分数、百分数应用题整理与复习
- 格式:ppt
- 大小:147.50 KB
- 文档页数:8
2023年《分数应用题复习》教案(8篇)《分数应用题复习》教案1教学目标1、使学生较熟练地掌握求一个数的几分之几(百分之几)是多少和已知一个数的几分之几(百分之几)是多少,求这个数这两类应用题。
2、提高学生分析、解答应用题的能力,培养学生对立统一的辩证思想。
教学重点和难点找准量和率之间的对应关系是教学中的重点;能够画出较复杂应用题的线段图是教学中的难点。
教学过程设计(一)复习基础知识教师谈话:我们已经复习了求一个数是另一个数的几分之几(百分之几)、求一个数的几分之几(百分之几)是多少和已知一个数的几分之几(百分之几)是多少,求这个数这三类应用题。
这节课,我们在前两节课的基础上,继续复习分数、百分数应用题。
(板书:分数,百分数应用题复习)投影出示如下习题:1、读题列式并按要求改编题:①一本书100页,读了60页,读了这本书的几分之几?学生读题:如果把问题改成读了百分之几应如何解答?样列式计算?③如果把一本书的页数当成问题,如何编题?怎样列式计算?(板2、补充问题。
(1)六一班有男生30人,女生20人,_______________?可以求什么?从最基本的想起。
学生读题后补充问题并列式:①女生是男生的几分之几(百分之几?)②女生比男生少几分之几(百分之几?)③男生是女生的几分之几(百分之几?)④男生比女生多几分之几(百分之几?)可以求什么?从最基本的想起,学生读题后补充问题并列式:①女生有多少人?②全班共有多少人?③男生比女生多多少人?④女生比男生少多少人?3、回答问题。
师述:大家做一个比赛,看谁想得多?(学生自己在本上独立完成。
)③甲是甲乙差的4倍。
⑤乙是单位1。
4、小结。
通过刚才的练习,我们复习了分数、百分数的哪些类型应用题?它们各自的解法是什么?(二)画线段图分析解答投影出示如下练习:1、录音机每台降价30%后,售价350元,这种录音机原来售价多少元?①学生读题;②学生自己画图列式;③订正画图;④指名列式。
分数(百分数)应用题的整理和复习教学内容∶九年义务教育人教版第十二册第111页例4,第112页练习十二.教学目标∶1、通过复习使学生把稍复杂的分数和百分数应用题的有关知识系统化.2、使学生牢固掌握分数和百分数应用题的基本数量关系和解题方法.3、进一步提高学生的辨别能力.教学重点∶综合运用所学知识解答分数.百分数应用题.教学难点∶找准单位“1”,弄清稍复杂的分数(百分数)应的数量关系.教学过程:一.谈话引入.今天我们来复习分数.百分数应用题,老师这里有两个数量,根据这两个数量你能提出哪些有关分数的问题?怎样列式?出示:水彩画有50幅,蜡笔画有80幅.生:①水彩画是蜡笔画的几分之几? 50÷80=5/8②蜡笔画是水彩画的几分之几? 80÷50=8/5③蜡笔画比水彩画多几分之几? (80-50)÷50=3/5④水彩画比蜡笔画少几分之几? (80-50)÷80=3/8二.学习例4.1.思考:以上第③.④这两个问题一样吗?它们有什么相同点和不同点?生:相同点:要比较的两个数是相同的,蜡笔画比水彩画多的幅数与水彩画比蜡笔画少的幅数是一样的.不同点:在两个问题中把哪个数看作单位“1”不同,因此在算式中用哪个数作除数不同.2.如果把上边问题中的“几分之几”改成“百分之几”列式一样吗?不同在哪里?学生讨论后明确:改成百分之几后,数量关系没有变,分析解答方法也是相同的,不同的只是计算的结果要用百分数来表示.3.复习分数乘.除法应用题.(1)选择条件,补充问题,编成分数应用题,并解答.条件:水彩画有50幅蜡笔画比水彩画多3/5蜡笔画有80幅水彩画比蜡笔画少3/8学生编好后在小组内交流,指名回答:①水彩画有50幅,蜡笔画比水彩画多3/5,蜡笔画有多少幅?50×(1+3/5)=80(幅)②蜡笔画有80幅,蜡笔画比水彩画多3/5,水彩画有多少幅?80÷(1+3/5)=50(幅)或x×(1+3/5)=80③水彩画有50幅,水彩画比蜡笔画少3/8,蜡笔画有多少幅?50÷(1-3/8)=80(幅)或x×(1-3/8)=50④蜡笔画有80幅,水彩画比蜡笔画少3/8,水彩画有多少幅?80×(1-3/8)=50(幅)(2)讨论以上四道题有什么联系?又有什么区别?学生小组讨论后回答:第①和第②题(或第③和第④题)比较有什么相同?有什么不同?(数量关系相同;不同的是,第①题(第④题)已知单位“1”的量,用乘法计算,而第②题(第③题)要求的是单位“1”的量,用除法计算或列方程来解答.第①题和第③题(或第②题和第④题)比较有什么相同?有什么不同?(第一个已知条件和问题相同;数量关系不同,所以解答方法也就不同.)(3)思考:解答这一类就用题的关键是什么?教师引学生归纳:先找准单位“1”,再看单位“1”的量是已知的还是未知的来确定解答方法。
最新整理六年级数学教案分数、百分数应用题整理和复习分数、百分数应用题整理和复习教学内容:P5012练习P5520、21题。
教学目标:1、通过复习使学生把稍复杂的分数和百分数应用题的有关知识系统化。
2、使学生牢固掌握分数和百分数应用题的基本数量关系和解题方法。
3、使学生能够比较灵活地运用这些知识正确解答稍复杂的分数,百分数应用题,提高学生独立解决实际问题的能力。
4、培养学生认真审题和学会联系实际的良好学习习惯。
教学重点:综合运用新学知识解答分数,百分数应用题。
教学过程:一、导入。
同学们,这节课让我们一起对百分数应用题进行整理和复习。
二、复习辅垫。
运用一批货物的25%。
提问:看到这个带有分率的条件,你知道了什么?你还能联想到什么?还有吗?三、整理复习。
蜡笔画有80幅水彩画有50幅水彩画比蜡笔画少蜡笔画比水彩画多60%水彩画有多少幅蜡笔画有多少幅同学们请你从上面两组条件中各选择一个条件,配上一个合适的问题,编出4道不同的分数应用题,并说说它们应该怎样列式解答。
(小组讨论)指出代表展示,编出新题)(1)蜡笔画有80幅,水彩画比蜡笔画少,水彩画有多少幅。
80×(1-)=50(幅)(2)水彩画有50幅,蜡笔画比水彩画多60%,蜡笔画有多少幅?50×(1+60%)=80(幅)(3)蜡笔画有50幅,蜡笔画比水彩画多60%,水彩画有多少幅?80÷(1+60%)=50(幅)(4)水彩画有50幅,水彩画比蜡笔画少,蜡笔画有多少幅?50÷(1-)=80(幅)2、对比4道应用题,然后找出分数应用题,百分数应用题它们有什么相同点和不同点?练习题。
赵叔叔加工了1500个零件,经过检验,发现有3个废品,求这批零件的合格率,求这批零件的废品率。
师:请你从两个百分率中任意选做一种。
(屏幕显示两种百分率的算式)师:你还能想出求废品率的其它方法吗?(屏幕显示)废品率=1-99.8%=0.2%师:“1”表示准?如果告诉你废品率为0.2%,怎么求合格率最高可能是多少?说明什么?一批产品合格率和废品率有什么关系?师:同学们来,这道题变了,你会做吗?应该选择哪个算式?赵叔叔加工一批零件,废品率为0.2%,现在加工了2000个零件出了几个废品?如果出了5个废品那么这批零件有多少个?A、5÷2000B、2000×0.2%C、5×0.2%D、0.5÷0.2%四、巩固练习:P4911题、P5520题。
六年级数学上册分数.百分数应用题复习题【知识要点】一、“求一个数的几分之几是多少用乘法计算”是分数应用题解题的根本依据,结合分数的定义来理解,就是把一个数(或是整体)平均分成分母份,取分子份.二、分数.百分数应用题的主要类型:(1)求一个数是另一个数的几(百)分之几:用“一个数÷另一个数”(2)求一个数的几(百)分之几是多少;(3)求比一个数多(少)几(百)分之几的数是多少:A. B.(4)求一个数比另一个数多(少)几(百)分之几(大数—小数)÷单位“1”的量,或者“相差数÷单位“1”的量”(5)已知一个数的几(百)分之几是多少,求这个数.A.或者B..设所求的数为未知数X,然后根据求这个数的几(百)分之几,用乘法列方程解.三、较复杂的分数(百分数)应用题是基本分数应用题的延续和发展,它的特点是已知条件之间.已知条件和所求问题之间不再有直接的对应量率关系.解题时一定要找准标准量(单位“1’),找准“与量对应的率”.“与率对应的量”,并利用线段图来帮助理解题意,分析数量关系.四、百分率问题:优秀率=优秀人数÷总人数×100%成活率=成活棵树÷总棵树×100%合格率=合格人数÷总人数×100%百分率=部分数÷总数×100%出粉率=面粉质量÷小面质量×100%花生出油率=花生油重量÷花生重量×100%现实生活中还有“及格率”.“出勤率”.“合格率”.“达标率”.“利息”.“成数”.“利润率”.“折扣”等含意相近的词,我们要灵活运用(百)分数知识,解决这些实际问题.五、按比例分配问题:按比例分配:把一个数按着一定的比来进行分配,这种分配方法通常叫做按比例分配.解答按比例分配问题,要根据已知条件,把已知数量与份数对应起来,转化为求一个数的几分之几来做.六、工程问题.解题指导:“工程问题”指的都是两个人以上合作完成某一项工作,有时还将内容延伸到相遇运动和向水池注水等等.解答工程问题时,一般都是把总工作量看作单位“1”,把单位“1”除以工作时间看成工作效率,因此,工作效率就是工作时间的倒数.工程问题关系式是:工作总量÷工作效率=工作时间工作总量÷工作效率和=合作时间【基础练习】一.求一个数是另一个数的几(百)分之几.1、光明小学有学生1200人,其中男生有576人,男生占全校人数几分之几?2、学校的果园里有梨树15棵,苹果树20棵.梨树的棵数是苹果树的百分之几?3、学校的果园里有梨树15棵,苹果树20棵.苹果树的棵数是梨树的几倍?二、求一个数的几(百)分之几是多少.1、一个排球定价60元,篮球的价格是排球的150% .篮球的价格是多少元?2、一本书有200页,小丽第一天看了全书的25%,第二天看了第一天的80%,第二天看了多少页?3、一块长方形玻璃长56厘米,宽是长的50%,这块玻璃的面积是多少平方厘米?4、商场搞打折促销,其中服装类打5折,文具类打8折.小明买一件原价320元的衣服,和原价120元的书包,实际要付多少钱?三、求比一个数多(少)几(百)分之几是多少1.一件衬衣原价125元,现在降价.现在售价是多少元?2、一件衬衣原价125元,现在涨价20%.现在售价是多少元?3、要挖一条长2000米的水渠,第一天挖了12.5%,还剩多少米没挖?4、一个果园里去年产了4500千克的苹果,今年因为气候好,比去年增产了2成,今年产了多少千克苹果?1、有一台空调,原价1600元,涨价后卖2000元,涨了百分之几?2、学校运来34吨煤,已经烧了18吨,烧掉的比剩下的多几分之几?3、光明小学去年有篮球24个,今年新买了6个.今年比去年增加了百分之几?4、有一个公园原来的门票是80元,国庆期间打8折,每张门票能节省多少元?相当于降价了百分之几?五、已知一个数的几(百)分之几是多少,求这个数.1、一个儿童体内所含水分有28千克,占体重的75%.这个儿童的体重有多少千克?2、小红家买来一袋大米,吃了15%,还剩15千克.买来大米多少千克?3、水果店运一批水果.第一次运了50千克,第二次运了70 千克,两次正好运了这批水果的60%.这批水果有多少千克?4、要挖一条水渠,第一天挖了全长的12.5%,第二天挖了全长的27.5%,还剩1200米没挖,这条水渠长多少米?5、一件衬衣降价20%后,售价为100元.这件衬衣原价是所少元?6、一件衬衣涨价20%后,售价为120元.这件衬衣原价是多少元?六.百分率问题.1.大米加工厂用200千克的稻谷加工成大米时,共碾出大米160千克,求大米的出米率.2、林场春季植树,成活了175棵,死了25棵,求成活率.3、用一批玉米种子做发芽试验,结果发芽的有192粒,没有发芽的有8粒,求这一批种子的发芽率.4、菜籽的出油率是28%,若榨油84千克,需要菜籽多少千克?七.按比例分配问题.1.石灰水是用石灰和水按1:100配成的,要配制4545千克的石灰水,需石灰多少千克?2、一件衬衣售价为100元,一条长裤的价钱和这件衬衣的价钱之比是 .这条长裤售价是多少元?3、一块长方形地,周长400米,长和宽的比是3:2,这块地的面积是多少平方米?4、一种药水是用药物和水按3:400配制成的.(1)要配制这种药水1612千克,需要药粉多少千克?(2)用水60千克,需要药粉多少千克?(3)用48千克药粉,可配制成多少千克的药水?八.工程问题.1.一篇稿件,甲.乙两人合打.甲一个人完成要5小时,乙一个人完成要8小时,求两人合打几小时可以完成?2、一项工程,甲独立完成要12天,乙独立完成要15天,现两队合作,几天可以完成这项工程的?3、客车由甲城到乙城需行12小时,货车由乙城到甲城需行15小时,两车同时从两城相向开出,相遇时客车距离乙城还有360于米.两城相距多少千米?九.较复杂的分数.百分数应用题.1.一件衬衣售价为100元,一条长裤的价钱是这件衬衫的150%,这条长裤的价钱又是一双皮鞋的 .这双皮鞋售价是多少元?2.8月初鸡蛋价格比7月初上涨了10%,9月初又比8月初回落了15%.9月初鸡蛋价格比7月初涨了还是跌了?涨跌幅度是多少?3、长虹电视机进行促销活动,降价8%.在此基础上,商场又返还售价5%的现金.此时购买长虹牌电视机,相当于降价百分之多少?4、红光农场去年植树的数量比前年成活的树木多50%,去年的成活率是80%.去年成活的树木数量是前年成活树木的百分之多少?5、有科技书和文艺书360本,其中科技书占总数的1/9,现在又买来一些科技书,此时科技书占总数的1/6.又买来多少本科技书?6、有一堆糖果,其中奶糖占45%,再放16块水果糖后,奶糖就占25%,那么,这堆糖中奶糖有多少块?【综合练习一】1、地球上海洋面积是36000万平方千米,占地球总面积的 .地球总面积是多少万平方千米?2、三个同学跳绳.小明跳了120个,小强跳的是小明跳的,小亮跳的是小强跳的 .小亮跳了多少个?3、(1)五年级同学收集了165个易拉罐,六年级同学比五年级多收集了 .六年级收集了多少个易拉罐?(2)四年级比六年级少收集了,四年级收集了多少个易拉罐?4.(1)一个县迁建绿色蔬菜总产量720万千克,是去年绿色蔬菜总产量的 .去年全县绿色蔬菜总产量是多少万千克?(2)一个县迁建绿色蔬菜总产量720万千克,比去年少 .去年全县绿色蔬菜总产量是多少万千克?【综合练习二】1、一列火车的速度是180千米/时.一辆小汽车的速度是这列火车的,是一架喷气式飞机的 .这架喷气式飞机的速度是多少?2.(1)用84 长的铁丝围城一个长方形,这个长方形的长于宽的比是 .这个长方形的长与宽分别是多少?(2)用84 长得铁丝围成一个三角形,这个三角形三条边长度的比是3:4:5,.三条边各是多少厘米?3、取小麦500克,烘干后,还有428克.计算这种小麦的烘干率和含水率.4、在北纬以上的地方,一年连续约有2个月的时间没有夜晚,没有夜晚的时间约占全年的百分之几?5.由于纬度比较高,瑞典首都斯德哥尔摩七月份的每天平均日照时间大约是一天的75%,约有多少小时?【综合练习三】1、人体血液在动脉中的流动速度是50厘米/秒,在静脉中的流动速度是动脉中的 2/5,在毛细血管中的流动速度只有静脉中的 1/40.血液在毛细血管中每秒流动多少厘米?2、海象的寿命大约是40年,海狮的寿命是海象的 2/3,海豹的寿命是海狮的3/4 .海豹的寿命大约是多少年?3.蜜蜂每秒能振动翅膀236次,蝗虫每秒振动翅膀次数比蜜蜂少 109/118.蝗虫每秒能振动多少次?4、鸡的孵化期是21天,鸭的孵化期比鸡长1/3 .鸭的孵化期是多少天?5.严重的水土流失致使每年大约有16亿吨的泥沙流入黄河,其中25%的泥沙沉积在河道口,其余被带到入海口.有多少亿吨泥沙被带到入海口?6.一幢楼房共有15层,高约50米.小萍家住在7楼,小萍家的地板离地有多高?【综合练习四】1、一共有240千克水果糖,每袋装 1/4千克.已经装完了总量的3/4 ,已经装完了多少袋?2、我国幅员辽阔,东西相距5200km,东西距离是南北的52/55.南北相距多少千米?3、一杯250ml的鲜牛奶大约含有 3/10的钙质,占一个成年人一天所需钙质的 3/8.一个成年人一天大约需要多少钙质?4.一本课外读物,小芳读了35页,还剩下 2/7没有读.这本课外读物一共有多少页?5.体积相等的冰的质量比水的质量少 1/10,现有一块重9kg的冰,如果有一桶水的体积和这块冰的体积相等,这桶水有多重?6.一批大米运往灾区,运了4车才运走,平均每车运走这批大米的几分之几?剩下的大米还要几车才能运完?【综合练习五】1、某电视机厂去年全年生产电视机108万台,其中上半年产量是下半年的4/5.这个电视机厂去年上半年和下半年的产量分别是是多少?2、一套运动服共300元,裤子价钱是上衣的2/3.上衣和裤子的价钱分别是多少?3、中国农历中的“夏至”是一年中白昼最长.黑夜最短的一天.这一天,北京的黑夜时间是白天的3/5.白昼和黑夜分别是多少小时?4、挖一条水渠,王伯伯需要20天,李叔叔需要30天.两人合作,几天挖完这天水渠的一半?5、甲车从A城市到B城市要行驶12小时,乙车从B城市到A城市要行驶15小时.两车分别从A城市和B城市出发,几小时后相遇?6.甲乙两队合作种树,甲队单独种需要8天,乙队单独种需要10天.现在两队合作,5天能种完吗?【综合练习六】1、某妇产医院上月新生婴儿303名,男女婴儿人数之比是51:50.上月新生男.女婴儿各有多少人?2、学校把栽70棵树的任务按人数比分配给六年级三个班,一班有46人,二班有44人,三班有50人.三个班各应栽多少棵?3、刘大爷家里的菜地共800 ,刘大爷准备用2/5种西红柿,剩下的按2:1的面积比种黄瓜和茄子.三种蔬菜的面积分别是多少平方米?4、一种混凝土的水泥.沙子和石子的比是2:3:5.要搅拌20t这样的混凝土,需要水泥.沙子和石子各多少吨?。
分数、百分数应用题的一般解题方法(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--分数、百分数应用题的一般解题方法一、解决分数乘法问题1、求一个数的几分之几是多少(单位“1”已知)单位“1”×分率=分率所对应的量2、求一个数比单位“1”多几分之几是多少(单位“1”已知)单位“1”×(1+分率)=分率所对应的量3、求一个数比单位“1”少几分之几是多少(单位“1”已知)单位“1”×(1-分率)=分率所对应的量二、解决分数除法问题1、已知一个数的几分之几是多少,求这个数(单位“1”未知)数量÷数量所对应的分率=单位“1”2、已知一个数比另一个数多几分之分,求这个数(单位“1”未知)数量÷(1+分率)=单位“1”3、已知一个数比另一个数少几分之分,求这个数(单位“1”未知)数量÷(1-分率)=单位“1”三、解决百分数问题1、求百分率的问题:一个数是另一个数的百分之几。
另一个数一个数×100%=百分率2、求一个数比另一个数多(少)百分之几。
相差数÷单位“1”=多(少)百分之几 对应量÷单位“1”-13、求一个数的百分之几是多少(单位“1”已知)单位“1”×百分率=分率所对应的量已知一个数的百分之几是多少,求这个数。
(单位“1”未知)数量÷数量所对应的百分率=单位“1”4、求比一个数多(少)百分之几的数是多少单位“1”×(1+百分率)=分率所对应的数量5、已知比一个数多(少)百分之几的数是多少,求这个数。
数量÷(1+对应分率)=单位“1”6、折扣问题原价×折扣=现价7、纳税问题收入×税率=应纳税额8、利息问题本金×利率×时间=利息利息×税率=利息税利息—利息税=税后利息本息=本金+税后利息。
六年级上册数学期末复习(概念与题型)一、分数、百分数应用题解题公式单位“1” 已知: 单位“1” × 对应分率 = 对应数量求单位“1”或单位“1”未知:对应数量 ÷ 对应分率 = 单位“1” 1、求一个数是另一个数的几分之几(或百分之几)公式: 一个数 ÷ 另一个数 = 一个数是另一个数的几分之几(百分之几) 2、求一个数比另一个数多几分之几(或百分之几)公式:多的数量÷单位“1” = 一个数比另一个数多几分之几(百分之几) 3、求一个数比另一个数少几分之几(或百分之几)公式:少的数量÷单位“1” = 一个数比另一个数少几分之几(百分之几) 二、熟练掌握:百分数和分数、小数的互化,熟练背诵:1 2 = 0.5 = 50% 1 4 = 0.25=25% 34 = 0.75 = 75% 1 5 = 0.2 = 20% 2 5 = 0.4 = 40% 35 = 0.6 = 60% 4 5 = 0.8 = 80% 1 8 =0.125=12.5% 38 =0.375=37.5% 5 8 =0.625=62.5% 7 8 =0.875=87.5% 1 10 =0.1=10% 1 20 =0.05=5% 1 25 =0.04=4% 150 =0.02=2% 1100=0.01=1%三、基本题型:(1)一条路全长1200米,第一天修了全长的 15 ,第二天修了全长的 14 ,还剩几分之没有修?(2)果园里有桃树200棵,梨树比桃树少 15 ,果园里有梨树多少棵?(3)果园里有桃树200棵,比梨树少 15 ,果园里有梨树多少棵?(4)一件上衣,打八折后是72元,这件上衣原价多少元?(5)一条路,第一天修了全长的 1 5 ,第二天修了全长的 14 ,第一天比第二天少修60米,这条路全长多少米?(6)五月份比六月份节约用水20吨,五月份用水80吨。
五月份比六月份用水节约百分之几?(7)一杯盐水,盐10克,水90克,这杯盐水的含盐率。
分数(百分数)应用题的整理和复习教学内容∶九年义务教育人教版第十二册第111页例4,第112页练习十二.教学目标∶1、通过复习使学生把稍复杂的分数和百分数应用题的有关知识系统化.2、使学生牢固掌握分数和百分数应用题的基本数量关系和解题方法.3、进一步提高学生的辨别能力.教学重点∶综合运用所学知识解答分数.百分数应用题.教学难点∶找准单位“1”,弄清稍复杂的分数(百分数)应的数量关系.教学过程:一.谈话引入.今天我们来复习分数.百分数应用题,老师这里有两个数量,根据这两个数量你能提出哪些有关分数的问题?怎样列式?出示:水彩画有50幅,蜡笔画有80幅.生:①水彩画是蜡笔画的几分之几? 50÷80=5/8②蜡笔画是水彩画的几分之几? 80÷50=8/5③蜡笔画比水彩画多几分之几? (80-50)÷50=3/5④水彩画比蜡笔画少几分之几? (80-50)÷80=3/8二.学习例 4.1.思考:以上第③.④这两个问题一样吗?它们有什么相同点和不同点?生:相同点:要比较的两个数是相同的,蜡笔画比水彩画多的幅数与水彩画比蜡笔画少的幅数是一样的.不同点:在两个问题中把哪个数看作单位“1”不同,因此在算式中用哪个数作除数不同.2.如果把上边问题中的“几分之几”改成“百分之几”列式一样吗?不同在哪里?学生讨论后明确:改成百分之几后,数量关系没有变,分析解答方法也是相同的,不同的只是计算的结果要用百分数来表示.3.复习分数乘.除法应用题.(1)选择条件,补充问题,编成分数应用题,并解答.条件:水彩画有50幅蜡笔画比水彩画多3/5蜡笔画有80幅水彩画比蜡笔画少3/8学生编好后在小组内交流,指名回答:①水彩画有50幅,蜡笔画比水彩画多3/5,蜡笔画有多少幅?50×(1+3/5)=80(幅)②蜡笔画有80幅,蜡笔画比水彩画多3/5,水彩画有多少幅?80÷(1+3/5)=50(幅)或x×(1+3/5)=80③水彩画有50幅,水彩画比蜡笔画少3/8,蜡笔画有多少幅?50÷(1-3/8)=80(幅)或x×(1-3/8)=50④蜡笔画有80幅,水彩画比蜡笔画少3/8,水彩画有多少幅?80×(1-3/8)=50(幅)(2)讨论以上四道题有什么联系?又有什么区别?学生小组讨论后回答:第①和第②题(或第③和第④题)比较有什么相同?有什么不同?(数量关系相同;不同的是,第①题(第④题)已知单位“1”的量,用乘法计算,而第②题(第③题)要求的是单位“1”的量,用除法计算或列方程来解答.第①题和第③题(或第②题和第④题)比较有什么相同?有什么不同?(第一个已知条件和问题相同;数量关系不同,所以解答方法也就不同.)(3)思考:解答这一类就用题的关键是什么?教师引学生归纳:先找准单位“1”,再看单位“1”的量是已知的还是未知的来确定解答方法。