b +1)>b (a +1),∴b +1a +1>ba ,正确;D 项,若c <b <a 且ac <0,则a >0,c <0,而b 可能为0,因此cb 2<ab 2不正确.故选BC .(2)已知平面向量a ,b 满足|a |=1,|b |=2,|a -b |=7,若对于任意实数k ,不等式|k a +t b |>1恒成立,则实数t 的取值范围是( )A .(-∞,-3)∪(3,+∞)B .⎝ ⎛⎭⎪⎫-∞,-33∪⎝ ⎛⎭⎪⎫33,+∞C .(3,+∞)D .⎝ ⎛⎭⎪⎫33,+∞答案 B解析 ∵|a |=1,|b |=2,|a -b |=7,∴(a -b )2=a 2+b 2-2a ·b =7,∴a ·b =-1,又|k a +t b |>1,∴(k a +t b )2>1,即k 2a 2+t 2b 2+2kt a ·b =k 2+4t 2-2kt >1对于任意实数k 恒成立,∴k 2-2kt +4t 2-1>0对于任意实数k 恒成立,∴Δ=(-2t )2-4(4t 2-1)<0,∴t <-33或t >33,故选B .(3)(2020·四川省成都模拟)已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-2x ,则不等式f (x )>x 的解集用区间表示为________.答案 (-3,0)∪(3,+∞)解析 设x <0,则-x >0,由题意可得f (-x )=-f (x )=(-x )2-2(-x )=x 2+2x , ∴f (x )=-x 2-2x ,故当x <0时,f (x )=-x 2-2x . 由不等式f (x )>x ,可得⎩⎨⎧ x >0,x 2-2x >x 或⎩⎨⎧x <0,-x 2-2x >x ,求得x >3或-3<x <0.即不等式f (x )>x 的解集为(-3,0)∪(3,+∞).(1)利用不等式的性质解决问题常用两种方法:一是直接使用不等式的性质逐个验证;二是利用特殊值法排除错误答案.利用不等式的性质判断不等式是否成立时要特别注意前提条件.(2)一元二次不等式的常见解法是利用“三个二次”之间的关系,借助二次函数图象得到其解集.1.(多选)(2020·海南省高三三模)设a ,b ,c 为实数且a >b ,则下列不等式一定成立的是( )A .1a >1b B .2020a -b >1 C .ln a >ln b D .a (c 2+1)>b (c 2+1)答案 BD解析 对于A ,若a >b >0,则1a <1b ,所以A 错误;对于B ,因为a -b >0,所以2020a -b >1,故B 正确;对于C ,函数y =ln x 的定义域为(0,+∞),而a ,b 不一定是正数,所以C 错误;对于D ,因为c 2+1>0,所以a (c 2+1)>b (c 2+1),所以D正确.故选BD.2.(多选)(2020·山东省淄博模拟)设[x]表示不小于实数x的最小整数,则满足关于x的不等式[x]2+[x]-12≤0的解可以为()A.10 B.3C.-4.5 D.-5答案BC解析不等式[x]2+[x]-12≤0可化为([x]+4)·([x]-3)≤0,解得-4≤[x]≤3,又[x]表示不小于实数x的最小整数,且[10]=4,[3]=3,[-4.5]=-4,[-5]=-5,所以满足不等式[x]2+[x]-12≤0的解可以为B,C.故选BC.3.定义:区间[a,b],(a,b],(a,b),[a,b)的长度均为b-a,若不等式1x-1+2x-2≥m(m≠0)的解集是互不相交区间的并集,设该不等式的解集中所有区间的长度之和为l,则()A.当m>0时,l=m2+2m+9mB.当m>0时,l=3 mC.当m<0时,l=-m2+2m+9mD.当m<0时,l=-3 m答案 B解析①当m>0时,∵1x-1+2x-2≥m⇔mx2-(3+3m)x+2m+4(x-1)(x-2)≤0,令f(x)=mx2-(3+3m)x+2m+4=0的两根为x1,x2,且x1<x2,则m(x-x1)(x-x2) (x-1)(x-2)≤0,且x1+x2=3+3mm=3+3m.∵f(1)=m-3-3m+2m+4=1>0,f(2)=4m-6-6m+2m+4=-2<0,∴1<x1<2<x2,∴不等式的解集为(1,x 1]∪(2,x 2], ∴l =x 1-1+x 2-2=x 1+x 2-3=3+3m -3=3m . ②当m <0时,由(1)知f (1)>0,f (2)<0, 可得x 1<1<x 2<2.∴不等式的解集为(-∞,x 1]∪(1,x 2]∪(2,+∞). ∴解集中所有区间的长度之和无穷大. 综上,故选B .考向2 基本不等式的应用例2 (1)(2020·四川省内江市、广安市等九市二诊)在△ABC 中,点P 为BC的中点,过点P 的直线与AB ,AC 所在直线分别交于点M ,N ,若AM →=λAB →,AN →=μAC→(λ>0,μ>0),则λ+μ的最小值为( ) A .54 B .2 C .3 D .72答案 B解析 如图,连接AP ,∵P 为BC 的中点,AM→=λAB →,AN →=μAC →,且λ>0,μ>0,∴AP→=12AB →+12AC →=12λAM →+12μAN →,且M ,P ,N 三点共线,∴12λ+12μ=1,∴λ+μ=(λ+μ)⎝ ⎛⎭⎪⎫12λ+12μ=12+λ2μ+μ2λ+12≥1+2λ2μ·μ2λ=2,当且仅当λ2μ=μ2λ,即λ=μ=1时取等号,∴λ+μ的最小值为2.故选B .(2)若曲线y =x 3-2x 2+2在点A 处的切线方程为y =4x -6,且点A 在直线mx +ny -1=0(其中m >0,n >0)上,则1m +2n 的最小值为( )A .4 2B .3+2 2C .6+4 2D .8 2答案 C解析 设A (x 0,y 0),则y ′=3x 2-4x ⇒3x 20-4x 0=4,∴x 0=2或x 0=-23,分别将x 0的值代入方程y =x 3-2x 2+2,得⎩⎨⎧x 0=2,y 0=2或⎩⎪⎨⎪⎧x 0=-23,y 0=2227.因为A (x 0,y 0)在y =4x -6上,所以⎩⎨⎧x 0=2,y 0=2,即2m +2n -1=0,m +n =12,从而1m +2n =2⎝ ⎛⎭⎪⎫1m +2n (m +n )=2⎝ ⎛⎭⎪⎫3+n m +2m n ≥2⎝⎛⎭⎪⎫3+2n m ·2m n =6+42,当且仅当n =2m ,即m =2-12,n =2-22时取等号,即1m +2n 的最小值为6+42,故选C .(3)(2020·江苏省七市高三第三次调研)已知x >1,y >1,xy =10,则1lg x +4lg y 的最小值是________.答案 9解析 因为x >1,y >1,xy =10,所以lg x +lg y =1,则1lg x +4lg y =⎝ ⎛⎭⎪⎫1lg x +4lg y (lg x +lg y )=5+lg y lg x +4lg xlg y ≥5+2lg y lg x ·4lg x lg y =9,当且仅当lg y lg x =4lg xlg y ,即lg y=2lg x 且xy =10,即x =310,y =3100时取等号.利用基本不等式求最值的方法(1)利用基本不等式求最值的关键是构造和为定值或积为定值.(2)有些题目并不满足直接用基本不等式求最值的条件,但可以通过添项、分离常数、平方等手段使之能运用基本不等式,常用方法还有:拆项法、变系数法、凑因子法、换元法、整体代换法等.1.设x >0,y >0,且2x +y =6,则9x +3y 有( )A .最大值27B .最小值27C .最大值54D .最小值54答案 D解析 因为x >0,y >0,且2x +y =6,所以9x +3y ≥29x ·3y =232x +y =236=54,当且仅当x =32,y =3时,9x +3y 有最小值54.2.(2020·湖南省郴州市高三一模)已知函数f (x )=x +sin x ,若正实数a ,b 满足f ⎝ ⎛⎭⎪⎫1a +f ⎝ ⎛⎭⎪⎫2b -1=0,则3a a -1+4b b -2的最小值为( )A .7B .7+4 3C .5+4 3D .7+2 3答案 B解析 ∵f (x )=x +sin x ,∴f (-x )=-x -sin x =-f (x ),即f (x )+f (-x )=0,∵正实数a ,b 满足f ⎝ ⎛⎭⎪⎫1a +f ⎝ ⎛⎭⎪⎫2b -1=0,∴1a +2b =1,∴b =2a a -1>0,∴a >1,则3a a -1+4b b -2=7+3a -1+8b -2=7+3a -1+82a a -1-2=7+3a -1+4(a -1)≥7+43,当且仅当4(a -1)=3a -1,即a =1+32时取等号,所以3a a -1+4bb -2的最小值为7+4 3.故选B .3.(2020·山东威海模拟)若∀x ∈(0,+∞),4x 2+1x ≥m ,则实数m 的取值范围为__________.答案 (-∞,4]解析 因为x >0,则4x 2+1x =4x +1x ≥24x ·1x =4,当且仅当4x =1x ,即x =12时取等号,因为4x 2+1x ≥m ,所以4≥m ,即实数m 的取值范围为(-∞,4].考向3 线性规划问题例3 (1)(2020·安徽六安一中3月模拟)已知实数x ,y 满足⎩⎨⎧x -2y +1≥0,|x |-y -1≤0,则z =2x +y +2x的取值范围为( )A .⎣⎢⎡⎦⎥⎤0,103B .(-∞,2]∪⎣⎢⎡⎭⎪⎫103,+∞C .⎣⎢⎡⎦⎥⎤2,103D .(-∞,0]∪⎣⎢⎡⎭⎪⎫103,+∞答案 D解析原不等式组可以等价转化为⎩⎪⎨⎪⎧x -2y +1≥0,x ≥0,x -y -1≤0或⎩⎪⎨⎪⎧x -2y +1≥0,x <0,x +y +1≥0.画出不等式组所表示的平面区域,如图中阴影部分所示,其中点A (-1,0),点B (3,2),而z =2x +y +2x =2+y +2x 的几何意义为区域内的点(x ,y )与点M (0,-2)连线的斜率k 加上2,结合图形可知k ≥43或k ≤-2,因此z ≥43+2=103或z ≤-2+2=0.即z 的取值范围为(-∞,0]∪⎣⎢⎡⎭⎪⎫103,+∞,故选D .(2)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≤1,2x +y ≥-1,x -y ≤0,则z =3x -2y 的最小值为________.答案 -5解析 解法一:(图解法)由约束条件作出可行域,如图中阴影部分所示.平移直线3x -2y =0可知,目标函数z =3x -2y 在A 点处取最小值, 由⎩⎨⎧ x +2y =1,2x +y =-1,解得⎩⎨⎧x =-1,y =1,即A (-1,1),所以z min =3×(-1)-2×1=-5. 解法二:(界点定值法)由题意知,约束条件 ⎩⎪⎨⎪⎧x +2y ≤1,2x +y ≥-1,x -y ≤0所表示的平面区域为三角形及其内部,三角形的顶点分别为(-1,1),⎝ ⎛⎭⎪⎫-13,-13,⎝ ⎛⎭⎪⎫13,13.将三点的坐标分别代入z =3x -2y ,得z min =-5.(3)(2020·广州市综合检测)已知关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1≥0,x +m ≤0,y +2≥0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,则m 的取值范围是________.答案 ⎝ ⎛⎦⎥⎤-∞,43解析作出不等式组⎩⎪⎨⎪⎧2x -y +1≥0,x +m ≤0,y +2≥0表示的平面区域如图中阴影部分所示,由⎩⎨⎧2x -y +1=0,y =-2,可得⎩⎪⎨⎪⎧x =-32,y =-2.故A ⎝ ⎛⎭⎪⎫-32,-2,所以-m ≥-32,解得m ≤32.作出直线x -2y =2,由⎩⎨⎧2x -y +1=0,x -2y -2=0,可得⎩⎪⎨⎪⎧x =-43,y =-53,即B ⎝ ⎛⎭⎪⎫-43,-53,因为存在点P (x 0,y 0),使得x 0-2y 0-2=0,即直线x -2y -2=0与平面区域有交点,则需满足-m ≥-43,所以m ≤43,所以m 的取值范围是⎝ ⎛⎦⎥⎤-∞,43.二元一次不等式表示的平面区域的判断方法方法一:特殊点法只需在直线的某一侧任取一点(x 0,y 0),根据Ax 0+By 0+C 的正负即可判断Ax +By +C >0(或<0)表示直线的哪一侧区域.若直线不过原点(即C ≠0),常把原点(0,0)作为特殊点.若直线经过原点(即C =0),常选(1,0),(-1,0),(0,1),(0,-1)等特殊点代入判断.方法二:一般式(A >0),大为右,小为左当A >0时,Ax +By +C >0表示直线右方区域;Ax +By +C <0表示直线左方区域.方法三:一般式,“同”为上,“异”为下观察B 的符号与不等式的符号,若B 的符号与不等式的符号“相同”,则表示直线上方的区域;若B 的符号与不等式的符号“相异”,则表示直线下方的区域.1.(2020·湖南长郡中学第二次适应性考试)已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤6,x +y ≥2,则点(x ,y )构成平面区域的面积是( )A .3B .52 C .2D .32答案 A解析 根据题意作出不等式组所表示的平面区域,分别求得A (2,2),B (4,-2),C (1,1),求出点B 到直线y =x 的距离d =|4-(-2)|12+(-1)2=32,AC =(2-1)2+(2-1)2=2,∴S △ABC =12AC ·d =12×2×32=3.故选A .2.若变量x ,y 满足⎩⎪⎨⎪⎧3x -y -1≥0,3x +y -11≤0,y ≥2,且z =ax -y 的最小值为-1,则实数a 的值为________.答案 2解析 画出不等式组表示的平面区域,如图中阴影部分所示,由图知,若a ≥3,则直线z =ax -y 经过点B (1,2)时,z 取得最小值,由a -2=-1,得a =1,与a ≥3矛盾;若0<a <3,则直线z =ax -y 经过点A (2,5)时,z 取得最小值,由2a -5=-1,解得a =2;若a ≤0,则直线z =ax -y 经过点A (2,5)或C (3,2)时,z 取得最小值,此时2a -5=-1或3a -2=-1,解得a =2或a =13,与a ≤0矛盾.综上可知,实数a 的值为2.3.某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时,生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时.生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为________元.答案216000解析设生产产品A x件,产品B y件,依题意,得⎩⎪⎨⎪⎧x≥0,y≥0,x∈N,y∈N,1.5x+0.5y≤150,x+0.3y≤90,5x+3y≤600,设生产产品A、产品B的利润之和为E元,则E=2100x+900y.画出可行域(如图中阴影区域内的整点),易知最优解为⎩⎨⎧x=60,y=100(满足x∈N,y∈N),则E max =216000.真题押题『真题检验』1.(多选)(2020·新高考卷Ⅰ)已知a >0,b >0,且a +b =1,则( ) A .a 2+b 2≥12 B .2a -b >12 C .log 2a +log 2b ≥-2 D .a +b ≤ 2答案 ABD解析 对于A ,a 2+b 2=a 2+(1-a )2=2a 2-2a +1=2⎝ ⎛⎭⎪⎫a -122+12≥12,当且仅当a =b =12时,等号成立,故A 正确;对于B ,a -b =2a -1>-1,所以2a -b >2-1=12,故B 正确;对于C ,log 2a +log 2b =log 2ab ≤log 2⎝⎛⎭⎪⎫a +b 22=log 214=-2,当且仅当a =b =12时,等号成立,故C 不正确;对于D ,因为(a +b )2=1+2ab ≤1+a +b =2,所以a +b ≤ 2,当且仅当a =b =12时,等号成立,故D 正确.故选ABD .2.(2020·全国卷Ⅲ)已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A .a <b <c B .b <a <c C .b <c <a D .c <a <b答案 A解析 ∵a ,b ,c ∈(0,1),a b =log 53log 85=lg 3lg 5·lg 8lg 5<1(lg 5)2·⎝ ⎛⎭⎪⎫lg 3+lg 822=⎝ ⎛⎭⎪⎫lg 3+lg 82lg 52=⎝ ⎛⎭⎪⎫lg 24lg 252<1,∴a <b .由b =log 85,得8b =5,由55<84,得85b <84,∴5b <4,可得b <45.由c =log 138,得13c =8,由134<85,得134<135c ,∴5c >4,可得c>45.综上所述,a <b <c .故选A .3.(2020·浙江高考)已知a ,b ∈R 且ab ≠0,若(x -a )·(x -b )(x -2a -b )≥0在x ≥0上恒成立,则( )A .a <0B .a >0C .b <0D .b >0答案 C解析 因为ab ≠0,所以a ≠0且b ≠0,设f (x )=(x -a )·(x -b )(x -2a -b ),则f (x )的零点为x 1=a ,x 2=b ,x 3=2a +b .当a >0时,x 2<x 3,x 1>0,要使f (x )≥0,必有2a +b =a ,且b <0,即b =-a ,且b <0,所以b <0;当a <0时,x 2>x 3,x 1<0,要使f (x )≥0,必有b <0.综上可得b <0.故选C .4.(2020·全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -2≤0,x -y -1≥0,y +1≥0,则z =x +7y 的最大值为________.答案 1解析 画出不等式组表示的平面区域如图阴影部分所示,由z =x +7y ,得y =-17x +17z ,平移直线y =-17x ,由图可得当直线y =-17x +17z 过点A 时,目标函数z =x +7y 取得最大值.联立直线方程,得⎩⎨⎧2x +y -2=0,x -y -1=0,得A (1,0),所以z max=1+7×0=1.5.(2020·江苏高考)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________.答案 45解析 ∵5x 2y 2+y 4=1,∴y ≠0且x 2=1-y 45y 2.∴x 2+y 2=1-y 45y 2+y 2=15y 2+4y 25≥215y 2·4y 25=45,当且仅当15y 2=4y 25,即x 2=310,y 2=12时取等号.∴x 2+y 2的最小值为45.6.(2020·天津高考)已知a >0,b >0,且ab =1,则12a +12b +8a +b 的最小值为________.答案 4解析 ∵a >0,b >0,∴a +b >0,又ab =1,∴12a +12b +8a +b =ab 2a +ab 2b +8a +b =a +b 2+8a +b≥2a +b 2×8a +b=4,当且仅当a +b =4,即a =2-3,b =2+3,或a =2+3,b =2-3时,等号成立.故12a +12b +8a +b的最小值为4.『金版押题』7.已知函数f (x )=|lg (x -1)|,若1<a <b 且f (a )=f (b ),则实数2a +b 的取值范围是( )A .[3+22,+∞)B .(3+22,+∞)C .[6,+∞)D .(6,+∞)答案 A解析 作出函数f (x )=|lg (x -1)|的图象如图所示.∵1<a <b 且f (a )=f (b ),则b >2,1<a <2,∴-lg (a -1)=lg (b -1),即1a -1=b -1, 可得ab -a -b =0,则a =b b -1. 2a +b =2b b -1+b =(2b -2)+2b -1+b -1+1=(b -1)+2b -1+3≥22+3,当且仅当b =2+1时取等号.满足b >2,故选A .8.定义域为[a ,b ]的函数y =f (x )图象的两个端点为A ,B ,向量ON →=λOA →+(1-λ)OB →,M (x ,y )是f (x )图象上任意一点,其中x =λa +(1-λ)b ,若不等式|MN |≤k 恒成立,则称函数f (x )在[a ,b ]上满足“k 范围线性近似”,其中最小正实数k 称为该函数的线性近似阈值.若函数y =2x 定义在[1,2]上,则该函数的线性近似阈值是( )A .2- 2B .3-2 2C .3+2 2D .2+ 2答案 B解析 作出函数y =2x 的图象,它的图象在[1,2]上的两个端点分别为A (1,2),B (2,1).所以直线AB 的方程为x +y -3=0, 设M (x ,y )是曲线y =2x 上的一点,x ∈[1,2], 其中x =λ×1+(1-λ)×2=2-λ, 故M 点的坐标为⎝ ⎛⎭⎪⎫2-λ,22-λ.由ON →=λOA →+(1-λ)OB →,可知A ,B ,N 三点共线, 所以N 点的坐标满足直线AB 的方程x +y -3=0,又OA→=(1,2),OB →=(2,1),则ON →=(λ+2(1-λ),2λ+(1-λ)), 故N 点的坐标为(2-λ,λ+1). M ,N 两点的横坐标相等, 故|MN |=|22-λ-(λ+1)|,结合图象, 知|MN |=λ+1-22-λ. 因为1≤2-λ≤2,所以0≤λ≤1. 故|MN |=λ+1-22-λ=-(2-λ)-22-λ+3 =-⎣⎢⎡⎦⎥⎤(2-λ)+22-λ+3≤-22+3. 故当且仅当2-λ=22-λ,即λ=2-2时等号成立. 故|MN |≤3-22恒成立.所以该函数的线性近似阈值是3-2 2.故选B .专题作业一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集为A ∩B ,则a +b 等于( )A .-3B .1C .-1D .3答案 A解析 由题意,得A ={x |-1<x <3},B ={x |-3<x <2},所以A ∩B ={x |-1<x <2},由根与系数的关系可知a =-1,b =-2,则a +b =-3.2.(2020·四川省凉山州高三第三次诊断检测)若a ,b ∈R ,则“a -b >0”是“⎝⎛⎭⎪⎫a +b 22>ab ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件答案 A解析 若a -b >0,则⎝ ⎛⎭⎪⎫a +b 22-ab =a 2+b 2-2ab 4=(a -b )24>0,即⎝⎛⎭⎪⎫a +b 22>ab ;若⎝ ⎛⎭⎪⎫a +b 22>ab ,即⎝ ⎛⎭⎪⎫a +b 22-ab =a 2+b 2-2ab 4=(a -b )24>0,则a -b >0或a -b <0,所以若a ,b ∈R ,则“a -b >0”是“⎝⎛⎭⎪⎫a +b 22>ab ”的充分不必要条件.故选A . 3.若正实数x ,y 满足x +2y +2xy -8=0,则x +2y 的最小值为( ) A .4 B .92 C .5 D .112答案 A解析 ∵正实数x ,y 满足x +2y +2xy -8=0,∴x +2y +⎝⎛⎭⎪⎫x +2y 22-8≥0,当且仅当x =2y 时取等号.设x +2y =t >0,∴t +14t 2-8≥0,∴t 2+4t -32≥0,即(t +8)·(t -4)≥0,∴t ≥4,故x +2y 的最小值为4.故选A .4.(2020·陕西省汉中二模)已知直线2ax -by +2=0(a >0,b >0)平分圆C :x 2+y 2+2x -4y +1=0的圆周长,则1a +2b 的最小值为( )A .4 2B .3+2 2C .4D .6 答案 B解析 由题意,得圆的圆心(-1,2)在直线2ax -by +2=0(a >0,b >0)上,∴-2a -2b +2=0(a >0,b >0),∴a +b =1,∴1a +2b =(a +b )⎝ ⎛⎭⎪⎫1a +2b =3+b a +2a b ≥3+2b a ·2ab =3+22,当且仅当b a =2a b ,即a =2-1,b =2-2时,1a +2b 的最小值为3+2 2.故选B .5.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( )A .(-∞,-1)∪(0,+∞)B .(-∞,0)∪(1,+∞)C .(-1,0)D .(0,1)答案 C解析 ∵f (x )=ax 2-(a +2)x +1,Δ=(a +2)2-4a =a 2+4>0,∴函数f (x )=ax 2-(a +2)x +1必有两个不同的零点,又f (x )在(-2,-1)上有一个零点,则f (-2)f (-1)<0,∴(6a +5)(2a +3)<0,解得-32<a <-56.又a ∈Z ,∴a =-1.不等式f (x )>1,即-x 2-x >0,解得-1<x <0.6.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -y +1≥0,x ≤a ,且目标函数z =ax -2y 的最大值为1,则实数a 的值是( )A .2-1B .1C .2+1D .3答案 B解析 作出不等式组表示的平面区域,如图中阴影部分所示,其中A (0,1),B (a,1-a ),C (a,1+a ).对z =ax -2y 变形,得y =a 2x -z2,由图知a >0,当直线y =a 2x -z 2经过点B 时,z 取得最大值,所以a 2-2(1-a )=1,解得a =-3(舍去)或a =1,故选B .7.(2020·山东济南模拟)一个圆锥的轴截面是边长为4的等边三角形,在该圆锥中有一个内接圆柱(下底面在圆锥底面上,上底面的圆周在圆锥侧面上),则当该圆柱侧面积取最大值时,该圆柱的高为( )A .1B .2C .3D . 3答案 D解析 由题意,可得P A =PB =AB =4,故圆锥的高PO =23,∠APO =30°,设圆柱的高为h ,底面半径为r ,则PD =23-h ,故r 23-h =13,所以h =23-3r ,圆柱侧面积S =2πrh =2πr ·(23-3r )=23πr ·(2-r )≤23π·⎝ ⎛⎭⎪⎫r +2-r 22=23π,当且仅当r =2-r ,即r =1时取得最大值,此时h = 3.故选D .8.(2020·杭州期末)已知不等式2ax 2+ax -3>0对任意的a ∈[1,3]恒成立的x 的取值集合为A ,不等式mx 2+(m -1)x -m >0对任意的x ∈[1,3]恒成立的m 的取值集合为B ,则有( )A .A ⊆∁R BB .A ⊆BC .B ⊆∁R AD .B ⊆A 答案 D解析 令f (a )=(2x 2+x )a -3,则关于a 的一次函数必单调,则⎩⎨⎧f (3)>0,f (1)>0,解得x <-32或x >1,即A =⎝⎛⎭⎪⎫-∞,-32∪(1,+∞).m (x 2+x -1)>x 对任意的x ∈[1,3]恒成立⇒m >x x 2+x -1对任意的x ∈[1,3]恒成立,又y =x x 2+x -1=1x -1x +1(1≤x ≤3)单调递减,故y max =1,故m >1,即B =(1,+∞).综上B ⊆A ,故选D .二、选择题:在每小题给出的选项中,有多项符合题目要求.9.若1a <1b <0,则下列不等式正确的是( )A .1a +b<1ab B .|a |+b >0 C .a -1a >b -1bD .ln a 2>ln b 2答案 AC解析 由1a <1b <0,可知b <a <0.A 中,因为a +b <0,ab >0,所以1a +b<1ab ,故A 正确;B 中,因为b <a <0,所以-b >-a >0,故-b >|a |,即|a |+b <0,故B 错误;C 中,因为b <a <0,又1a <1b <0,则-1a >-1b >0,所以a -1a >b -1b ,故C 正确;D 中,因为b <a <0,根据y =x 2在(-∞,0)上为减函数,可得b 2>a 2>0,而y =ln x 在定义域(0,+∞)上为增函数,所以ln b 2>ln a 2,故D 错误.故选AC .10.《九章算术》中“勾股容方”问题:“今有勾五步,股十二步,问勾中容方几何?”魏晋时期数学家刘徽在其《九章算术注》中利用出入相补原理给出了这个问题的一般解法:如图1,用对角线将长和宽分别为b 和a 的矩形分成两个直角三角形,每个直角三角形再分成一个内接正方形(黄)和两个小直角三角形(朱、青).将三种颜色的图形进行重组,得到如图2所示的矩形,该矩形长为a +b ,宽为内接正方形的边长d .由刘徽构造的图形可以得到许多重要的结论,如图3.设D 为斜边BC 的中点,作直角三角形ABC 的内接正方形对角线AE ,过点A 作AF ⊥BC 于点F ,则下列推理正确的是( )A.由图1和图2面积相等可得d=a+b abB.由AE≥AF可得a2+b22≥a+b2C.由AD≥AE可得a2+b22≥21a+1bD.由AD≥AF可得a2+b2≥2ab答案BCD解析由题图1和题图2面积相等,得ab=(a+b)d,则d=aba+b,A错误;由题意知题图3面积为12ab=12a2+b2·AF,AF=aba2+b2,AD=12BC=12a2+b2,设题图3中正方形的边长为x,由三角形相似,得a-xx=xb-x,解得x=ab a+b ,则AE=2aba+b,可以化简判断B,C,D正确.故选BCD.11.(2020·武汉部分学校联考)若0<a<b<c,且abc=1,则()A.2a+2b>4 B.lg a+lg b<0C.a+c2>2 D.a2+c>2答案BC解析解法一:因为0<a<b<c,abc=1,所以0<a<1,c>1,a+b>0,0<ab<1,对于A,2a+2b≥22a+b>2×1=2,所以A错误;对于B,lg a+lg b=lg ab<0,所以B正确;对于C,a+c2≥2ac2>2abc=2,所以C正确;对于D,因为0<a<b<c,abc =1,所以0<a b <1,c =1ab ,所以a 2+c ≥2a 2c =2a b ,因为2a b <2,所以D错误.故选BC . 解法二:(特殊值法)因为0<a <b <c ,abc =1,令a =12,b =1,c =2,则212+21=2+2<4,A 错误;令a =23,b =1,c =32,则⎝ ⎛⎭⎪⎫232+32=3518<2,D 错误.故选BC .12.(2020·山东部分重点中学联考)若a <b <-1,c >0,则下列不等式一定成立的是( )A .a -1a >b -1bB .a -1b <b -1aC .ln (b -a )>0D .⎝ ⎛⎭⎪⎫a b c >⎝ ⎛⎭⎪⎫b a c 答案 BD解析 解法一:对于A ,设函数g (x )=x -1x ,x ∈(-∞,-1),则g ′(x )=1+1x 2>0,所以函数g (x )在(-∞,-1)上为增函数,所以当a <b <-1时,a -1a <b -1b ,故A 错误;对于B ,设函数f (x )=x +1x ,x ∈(-∞,-1),则f ′(x )=1-1x 2,因为x ∈(-∞,-1),所以f ′(x )>0,所以函数f (x )在(-∞,-1)上为增函数,所以当a <b <-1时,a +1a <b +1b ,即a -1b <b -1a ,故B 正确;对于C ,因为a <b ,所以b -a >0,但不能确定b -a 与1的大小关系,故ln (b -a )与0的大小关系不能确定,故C 错误;对于D ,由a <b <-1可知a b >1,0<b a <1,而c >0,所以⎝ ⎛⎭⎪⎫a b c >1>⎝ ⎛⎭⎪⎫b a c >0,故D 正确.故选BD .解法二:(利用取特殊值法)令a =-3,b =-2,代入各选项,验证可得正确的选项为B ,D .三、填空题13.若1<α<3,-4<β<2,则α-|β|的取值范围是________.答案 (-3,3)解析 ∵-4<β<2,∴0≤|β|<4,∴-4<-|β|≤0,∴-3<α-|β|<3.14.函数y =x 2+2x -1(x >1)的最小值是________. 答案 23+2解析 ∵x >1,∴x -1>0,∴y =x 2-1+3x -1=(x -1)(x +1)+3x -1=x +1+3x -1=x -1+3x -1+2≥23+2(当且仅当x =1+3时取“=”),即函数y =x 2+2x -1(x >1)的最小值是23+2.15.设a <0,若不等式-cos 2x +(a -1)cos x +a 2≥0对于任意的x ∈R 恒成立,则a 的取值范围是________.答案 a ≤-2解析 令t =cos x ∈[-1,1],则不等式f (t )=t 2-(a -1)t -a 2≤0对t ∈[-1,1]恒成立,因此⎩⎨⎧ f (-1)≤0,f (1)≤0⇒⎩⎨⎧a -a 2≤0,2-a -a 2≤0,∵a <0,∴a ≤-2. 16.已知A (-2,1),B (2,2),C (1,4).若点P (x ,y )在△ABC 区域(包含边界)内运动,则x 2+y 2+2x 的取值范围为________.答案 ⎣⎢⎡⎦⎥⎤817,19 解析 点P 所在平面区域如图中阴影部分所示.x 2+y 2+2x =(x +1)2+y 2-1,其中(x +1)2+y 2=[x -(-1)]2+(y -0)2,表示点P (x ,y )到点Q (-1,0)的距离的平方.令t =x 2+y 2+2x ,则t =|PQ |2-1.由图可知|PQ |max =|QC |=(1+1)2+42=2 5.由A (-2,1),B (2,2)知直线AB 的方程为x -4y+6=0,所以|PQ |min =d =517,其中d 表示点Q 到直线AB 的距离,所以t max =(25)2-1=19,t min =⎝ ⎛⎭⎪⎫5172-1=817,所以x 2+y 2+2x 的取值范围为⎣⎢⎡⎦⎥⎤817,19.。
不等式的解法一元二次不等式解法步骤:1) 化简(将不等式化为不等号右边为0,左边x 的最高次项系数为正);2) 首先考虑分解因式;不易分解则判断∆,当0∆≥时解方程(利用求根公式) 3) 画图写解集(能取的根打实心点,不能去的打空心) 含绝对值不等式的解法(关键是去掉绝对值) 利用绝对值的定义:(零点分段法)利用绝对值的几何意义:||x 表示x 到原点的距离||(0){|}x a a x x a =>=±的解集为 }|{)0(||a x a x a a x <<-><的解集为 }|{)0(||a x a x x a a x -<>>>或的解集为公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法. 分式不等式的解法1)标准化:移项通分化为()0()f x g x >(或()0()f x g x <);()0()f x g x ≥(或()0()f xg x ≤)的形式, 2)转化为整式不等式(组)()()0()()0()()00()0()()f x g x f x f x f x g x g x g x g x ≥⎧>⇔>≥⇔⎨≠⎩;考向一 一元二次不等式的解法【例1】►已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,解不等式f (x )>3.[审题视点] 对x 分x ≥0、x <0进行讨论从而把f (x )>3变成两个不等式组.解 由题意知⎩⎪⎨⎪⎧ x ≥0,x 2+2x >3或⎩⎪⎨⎪⎧x <0,-x 2+2x >3,解得:x >1. 故原不等式的解集为{x |x >1}.解一元二次不等式的一般步骤是:(1)化为标准形式;(2)确定判别式Δ的符号;(3)若Δ≥0,则求出该不等式对应的二次方程的根,若Δ<0,则对应的二次方程无根;(4)结合二次函数的图象得出不等式的解集.特别地,若一元二次不等式的左边的二次三项式能分解因式,则可立即写出不等式的解集.【训练1】 函数f (x )=2x 2+x -3+log 3(3+2x -x 2)的定义域为________.解析 依题意知⎩⎪⎨⎪⎧2x 2+x -3≥0,3+2x -x 2>0,解得⎩⎪⎨⎪⎧x ≤-32或x ≥1,-1<x <3.∴1≤x <3 答案 [1,3)考向二 含参数的一元二次不等式的解法【例2】►求不等式12x 2-ax >a 2(a ∈R )的解集.[审题视点] 先求方程12x 2-ax =a 2的根,讨论根的大小,确定不等式的解集.解 ∵12x 2-ax >a 2,∴12x 2-ax -a 2>0,即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0,得:x 1=-a 4,x 2=a 3.①a >0时,-a 4<a3,解集为⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3; ②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};③a <0时,-a 4>a 3,解集为⎩⎨⎧⎭⎬⎫x |x <a 3或x >-a 4.x =0x x ≥0x x -<综上所述:当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3;当a =0时,不等式的解集为{x |x∈R 且x ≠0};当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <a 3或x >-a 4.解含参数的一元二次不等式的一般步骤:(1)二次项若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程的根的个数,讨论判别式Δ与0的关系.(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.【训练2】 解关于x 的不等式(1-ax )2<1.解 由(1-ax )2<1,得a 2x 2-2ax <0,即ax (ax -2)<0,当a =0时,x ∈∅.当a >0时,由ax (ax -2)<0,得a 2x ⎝ ⎛⎭⎪⎫x -2a <0,即0<x <2a.当a <0时,2a<x <0.综上所述:当a =0时,不等式解集为空集;当a >0时,不等式解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x <2a ;当a <0时,不等式解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2a<x <0.考向三 不等式恒成立问题【例3】►已知不等式ax 2+4x +a >1-2x 2对一切实数x 恒成立,求实数a 的取值范围.[审题视点] 化为标准形式ax 2+bx +c >0后分a =0与a ≠0讨论.当a ≠0时,有⎩⎪⎨⎪⎧a >0,Δ=b 2-4ac <0. 解 原不等式等价于(a +2)x 2+4x +a -1>0对一切实数恒成立,显然a =-2时,解集不是R ,因此a ≠-2,从而有⎩⎪⎨⎪⎧a +2>0,Δ=42-4a +2a -1<0,整理,得⎩⎪⎨⎪⎧a >-2,a -2a +3>0,所以⎩⎪⎨⎪⎧a >-2,a <-3或a >2,所以a >2. 故a 的取值范围是(2,+∞).不等式ax 2+bx +c >0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c>0;当a ≠0时,⎩⎪⎨⎪⎧a >0,Δ<0;不等式ax 2+bx +c <0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c <0;当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ<0.【训练3】 已知f (x )=x 2-2ax +2(a ∈R ),当x ∈[-1,+∞)时,f (x )≥a 恒成立,求a的取值范围.解 法一 f (x )=(x -a )2+2-a 2,此二次函数图象的对称轴为x =a . ①当a ∈(-∞,-1)时,f (x )在[-1,+∞)上单调递增,f (x )min =f (-1)=2a +3.要使f (x )≥a 恒成立,只需f (x )min ≥a ,即2a +3≥a ,解得-3≤a <-1;②当a ∈[-1,+∞)时,f (x )min =f (a )=2-a 2,由2-a 2≥a ,解得-1≤a ≤1. 综上所述,所求a 的取值范围为[-3,1]. 练习1.(人教A 版教材习题改编)不等式x 2-3x +2<0的解集为( ). A .(-∞,-2)∪(-1,+∞) B .(-2,-1) C .(-∞,1)∪(2,+∞) D .(1,2)解析 ∵(x -1)(x -2)<0,∴1<x <2.故原不等式的解集为(1,2).答案 D2.(2011·广东)不等式2x 2-x -1>0的解集是( ).A.⎝ ⎛⎭⎪⎫-12,1 B .(1,+∞)C .(-∞,1)∪(2,+∞)D.⎝⎛⎭⎪⎫-∞,-12∪(1,+∞) 解析 ∵2x 2-x -1=(x -1)(2x +1)>0,∴x >1或x <-12.故原不等式的解集为⎝⎛⎭⎪⎫-∞,-12∪(1,+∞).答案 D 3.不等式9x 2+6x +1≤0的解集是( ). A.⎩⎨⎧⎭⎬⎫x |x ≠-13 B.⎩⎨⎧⎭⎬⎫-13C.⎩⎨⎧⎭⎬⎫x |-13≤x ≤13 D .R解析 ∵9x 2+6x +1=(3x +1)2≥0,∴9x 2+6x +1≤0的解集为⎩⎨⎧⎭⎬⎫x |x =-13.答案 B4.(2012·许昌模拟)若不等式ax 2+bx -2<0的解集为⎩⎨⎧⎭⎬⎫x |-2<x <14,则ab =( ).A .-28B .-26C .28D .26解析 ∵x =-2,14是方程ax 2+bx -2=0的两根,∴⎩⎪⎨⎪⎧-2a =-2×14=-12,-b a =-74,∴a =4,b =7.∴ab =28.答案 C5.不等式ax 2+2ax +1≥0对一切x ∈R 恒成立,则实数a 的取值范围为________. 解析 当a =0时,不等式为1≥0恒成立;当a ≠0时,须⎩⎪⎨⎪⎧ a >0,Δ≤0,即⎩⎪⎨⎪⎧a >0,4a 2-4a ≤0.∴0<a ≤1,综上0≤a ≤1.答案 [0,1]考向二 绝对值不等式1.对任意x ∈R ,|2-x |+|3+x |≥a 2-4a 恒成立,则a 的取值范围是( ) A .-1≤a ≤5 B .-1<a ≤5 C .-1≤a <5D .-1<a <5[答案] A11.(2010·南京调研)设函数f (x )=|x -1|+|x -2|,则不等式f (x )>3的解集为________.[答案] (-∞,0)∪(3,+∞)[解析] 当x <1时,有f (x )=1-x +2-x =3-2x .由f (x )>3得3-2x >3,解得x <0; 当1≤x ≤2时,有f (x )=x -1+2-x =1.此时,不等式f (x )>3无解; 当x >2时,有f (x )=x -1+x -2=2x -3.由f (x )>3得2x -3>3,解得x >3. 故不等式f (x )>3的解集为(-∞,0)∪(3,+∞).[点评] 可画出数轴如图,∵|AB |=1,∴|PB |>1,|QA |>1,故由图可得x >3或x <0.13.(2010·福建南平一中)若函数f (x )=2|x +7|-|3x -4|的最小值为2,则自变量x 的取值范围是________.[答案] [-12,5][解析] 依题意知,2|x +7|-|3x -4|≥2,∴|x +7|-|3x -4|≥1,当x >43时,不等式化为x +7-(3x -4)≥1.解得x ≤5,即43<x ≤5;当-7≤x ≤43时,不等式化为x +7+(3x -4)≥1,解得x ≥-12,即-12≤x ≤43;当x <-7时,不等式化为-x -7+(3x -4)≥1,解得x ≥6,与x <-7矛盾.∴自变量x 的取值范围为-12≤x ≤5.15.(2010·福建理)已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值; (2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围. [解析] 解法一:(1)由f (x )≤3得|x -a |≤3,解得a -3≤x ≤a +3.又已知不等式f (x )≤3的解集为{x |-1≤x ≤5},所以⎩⎪⎨⎪⎧a -3=-1,a +3=5,解得a =2.(2)当a =2时,f (x )=|x -2|.设g (x )=f (x )+f (x +5),于是g (x )=|x -2|+|x +3|=⎩⎪⎨⎪⎧-2x -1,x <-3;5,-3≤x ≤2;2x +1,x >2.所以当x <-3时,g (x )>5;当-3≤x≤2时,g (x )=5;当x >2时,g (x )>5. 综上可得,g (x )的最小值为5.若f (x )+f (x +5)≥m ,即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为(-∞,5]. 考向三 分式不等式例1 解不等式 <0.分析:这是一个分式不等式,其左边是两个关于x 的二次三项式的商,根据商的符号法则,它可以化成两个不等式组:因此,原不等式的解集就是上面两个不等式组的解集的并集,此种解法从课本可以看到.另解:根据积的符号法则,可以将原不等式等价变形为(x 2-3x +2)(x 2-2x -3)<0 即(x +1)(x -1)(x -2)(x -3)<0 令(x +1)(x -1)(x -2)(x -3)=0 可得零点x =-1或1,或2或3,将数轴分成五部分(如图).由数轴标根法可得所求不等式解集为:{x |-1<x <1或2<x <3}说明:(1)让学生注意数轴标根法适用条件;(2)让学生思考≤0的等价变形.例2 解不等式>1分析:首先转化成右端为0的分式不等式,然后再等价变形为整式不等式求解.解:原不等式等价变形为:-1>0通分整理得:>0等价变形为:(x2-2x+3)(x2-3x+2)>0即:(x+1)(x-1)(x-2)(x-3)>0由数轴标根法可得所求不等式解集为:{x|x<-1或1<x<2或x>3}说明:此题要求学生掌握较为一般的分式不等式的转化与求解.练习:1. 不等式22231372x xx x++>-+的解集是 2. 不等式3113xx+>--的解集是3. 不等式2223712x xx x+-≥--的解集是 4. 不等式1111x xx x-+<+-的解集是5. 不等式229152x xx--<+的解集是 6. 不等式2232712x xx x-+>-+的解集是7. 不等式2121x xx+≤+的解集是 8. 不等式2112xx->-+的解集是9. 不等式23234xx-≤-的解集是 10. 不等式2212(1)(1)xx x-<+-的解集是答案1. 2. (-2,3) 3.4.5. 6.7.8. (1,2)9. 10.线性规划求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. 满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域(类似函数的定义域);使目标函数取得最大值或最小值的可行解叫做最优解.生产实际中有许多问题都可以归结为线性规划问题.线性规划问题一般用图解法,其步骤如下: (1)根据题意,设出变量x 、y ; (2)找出线性约束条件;(3)确定线性目标函数z =f (x ,y );(4)画出可行域(即各约束条件所示区域的公共区域);(5)利用线性目标函数作平行直线系f (x ,y )=t (t 为参数);(6)观察图形,找到直线f (x ,y )=t 在可行域上使t 取得欲求最值的位置,以确定最优解,给出答案.1.(2008全国高考卷Ⅰ,13)若x,y 满足约束条件⎪⎩⎪⎨⎧≤≤≥+≥+3,x 00,3y -x 0,y x 则z =2x-y 的最大值为_____________.2.(文)(2010·西安中学)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x x +y ≥2y ≥3x -6,则目标函数z =2x +y 的最小值为( )A .2B .3C .5D .73.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0x +y ≤1x +2y ≥1,则目标函数z =2x +y 的最大值为________.4.(文)(09·安徽)不等式组⎩⎪⎨⎪⎧x ≥0x +3y ≥43x +y ≤4所表示的平面区域的面积等于( )A.32 B.23 C.43D.345(2010·重庆市南开中学)不等式组⎩⎪⎨⎪⎧x +y ≥22x -y ≤4x -y ≥0所围成的平面区域的面积为( )A .3 2B .6 2C .6D .36.(文)(2010·山东省实验中学)已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +6≥0x +y ≥0x ≤3,若z =ax +y 的最大值为3a +9,最小值为3a -3,则实数a 的取值范围为( )A .a ≥1B .a ≤-1C .-1≤a ≤1D .a ≥1或a ≤-17.(文)(2010·厦门一中)已知x 、y 满足不等式组⎩⎪⎨⎪⎧ y ≥x x +y ≤2x ≥a,且z =2x +y 的最大值是最小值的3倍,则a =( )A .0 B.13 C.23D .18.(文)(2010·厦门一中)已知x 、y 满足不等式组⎩⎪⎨⎪⎧y ≥x x +y ≤2x ≥a,且z =2x +y 的最大值是最小值的3倍,则a =( )A .0 B.13 C.23D .1。
第1讲 基本不等式与线性规划高考定位 高考对本内容的考查主要有:(1)基本不等式是C 级要求,理解基本不等式在不等式证明、函数最值的求解方面的重要应用;(2)线性规划的要求是A 级,理解二元一次不等式对应的平面区域,能够求线性目标函数在给定区域上的最值,同时对一次分式型函数、二次型函数的最值也要有所了解.真 题 感 悟1.(2017·江苏卷)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.解析 一年的总运费与总存储费用之和为y =6×600x +4x =3 600x +4x ≥2 3 600x ×4x =240,当且仅当3 600x =4x ,即x =30时,y 有最小值240. 答案 302.(2016·江苏卷)已知实数x ,y 满足约束条件⎩⎨⎧x -2y +4≥0,2x +y -2≥0,3x -y -3≤0,那么x 2+y 2的取值范围是________.解析 作出实数x ,y 满足的可行域如图中阴影部分所示,则x 2+y 2即为可行域内的点(x ,y )到原点O 的距离的平方.由图可知点A 到原点O 的距离最近,点B 到原点O 的距离最远.点A 到原点O 的距离即原点O 到直线2x +y -2=0的距离d =|0-2|12+22=255,则(x 2+y 2)min =45;点B 为直线x -2y +4=0与3x -y -3=0的交点,即点B 的坐标为(2,3),则(x 2+y 2)max =13.综上,x 2+y 2的取值范围是⎣⎢⎡⎦⎥⎤45,13.答案 ⎣⎢⎡⎦⎥⎤45,133.(2016·江苏卷)已知函数f (x )=2x+⎝ ⎛⎭⎪⎫12x ,若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,则实数m 的最大值为________.解析 由条件知f (2x )=22x +2-2x =(2x +2-x )2-2=(f (x ))2-2. ∵f (2x )≥mf (x )-6对于x ∈R 恒成立,且f (x )>0, ∴m ≤(f (x ))2+4f (x )对于x ∈R 恒成立.又(f (x ))2+4f (x )=f (x )+4f (x )≥2f (x )·4f (x )=4,且(f (0))2+4f (0)=4,∴m ≤4,故实数m 的最大值为4. 答案 44.(2016·江苏卷)在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan A tan B tan C 的最小值是________.解析 因为sin A =2sin B sin C ,所以sin(B +C )=2sin B sin C , 所以sin B cos C +cos B sin C =2sin B sin C , 等式两边同时除以cos B cos C , 得tan B +tan C =2tan B tan C . 又因为tan A =-tan(B +C )=tan B +tan Ctan B tan C -1,所以tan A tan B tan C -tan A =2tan B tan C , 即tan B tan C (tan A -2)=tan A .因为A ,B ,C 为锐角,所以tan A ,tan B ,tan C >0, 且tan A >2,所以tan B tan C =tan A tan A -2,所以原式=tan 2Atan A -2.令tan A -2=t (t >0),则tan 2A tan A -2=(t +2)2t =t 2+4t +4t =t +4t +4≥8,当且仅当t =2,即tan A =4时取等号. 故tan A tan B tan C 的最小值为8. 答案 8考 点 整 合1.利用基本不等式求最值(1)如果x >0,y >0,xy =p (定值),当x =y 时,x +y 有最小值2p (简记为:积定,和有最小值).(2)如果x >0,y >0,x +y =s (定值),当x =y 时,xy 有最大值14s 2(简记为:和定,积有最大值).2.简单的线性规划问题解决线性规划问题首先要找到可行域,再根据目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域上的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.热点一 利用基本不等式求最值【例1】 (1)(2017·山东卷)若直线x a +y b =1(a >0,b >0)过点(1,2),则2a +b 的最小值为________.(2)(2017·苏州调研)已知正数x ,y 满足x +y =1,则4x +2+1y +1的最小值为________.解析 (1)∵直线x a +yb =1(a >0,b >0)过点(1,2), ∴1a +2b =1(a >0,且b >0),则2a +b =(2a +b )⎝ ⎛⎭⎪⎫1a +2b=4+b a +4a b ≥4+2b a ·4a b =8.当且仅当b a =4ab ,即a =2,b =4时上式等号成立. 因此2a +b 的最小值为8.(2)设x +2=m ,y +1=n ,m >2,n >1, 则m +n =x +2+y +1=4,4x +2+1y +1=4m +1n =⎝ ⎛⎭⎪⎫4m +1n ⎝ ⎛⎭⎪⎫m 4+n 4=54+n m +m 4n ≥54+2n m ·m 4n =94,当且仅当n m =m 4n ,m =83,n =43时取等号,故4x +2+1y +1的最小值为94. 答案 (1)8 (2)94探究提高 1.利用基本不等式求最值,要注意“拆、拼、凑”等变形,变形的原则是在已知条件下通过变形凑出基本不等式应用的条件,即“和”或“积”为定值,等号能够取得.2.特别注意:(1)应用基本不等式求最值时,若遇等号取不到的情况,则应结合函数的单调性求解.(2)若两次连用基本不等式,要注意等号的取得条件的一致性,否则会出错. 【训练1】 (1)(2017·天津卷)若a ,b ∈R ,ab >0,则a 4+4b 4+1ab的最小值为________.(2)若实数a ,b 满足1a +2b =ab ,则ab 的最小值为________. 解析 (1)∵a ,b ∈R ,ab >0, ∴a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab =4,当且仅当⎩⎪⎨⎪⎧a 2=2b 2,4ab =1ab ,即⎩⎪⎨⎪⎧a 2=22,b 2=24时取得等号. (2)依题意知a >0,b >0,则1a +2b ≥22ab =22ab ,当且仅当1a =2b ,即b =2a 时,“=”成立.∵1a +2b=ab,∴ab ≥22ab ,即ab ≥22,∴ab 的最小值为2 2. 答案 (1)4 (2)2 2热点二 简单的线性规划问题 [命题角度1] 求线性目标函数的最值【例2-1】 (1)(2017·天津卷改编)设变量x ,y 满足约束条件⎩⎨⎧2x +y ≥0,x +2y -2≥0,x ≤0,y ≤3,则目标函数z =x +y 的最大值为________.(2)(2017·全国Ⅰ卷)设x ,y 满足约束条件⎩⎨⎧x +2y ≤1,2x +y ≥-1,x -y ≤0,则z =3x -2y 的最小值为________.解析 (1)作出约束条件所表示的可行域如图中阴影部分所示,由z =x +y 得y =-x +z ,作出直线y =-x ,平移使之经过可行域,观察可知,最优解在B (0,3)处取得,故z max =0+3=3.(2)作出约束条件所表示的可行域如图中阴影部分所示,由z =3x -2y 得y =32x -z 2,求z 的最小值,即求直线y =32x -z2的纵截距的最大值,当直线y =32x -z2过图中点A 时,纵截距最大,由⎩⎨⎧2x +y =-1,x +2y =1解得A 点坐标为(-1,1),此时z =3×(-1)-2×1=-5. 答案 (1)3 (2)-5[命题角度2] 求非线性目标函数的最值【例2-2】 (2017·徐州、宿迁、连云港模拟)已知实数x ,y 满足⎩⎨⎧y ≤x -1,x ≤3,x +y ≥2,则y x 的取值范围是________.解析 不等式组对应的平面区域是以点(3,-1),(3,2)和⎝ ⎛⎭⎪⎫32,12为顶点的三角形及其内部,设z =yx ,则z 表示平面区域内的点与原点连线所在直线的斜率,则当z =y x 经过(3,-1)时取得最小值-13,经过点(3,2)时取得最大值23,故yx 的取值范围是⎣⎢⎡⎦⎥⎤-13,23.答案 ⎣⎢⎡⎦⎥⎤-13,23[命题角度3] 线性规划中的含参问题【例2-3】 (2017·南京师大附中模拟)设变量x ,y 满足约束条件⎩⎨⎧x +y ≤4,y ≥x ,x ≥1,若目标函数z =ax +y 的最小值为-2,则a =________.解析 约束条件对应的可行域是以点(1,1),(1,3)和(2,2)为顶点的三角形及其内部.当a ≥-1时,当目标函数y =-ax +z 经过点(1,1)时,z 取得最小值,则z min =a +1=-2,即a =-3(舍去);当a <-1时,当目标函数y =-ax +z 经过点(2,2)时,z 取得最小值,则z min =2a +2=-2,即a =-2,符合题意,故a =-2. 答案 -2探究提高 1.线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.2.对于线性规划中的参数问题,需注意:(1)当最值是已知时,目标函数中的参数往往与直线斜率有关,解题时应充分利用斜率这一特征加以转化.(2)当目标函数与最值都是已知,且约束条件中含有参数时,因为平面区域是变动的,所以要抓住目标函数及最值已知这一突破口,先确定最优解,然后变动参数范围,使得这样的最优解在该区域内即可.【训练2】 (1)(2017·山东卷改编)已知x ,y 满足约束条件⎩⎨⎧x -y +3≤0,3x +y +5≤0,x +3≥0,则z =x+2y 的最大值是________.(2)若实数x ,y 满足⎩⎨⎧2x -y +2≥0,2x +y -6≤0,0≤y ≤3,且z =mx -y (m <2)的最小值为-52,则m =________.解析 (1)由已知得约束条件的可行域如图中阴影部分所示,故目标函数z =x +2y 经过点C (-3,4)时取最大值z max =-3+2×4=5.(2)作出约束条件所表示的可行域如图中阴影部分所示,z =mx -y (m <2)的最小值为-52,可知目标函数的最优解过点A ,由⎩⎨⎧y =3,2x -y +2=0,解得A ⎝ ⎛⎭⎪⎫12,3,∴-52=m2-3,解得m =1. 答案 (1)5 (2)11.多次使用基本不等式的注意事项当多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且要注意取等号的条件的一致性,否则就会出错,因此在利用基本不等式处理问题时,列出等号成立的条件不仅是解题的必要步骤,也是检验转换是否有误的一种方法. 2.基本不等式除了在客观题考查外,在解答题的关键步骤中也往往起到“巧解”的作用,但往往需先变换形式才能应用.3.解决线性规划问题首先要作出可行域,再注意目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.一、填空题1.(2017·全国Ⅱ卷改编)设x ,y 满足约束条件⎩⎨⎧2x +3y -3≤0,2x -3y +3≥0,y +3≥0,则z =2x +y 的最小值是________.解析 可行域如图阴影部分所示,当直线y =-2x +z 经过点A (-6,-3)时,所求最小值为-15.答案 -152.若0<x <1,则当f (x )=x (4-3x )取得最大值时x 的值为________.解析 因为0<x <1,所以f (x )=x (4-3x )=13×3x (4-3x )≤13×⎝ ⎛⎭⎪⎫3x +4-3x 22=43,当且仅当3x =4-3x ,即x =23时取等号. 答案 233.(2017·海门中学检测)已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b ,则m +n 的最小值是________.解析 由题意知ab =1,所以m =b +1a =2b ,n =a +1b =2a ,所以m +n =2(a +b )≥4ab =4,当且仅当a =b =1时取等号. 答案 44.(2017·宿迁调研)若实数x ,y 满足xy +3x =3⎝ ⎛⎭⎪⎫0<x <12,则3x +1y -3的最小值是________.解析 由xy +3x =3可得y +3=3x ,又0<x <12,则y +3>6,y >3,所以3x +1y -3=y+3+1y -3=(y -3)+1y -3+6≥2(y -3)·1y -3+6=8,当且仅当y =4时取等号,故3x +1y -3的最小值是8.答案 85.(2017·无锡期末)设不等式组⎩⎨⎧x ≥1,x -y ≤0,x +y ≤4表示的平面区域为M ,若直线y =kx -2上存在M 内的点,则实数k 的取值范围为________.解析 平面区域M 是以点(1,1),(1,3)和(2,2)为顶点的三角形区域(含边界),直线y =kx -2,即k =y +2x 表示区域M 内的点(x ,y )与点(0,-2)连线的斜率.当经过点(2,2)时,k 取得最小值2;当经过点(1,3)时,k 取得最大值5,故实数k 的取值范围为[2,5]. 答案 [2,5]6.已知x ,y ∈R ,且x 2+2xy +4y 2=6,则z =x 2+4y 2的取值范围是________.解析 因为2xy =6-(x 2+4y 2),而2xy ≤x 2+4y 22,所以6-(x 2+4y 2)≤x 2+4y22,所以x 2+4y 2≥4,当且仅当x =2y 时取等号,又因为(x +2y )2=6+2xy ≥0,即2xy ≥-6,所以z =x 2+4y 2=6-2xy ≤12.综上可得4≤x 2+4y 2≤12. 答案 [4,12]7.(2017·北京卷)已知x ≥0,y ≥0,且x +y =1,则x 2+y 2的取值范围是________. 解析 法一 ∵x ≥0,y ≥0且x +y =1.∴2xy ≤x +y =1,从而0≤xy ≤14,因此x 2+y 2=(x +y )2-2xy =1-2xy ,所以12≤x 2+y 2≤1.法二 可转化为线段AB 上的点到原点距离平方的范围,AB 上的点到原点距离的范围为⎣⎢⎡⎦⎥⎤22,1,则x 2+y 2的取值范围为⎣⎢⎡⎦⎥⎤12,1.答案 ⎣⎢⎡⎦⎥⎤12,18.(2016·全国Ⅰ卷)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解析 设生产产品A 、产品B 分别为x 件、y 件,利润之和为z 元,则⎩⎨⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ∈N ,y ∈N ,即⎩⎨⎧3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x ∈N ,y ∈N ,目标函数为z =2 100x +900y .作出不等式组表示的平面区域为图中阴影部分内(包括边界)的整点,即可行域. 由图可知当直线z =2 100x +900y 经过点M 时,z 取得最大值.联立方程组⎩⎨⎧10x +3y =900,5x +3y =600,得M 的坐标为(60,100),所以当x =60,y =100时,z max =2 100×60+900×100=216 000(元). 答案 216 000 二、解答题9.设关于x ,y 的不等式组⎩⎨⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求实数m 的取值范围. 解 先根据约束条件⎩⎨⎧2x -y +1>0,x +m <0,y -m >0画出可行域(图略), 要使可行域存在,必有m <-2m +1,要求可行域包含直线y =12x -1上的点,只要边界点(-m ,1-2m )在直线y =12x -1的上方,且(-m ,m )在直线y =12x -1的下方,故得不等式组⎩⎪⎨⎪⎧m <-2m +1,1-2m >-12m -1,m <-12m -1,解之得m <-23. 故实数m 的取值范围是⎝ ⎛⎭⎪⎫-∞,-23.10.(1)当点(x ,y )在直线x +3y -4=0上移动时,求3x +27y +2的最小值; (2)已知x ,y 都是正实数,且x +y -3xy +5=0,求xy 的最小值.解 (1)由x +3y -4=0,得x +3y =4,所以3x +27y +2=3x +33y +2≥23x ·33y +2=23x +3y +2=234+2=20, 当且仅当3x =33y 且x +3y -4=0,即x =2,y =23时取等号,此时所求的最小值为20.(2)由x +y -3xy +5=0,得x +y +5=3xy , 所以2xy +5≤x +y +5=3xy , 所以3xy -2xy -5≥0, 所以(xy +1)(3xy -5)≥0, 所以xy ≥53,即xy ≥259,当且仅当x =y =53时取等号,故xy 的最小值是259.11.(2017·天津卷)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.(1)用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域; (2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多? 解 (1)由已知,x ,y 满足的数学关系式为⎩⎪⎨⎪⎧70x +60y ≤600,5x +5y ≥30,x ≤2y ,x ≥0,y ≥0,即⎩⎪⎨⎪⎧7x +6y ≤60,x +y ≥6,x -2y ≤0,x ≥0,y ≥0,该二元一次不等式组所表示的平面区域为图1中的阴影部分:(2)设总收视人次为z 万,则目标函数为z =60x +25y .考虑z =60x +25y ,将它变形为y =-125x +z 25,这是斜率为-125,随z 变化的一族平行直线,z 25为直线在y 轴上的截距,当z25取得最大值时,z 的值最大. 又因为x ,y 满足约束条件,所以由图2可知,当直线z =60x +25y 经过可行域上的点M 时,截距z25最大,即z 最大.解方程组⎩⎨⎧7x +6y =60,x -2y =0,得点M 的坐标为(6,3).所以,电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.。
1.不等式的性质: 性质1:(对称性)如果a b >,那么b a <;如果b a <,那么a b >. 性质2:(传递性)如果a b >,且b c >,则a c >. 性质3:如果a b >,则a c b c +>+. 推论1:(移项法则)不等式中的任意一项都可以把它的符号变成相反的符号后,从不等式的一边移到另一边.推论2:(同向可加性)如果a b c d >>,,则a c b d +>+.性质4:如果a b >,0c >,则ac bc >;如果a b >,0c <,则ac bc <. 推论1:如果00a b c d >>>>,,则ac bd >.推论2:如果0a b >>,则*(1)n n a b n n >∈>N ,. 推论3:如果0a b >>*(1)n n a b n n >∈>N , 2.均值不等式:如果a ,b +∈R (+R 表示正实数),那么2a bab +,当且仅当a b =时,等号成立.对于任意两个正实数a ,b ,数2a b+叫做a ,b ab a ,b 的几何平均值. 均值不等式可以表述为:两个正实数的算术平均值大于或等于它的几何平均值.<教师备案>在利用均值不等式求某些函数的最值时,要注意以下几个条件:⑴函数式中的各项必须都是正数,在异号时不能运用均值不等式,在同负时可以先进行转化,再运用均值不等式;⑵函数式中含变量的各项的和或积必须是定值;⑶只有具备了不等式中等号成立的条件,才能使函数式取到最大或最小值.否则不能由均值不等式求最值,只能用函数的单调性求最值.⑷如果多次使用均值不等式,则等号成立的条件必须同时成立.3.简单的线性规划用图解法解决简单的线性规划问题的基本步骤:⑴ 首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域). ⑵ 设0z =,画出直线0l . ⑶ 观察、分析,平移直线0l ,从而找到最优解. ⑷ 最后求得目标函数的最大值及最小值.知识点睛第10讲不等式与 线性规划考点:不等式性质 【例1】 ⑴ 若a b c d >>,,则下列不等式中恒成立的是( )A .a d b c +>+B .ac bd >C .a bc d> D .d a c b -<-⑵ 若a b >且c ∈R ,则下列不等式中一定成立的是( )A .a c b c ->-B .ac bc >C .22ac bc >D .22a b > ⑶ 已知a b c ,,满足c b a <<,且0ac <,那么下列选项中一定成立的是( )A .ab ac >B .()0c b a -<C .22ac ab <D .()0ac a c -> ⑷ 下列命题中正确的命题是_________. ①若a b ∈R ,且22ac bc >,则a b >;②若a b ∈R ,且a b >,则11a b<;③若a b ∈R ,且a b >,则44a b >; ④若00a b c d >>>>,,则ac bd >.【解析】 ⑴ D⑵ A ⑶ A ⑷ ①③④【备选】试写出同时满足0a cb d>>,ad bc <的一组():a b c d ,,, . 【解析】 (2111)--,,,考点:不等式恒成立【例2】 ⑴ 不等式04)2(2)2(2<--+-x a x a 对一切x ∈R 恒成立, 则实数a 的取值范围是______⑵ 不等式2(2)2(2)40a x a x -+-->对一切[)1,x ∈+∞恒成立,则实数a 的取值范围是_____ ⑶ 不等式2|3||1|3x x a a +---≤对任意实数x 都成立, 则实数a 的取值范围是_________.【解析】 ⑴ (]2,2-⑵ 8,3⎛⎫+∞ ⎪⎝⎭⑶ ()(),14,-∞-+∞考点:均值不等式 【例3】 ⑴ 已知a b ,是两个正数,则下列不等式中错误的是( )A .232a a +>B .222a b ab +≥C .2a bb a+≥ D.2a b +⑵ 已知a b +∈R ,且21a b +=,则ab 的最大值是( ) A .12 B .14 C .18 D .19经典精讲⑶ 已知正数a b ,满足1ab =,则2a b +的最小值是_______; ⑷ 设实数a b ,满足0a b <<,且1a b +=,则下列四个数中最大的是( )A .22a b +B .2abC .aD .12【解析】 ⑴ D⑵ C ⑶⑷ A尖子班学案1 【拓1】 ⑴ 函数221xy x =+在0x >的最大值为________. ⑵ 已知1(2)2m a a a =+>-,212n x x -⎛⎫= ⎪⎝⎭≥,则m n ,之间的大小关系为________. 【解析】 ⑴ 1⑵ m n ≥目标班学案1【拓2】 已知正数a ,b ,且2244a b +=,则y =的最大值是 ;【解析】 54【例4】 ⑴ 已知0a >,0b >,a b ,的等差中项为12,且1a a α=+,1b bβ=+,则αβ+的最小值是________;⑵ 已知a b ,是正常数,x y +ÎR ,,且10a b +=,1a bx y+=,x y +的最小值为18,求a b ,的值. 【解析】 ⑴ 5⑵ 2a =,8b =或8a =,2b =.【例5】 已知0a >,0b >,1a b +=,证明下列不等式..⑴ 11122a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭≤;⑵ 12133a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭≤;⑶2【解析】 ⑴ 法一:()1111322244a b ab a b ab ⎛⎫⎛⎫++=+++=+ ⎪⎪⎝⎭⎝⎭,122a b +=,所以111312244a b ⎛⎫⎛⎫+++= ⎪⎪⎝⎭⎝⎭≤.法二:∵111222a b a b ⎛⎫⎛⎫+++=++= ⎪ ⎪⎝⎭⎝⎭112212a b ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭=,即11122a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭≤.⑵ ∵121233a b a b ⎛⎫⎛⎫+++=++= ⎪ ⎪⎝⎭⎝⎭123312a b ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭=,即12133a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭≤.⑶∵2212a b +=++=,1=2.2a b +的理解与运用:2a b +中要求,a b +∈R,而2a b +对任意x ∈R 均成立; 在需要使用均值不等式时,一般的处理方式是先观察待求式与已知条件,找到什么时候为定值,之后再使用具体的不等式,化简的到最终结果.本题的⑴和⑵2a b+; ⑶中观察得到平方和为定值,求两数和的最大,从而用2a b +【备选】 已知2x y xy ++=,且0x >,0y >,求x y +的最小值.【解析】 x y +的最小值为2.考点:线性规划 尖子班学案2【铺1】 已知二次函数2()f x ax bx =+,1(1)1f --≤≤,3(1)5f ≤≤.⑴ 求a b ,的取值范围; ⑵ 求(2)f 的取值范围. 【解析】 ⑴ [13]a ∈,,[13]b ∈,,⑵ 8(2)16f ≤≤.【例6】 ⑴ 不等式组20210x y x y -⎧⎪+⎨⎪-+⎩,,≤≥0≥表示的区域为D ,z x y =+是定义在D 上的目标函数,则区域D 的面积为 ;z 的最大值为 .⑵ 已知1324a b <<<<,,则2a b -的取值范围是____,ab的取值范围是_____. ⑶ 在直角坐标系中,若不等式组0(1)y y y k x ìïïïïíïï?ïî≥≤,则实数k 的值为________ 【解析】 ⑴ 252,5⑵ (24)-,;1342⎛⎫⎪⎝⎭,⑶-目标班学案2【拓2】 定义max{}a a b a b b a b ìïï=íï<ïî,≥,,,设实数x y ,满足约束条件2244x y ìïïíïïî≤≤,则m a x {43}z x y x y=+-,的取值范围为________【解析】 []710-,定义在R 上的函数()y f x =是增函数,且为奇函数,若实数s t ,满足不等式22(2)(2)f s s f t t ---≥,则当14s ≤≤时,求3t s +的取值范围.【解析】 ∵函数()f x 为奇函数,则2222(2)(2)(2)(2)f s s f t t f s s f t t ---?-≥≥,又函数()f x 为增函数,则2222s s t t --≥,即()(2)0s t s t -+-≥ ∵14s ≤≤,则若s t <,则有20s t +->,与()(2)0s t s t -+-≥∴s t ≥,即s t ,满足的约束条件为02014s t s t s ì-ïïïï+-íïïïïî≥≥≤≤,画出可行域如图,则点(42)A -,,(44)B ,,(11)C ,,当目标函数3z t s =+过点A B ,时,取到最值,即min 2z =-,max 16z =,即3t s +的取值范围为[]216-,.已知,,a b c 是不完全相等的任意实数.若2x a bc =-,2y b ac =-,2z c ab =-,则,,x y z 的值( )A .都大于0B .至少有一个大于0C .至少有一个小于0D .都不小于0【解析】 B大千世界222x y z a b c ab ac bc ++=++---222222222222a b ab a c ac c b bc+-+-+-=++()()()222111222a b a c c b =-+-+-, 因为a b c ≠≠,则0x y z ++>, 所以x y z ,,中至少有一个大于0.。