2016届高考数学复习 第六章 第一节 数列的概念及简单表示法 理(全国通用)
- 格式:doc
- 大小:306.00 KB
- 文档页数:7
第六章数列第一节数列的概念与简单表示双流艺体李林学习目标1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类函数.3.由a n与S n的关系求a n4.由递推关系求通项公式评价任务:自主完成活动一,检测目标1自主完成活动二,检测目标1,2自主完成活动三,检测目标35年高考统计1.20xx·全国卷Ⅰ(理)·T14(a n与S n的关系2.20xx·全国卷Ⅰ(理)·T17(递推、通项、求和)活动一:根底知识梳理1.数列的概念(1)数列的定义:按照排列的一列数称为数列,数列中的每一个数叫做这个数列的项.(2)数列与函数的关系:从函数观点看,数列可以看成以正整数集N*(或它的有限子集{1,2,…,n})为定义域的函数a n=f(n)当自变量按照从小到大的顺序依次取值时所对应的一列函数值.(3)数列有三种表示法,它们分别是_______、______和_______法.2.数列的分类(1)按照项数有限和无限分:(2)按单调性来分:3.数列的两种常用的表示方法(1)通项公式:如果数列{a n}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.(2)递推公式:如果数列{a n }的第1项(或前几项),且从第二项(或某一项)开始的任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.活动二 根底自测1.(必修5P 33A 组T 4改编)在数列{a n }中,a 1=1,a n =1+(-1)na n -1(n ≥2),则a 5等于( )A.32B.53C.85D.232.(必修5P 67A 组T 2改编)数列{a n }的前几项为12,3,112,8,212,…,则此数列的通项可能是( )A .a n =5n -42B .a n =3n -22C .a n =6n -52D .a n =10n -923.在数列-1,0,19,18,…,n -2n 2中,0.08是它的第________项.4.在数列{a n }中,a n =-n 2+6n +7,当其前n 项和S n 取最大值时,n =________.活动三 互动探究考点一 由a n 与S n 的关系求通项a n[例1] (1)数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a n =________.(2)数列{a n }的前n 项和S n =13a n +23,则{a n }的通项公式a n =________.(3)数列{a n }满足a 1+2a 2+3a 3+…+na n =2n ,则a n =________.变式练习1:1.数列{a n}的前n项和S n=3n+1,则a n=________.2.(20xx·全国卷Ⅰ改编)记S n为数列{a n}的前n项和.假设S n=2a n+1,则a n=________.小结:1.S n求a n的3个步骤2.S n与a n关系问题的求解思路根据所求结果的不同要求,将问题向不同的两个方向转化.(1)利用a n=S n-S n-1(n≥2)转化为只含S n,S n-1的关系式,再求解.(2)利用S n-S n-1=a n(n≥2)转化为只含a n,a n-1的关系式,再求解.考点二由数列的递推关系求通项公式[例2]设数列{a n}中,a1=2,a n+1=a n+n+1,则a n=________.(变条件)假设将“a n+1=a n+n+1〞改为“a n+1=nn+1a n〞,如何求解?.(变条件)假设将“a n+1=a n+n+1〞改为“a n+1=2a n+3〞,如何求解?小结:(1)累加法(2)累乘法变式练习2:1.数列{a n}中,a1=1中,a n+1=a n+n(n∈N*)中,则a4=________,a n=________.2.设数列{a n }满足a 1=1,a n +1=2n a n ,则通项公式a n =________.3.在数列{a n }中,a 1=3,且点P n (a n ,a n +1)(n ∈N *)在直线4x -y +1=0上,则数列{a n }的通项公式为________.考点三 数列的性质及应用考向(一) 数列的周期性[例3-1] (多项选择)数列{a n }满足a n +1=1-1a n (n ∈N *),且a 1=2,则( )A .a 3=-1B .a 2 019=12C .S 6=3D .2S 2 019=2 019小结:解决数列周期性问题的方法考向(二) 数列的单调性(最值)[例3-2] 等差数列{a n }的前n 项和为S n (n ∈N *),且a n =2n +λ,假设数列{S n }(n ≥7,n ∈N *)为递增数列,则实数λ的取值范围为________.小结:解决数列的单调性问题的3种方法 作差比拟法 作商比拟法 数形结合法变式练习3:1.假设数列{a n }满足a 1=2,a n +1=1+a n 1-a n ,则a 2 020的值为( )A .2B .-3C .-12 D.132.假设数列{a n }的前n 项和S n =n 2-10n (n ∈N *),则数列{na n }中数值最小的项是( )A .第2项B .第3项C .第4项D .第5项活动四 课后训练案1.数列{a n }的前n 项和为S n =n 2-2n +2,则数列{a n }的通项公式为( ) A .a n =2n -3B .a n =2n +3C .a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2D .a n =⎩⎪⎨⎪⎧1,n =1,2n +3,n ≥22.(20xx·福建四联考)假设数列的前4项分别是12,-13,14,-15,则此数列的一个通项公式为( )A.(-1)n +1n +1 B.(-1)n n +1 C.(-1)n n D.(-1)n -1n3.在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n (n ≥2,n ∈N *),则a 3a 5的值是( )A.1516B.158C.34D.38 4.数列{a n }满足a 1=1,a n +1=a 2n -2a n +1(n ∈N *),则a 2 020等于( ) A .1 B .0 C .2 017 D .-2 017 5.数列32,54,76,9m -n ,m +n 10,…,根据前3项给出的规律,实数对(m ,n )为________.6.(20xx·衡阳四联考)数列{a n }满足a 1=3,a n +1=4a n +3. (1)写出该数列的前4项,并归纳出数列{a n }的通项公式; (2)证明:a n +1+1a n +1=4.。
第一节 数列的概念及简单表示法A 组 专项基础测试 三年模拟精选一、选择题1.(2015·玉溪一中模拟)已知数列{a n }满足a 1=1,a n +1=⎩⎪⎨⎪⎧2a n (n 为正奇数),a n +1(n 为正偶数),则其前6项之和是( ) A .16B .20C .33D .120解析 a 2=2a 1=2,a 3=a 2+1=3,a 4=2a 3=6,a 5=a 4+1=7,a 6=2a 5=14,∴S 6=1+2+3+6+7+14=33. 答案 C2.(2015·天津南开中学月考)下列可作为数列{a n }:1,2,1,2,1,2,…的通项公式的是( ) A .a n =1B .a n =(-1)n+12C .a n =2-|sinn π2|D .a n =(-1)n -1+32解析 A 项显然不成立;n =1时,a 1=-1+12=0,故B 项不正确;n =2时,a 2=(-1)2-1+32=1,故D 项不正确.由a n =2-|sin n π2|可得a 1=1,a 2=2,a 3=1,a 4=2,…,故选C.答案 C3.(2014·济南外国语学校模拟)数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6等于( )A .44B .3×44+1 C .3×44D .44+1解析 由a n +1=3S n (n ≥1)得a n +2=3S n +1,两式相减得a n +2-a n +1=3a n +1, ∴a n +2=4a n +1,即a n +2a n +1=4,a 2=3S 1=3,∴a 6=a 244=3×44.答案 C4.(2014·北大附中模拟)在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 013的值是( ) A .8B .6C .4D .2解析 a 1a 2=2×7=14,∴a 3=4,4×7=28,∴a 4=8,4×8=32,∴a 5=2,2×8=16,∴a 6=6,a 7=2,a 8=2,a 9=4,a 10=8,a 11=2,∴从第三项起,a n 的值成周期排列,周期数为6,2 013=335×6+3,∴a 2 013=a 3=4. 答案 C5.(2013·潍坊模拟)已知a n =⎝ ⎛⎭⎪⎫13n,把数列{a n }的各项排列成如下的三角形状,记A (m ,n )表示第m 行的第n 个数,则A (10,12)=( )a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9…A.⎝ ⎛⎭⎪⎫1393B.⎝ ⎛⎭⎪⎫1392C.⎝ ⎛⎭⎪⎫1394D.⎝ ⎛⎭⎪⎫13112解析 前9行共有1+3+5+…+17=(1+17)×92=81(项),∴A (10,12)为数列中的第81+12=93(项),∴a 93=⎝ ⎛⎭⎪⎫1393. 答案 A 二、填空题6.(2014·山东聊城二模)如图所示是一个类似杨辉三角的数阵,则第n (n ≥2)行的第2个数为________.1 3 3 5 6 5 7 11 11 7 9 18 22 18 9……解析 每行的第2个数构成一个数列{a n },由题意知a 2=3,a 3=6,a 4=11,a 5=18,所以 a 3-a 2=3,a 4-a 3=5,a 5-a 4=7,…,a n -a n -1=2(n -1)-1=2n -3,由累加法得a n -a 2=[(2n -3)+3]×(n -2)2=n 2-2n ,所以a n =n 2-2n +a 2=n 2-2n +3(n ≥2).答案 n 2-2n +3一年创新演练7.数列{a n }的前n 项和为S n ,已知a 1=15,且对任意正整数m ,n ,都有a m +n =a m a n ,若S n <t恒成立,则实数t 的最小值为________. 解析 令m =1,则a n +1a n=a 1, ∴{a n }是以a 1为首项,15为公比的等比数列.∴a n =⎝ ⎛⎭⎪⎫15n. ∴S n =15-⎝ ⎛⎭⎪⎫15n +11-15=14⎝⎛⎭⎪⎫1-15n =14-14·5n <14.由S n <t 恒成立,∴t >S n 的最大值,可知t =14.答案 148.我们可以利用数列{a n }的递推公式a n =⎩⎪⎨⎪⎧n ,n 为奇数时,a n 2,n 为偶数时(n ∈N *),求出这个数列各项的值,使得这个数列中的每一项都是奇数,则a 24+a 25=________;研究发现,该数列中的奇数都会重复出现,那么第8个5是该数列的第________项. 解析 a 24+a 25=a 12+25=a 6+25=a 3+25=3+25= 28.5=a 5=a 10=a 20=a 40=a 80=a 160=a 320=a 640. 答案 28 640B 组 专项提升测试 三年模拟精选一、选择题9.(2015·广东佛山一模)数列{a n }满足a 1=1,a 2=1,a n +2=⎝⎛⎭⎪⎫1+sin2n π2a n +4cos2n π2,则a 9,a 10的大小关系为( )A .a 9>a 10B .a 9=a 10C .a 9<a 10D .大小关系不确定解析 n 为奇数时,a 3=2a 1=2,a 5=2a 3=22,a 7=2a 5=23,a 9=2a 7=24;n 为偶数时,a 4=a 2+4=5,a 6=a 4+4=9,a 8=a 6+4=13,a 10=a 8+4=17.所以a 9<a 10.故选C. 答案 C 二、填空题10.(2015·合肥模拟)数列{a n }满足a n +1=⎩⎪⎨⎪⎧2a n,0≤a n≤12,2a n-1,12<a n<1,a 1=35,则数列的第2 013项为________.解析 ∵a 1=35,∴a 2=2a 1-1=15.∴a 3=2a 2=25.∴a 4=2a 3=45,a 5=2a 4-1=35,a 6=2a 5-1=15,…,∴该数列的周期T =4.∴a 2 013=a 1=35.答案 3511.(2014·温州质检)已知数列{a n }的通项公式为a n =(n +2)·⎝ ⎛⎭⎪⎫78n,则当a n 取得最大值时,n 等于________.解析 由题意知⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1,∴⎩⎪⎨⎪⎧(n +2)⎝ ⎛⎭⎪⎫78n ≥(n +1)⎝ ⎛⎭⎪⎫78n -1,(n +2)⎝ ⎛⎭⎪⎫78n ≥(n +3)⎝ ⎛⎭⎪⎫78n +1.解得⎩⎪⎨⎪⎧n ≤6,n ≥5.∴n =5或6.答案 5或612.(2014·天津新华中学模拟)已知数列{a n }的前n 项和S n =2a n -1,则满足a nn≤2的正整数n 的集合为________.解析 因为S n =2a n -1, 所以当n ≥2时,S n -1=2a n -1-1, 两式相减得a n =2a n -2a n -1, 整理得a n =2a n -1,所以{a n }是公比为2的等比数列. 又因为a 1=2a 1-1,所以a 1=1, 故a n =2n -1,而a n n≤2,即2n -1≤2n ,所以有n ∈{1,2,3,4}. 答案 {1,2,3,4}13.(2013·江苏期末调研)对于数列{a n },定义数列{a n +1-a n }为数列{a n }的差数列.若a 1=2,{a n }的“差数列”的通项公式为2n,则数列{a n }的前n 项和S n =________.解析 由已知a n +1-a n =2n ,a 1=2得a 2-a 1=2,a 3-a 2=22,…,a n -a n -1=2n -1,由累加法得a n =2+2+22+…+2n -1=2n,从而S n =2(1-2n)1-2=2n +1-2.答案 2n +1-2三、解答题14.(2014·青岛一中模拟)在数列{a n }中,a 1=1,a 1+2a 2+3a 3+…+na n =n +12a n +1(n ∈N *).(1)求数列{a n }的通项a n ;(2)若存在n ∈N *,使得a n ≤(n +1)λ成立,求实数λ的最小值. 解 (1)当n ≥2时,由题可得a 1+2a 2+3a 3+…+(n -1)a n -1=n2a n .①a 1+2a 2+3a 3+…+na n =n +12a n +1,②②-①得na n =n +12a n +1-n2a n ,即(n +1)a n +1=3na n ,(n +1)a n +1na n=3,∴{na n }是以2a 2=2为首项,3为公比的等比数列(n ≥2), ∴na n =2·3n -2,∴a n =2n·3n -2(n ≥2),∵a 1=1,∴a n =⎩⎪⎨⎪⎧1,n =1,2n·3n -2,n ≥2. (2)a n ≤(n +1)λ⇔λ≥a n n +1,由(1)可知当n ≥2时,a nn +1=2·3n -2n (n +1),设f (n )=n (n +1)2·3n(n ≥2,n ∈N *),a nn +1=132·1f (n ), 则f (n +1)-f (n )=2(n +1)(1-n )2·3n +1<0, ∴1f (n +1)>1f (n )(n ≥2),又132·1f (2)=13及a 12=12, ∴所求实数λ的最小值为13.一年创新演练15.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围. 解 (1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0),又∵a =-7,∴a n =1+12n -9.结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0. (2)a n =1+1a +2(n -1)=1+12n -2-a2.∵对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性,∴5<2-a 2<6,∴-10<a <-8.。
第1讲 数列的概念及简单表示法最新考纲 1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式);2.了解数列是自变量为正整数的一类函数.知 识 梳 理1.数列的定义按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项. 2.数列的分类3.数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析法. 4.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.5.已知数列{a n }的前n 项和S n ,则a n =⎩⎨⎧S 1 (n =1),S n -S n -1 (n ≥2).诊 断 自 测1.判断正误(在括号内打“√”或“×”) 精彩PPT 展示(1)所有数列的第n 项都能使用公式表达.(×)(2)根据数列的前几项归纳出数列的通项公式可能不止一个.(√) (3)任何一个数列不是递增数列,就是递减数列.(×)(4)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n =S n -S n -1.(×) 2.(2014·保定调研)在数列{a n }中,已知a 1=1,a n +1=2a n +1,则其通项公式为a n =( )A .2n -1B .2n -1+1C .2n -1D .2(n -1)解析 法一 由a n +1=2a n +1,可求a 2=3,a 3=7,a 4=15,…,验证可知a n =2n -1.法二 由题意知a n +1+1=2(a n +1),∴数列{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2n ,∴a n =2n -1. 答案 A3.设数列{a n }的前n 项和S n =n 2,则a 8的值为( ) A .15 B .16 C .49 D .64解析 当n =8时,a 8=S 8-S 7=82-72=15. 答案 A4.(2014·新课标全国Ⅱ卷)数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=________.解析 由a n +1=11-a n ,得a n =1-1a n +1,∵a 8=2,∴a 7=1-12=12,a 6=1-1a 7=-1,a 5=1-1a 6=2,…,∴{a n }是以3为周期的数列,∴a 1=a 7=12.答案 125.(人教A 必修5P33A5改编)根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =________.答案 5n -4考点一 由数列的前几项求数列的通项【例1】 根据下面各数列前几项的值,写出数列的一个通项公式: (1)-1,7,-13,19,…; (2)23,415,635,863,1099,…; (3)12,2,92,8,252,…; (4)5,55,555,5 555,….解 (1)偶数项为正,奇数项为负,故通项公式必含有因式(-1)n ,观察各项的绝对值,后一项的绝对值总比它前一项的绝对值大6,故数列的一个通项公式为a n =(-1)n (6n -5).(2)这是一个分数数列,其分子构成偶数数列,而分母可分解为1×3,3×5,5×7,7×9,9×11,…,每一项都是两个相邻奇数的乘积.故所求数列的一个通项公式为a n =2n(2n -1)(2n +1).(3)数列的各项,有的是分数,有的是整数,可将数列的各项都统一成分数再观察.即12,42,92,162,252,…,从而可得数列的一个通项公式为a n =n 22.(4)将原数列改写为59×9,59×99,59×999,…,易知数列9,99,999,…的通项为10n -1,故所求的数列的一个通项公式为a n =59(10n -1).规律方法 根据所给数列的前几项求其通项时,需仔细观察分析,抓住以下几方面的特征:分式中分子、分母的各自特征;相邻项的联系特征;拆项后的各部分特征;符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想.【训练1】 (1)数列-11×2,12×3,-13×4,14×5,…的一个通项公式a n =________.(2)数列{a n }的前4项是32,1,710,917,则这个数列的一个通项公式是a n =________.解析 (1)这个数列前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶然项为正,所以它的一个通项公式为a n =(-1)n 1n (n +1).(2)数列{a n }的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,故a n =2n +1n 2+1.答案 (1)(-1)n1n (n +1) (2)2n +1n 2+1考点二 利用S n 与a n 的关系求通项【例2】 设数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,满足T n =2S n -n 2,n ∈N *. (1)求a 1的值;(2)求数列{a n }的通项公式. 解 (1)令n =1时,T 1=2S 1-1, ∵T 1=S 1=a 1,∴a 1=2a 1-1,∴a 1=1. (2)n ≥2时,T n -1=2S n -1-(n -1)2, 则S n =T n -T n -1=2S n -n 2-[2S n -1-(n -1)2] =2(S n -S n -1)-2n +1=2a n -2n +1. 因为当n =1时,a 1=S 1=1也满足上式, 所以S n =2a n -2n +1(n ≥1),当n ≥2时,S n -1=2a n -1-2(n -1)+1, 两式相减得a n =2a n -2a n -1-2,所以a n =2a n -1+2(n ≥2),所以a n +2=2(a n -1+2), 因为a 1+2=3≠0,所以数列{a n +2}是以3为首项,公比为2的等比数列. 所以a n +2=3×2n -1,∴a n =3×2n -1-2,当n =1时也成立, 所以a n =3×2n -1-2.规律方法 数列的通项a n 与前n 项和S n 的关系是a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.当n =1时,a 1若适合S n -S n -1,则n =1的情况可并入n ≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示.【训练2】 (1)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( ) A .2n -1B.⎝ ⎛⎭⎪⎫32n -1C.⎝ ⎛⎭⎪⎫23n -1D.12n -1 (2)已知数列{a n }的前n 项和S n =3n 2-2n +1,则其通项公式为________. 解析 (1)∵S n =2a n +1, ∴当n ≥2时,S n -1=2a n , ∴a n =S n -S n -1=2a n +1-2a n (n ≥2), 即a n +1a n =32(n ≥2), 又a 2=12,∴a n =12×⎝ ⎛⎭⎪⎫32n -2(n ≥2).当n =1时,a 1=1≠12×⎝ ⎛⎭⎪⎫32-1=13,∴a n =⎩⎨⎧1,n =1,12⎝ ⎛⎭⎪⎫32n -2,n ≥2,∴S n =2a n +1=2×12×⎝ ⎛⎭⎪⎫32n -1=⎝ ⎛⎭⎪⎫32n -1.(2)当n =1时,a 1=S 1=3×12-2×1+1=2;当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1]=6n -5. 显然当n =1时,不满足上式, 故数列的通项公式为a n =⎩⎨⎧2,n =1,6n -5,n ≥2.答案 (1)B (2)a n =⎩⎨⎧2,n =16n -5,n ≥2考点三 由递推关系求通项 【例3】 在数列{a n }中,(1)若a 1=2,a n +1=a n +n +1,则通项a n =________; (2)若a 1=1,S n =n +23a n ,则通项a n =________.深度思考 本题中a n +1-a n =n +1与a n +1a n =n +1n 中的n +1与n +1n 不是同一常数,由此想到推导等差、等比数列通项的方法:累加法与累乘法. 解析 (1)由题意得,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=2+(2+3+…+n )=2+(n -1)(2+n )2=n (n +1)2+1.又a 1=2=1×(1+1)2+1,符合上式,因此a n=n (n +1)2+1. (2)由题设知,a 1=1.当n >1时,a n =S n -S n -1=n +23a n -n +13a n -1, ∴a n a n -1=n +1n -1, ∴a n a n -1=n +1n -1,…,a 4a 3=53,a 3a 2=42,a 2a 1=3. 以上n -1个式子的等号两端分别相乘,得到a n a 1=n (n +1)2,又∵a 1=1,∴a n=n (n +1)2. 答案 (1)n (n +1)2+1 (2)n (n +1)2规律方法 已知递推关系式求通项,一般用代数的变形技巧整理变形,然后采用累加法、累乘法、迭代法、构造法或转化为基本数列(等差数列或等比数列)等方法求得通项公式.【训练3】 (1)在数列{a n }中,a 1=1,a n +1=3a n +2,则它的一个通项公式为a n =________.(2)设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1·a n =0(n =1,2,3,…),则它的通项公式a n =________.解析 (1)a n +1=3a n +2,即a n +1+1=3(a n +1),即a n +1+1a n +1=3, 法一 a 2+1a 1+1=3,a 3+1a 2+1=3,a 4+1a 3+1=3,…,a n +1+1a n +1=3.将这些等式两边分别相乘得a n +1+1a 1+1=3n. 因为a 1=1,所以a n +1+11+1=3n,即a n +1=2×3n -1(n ≥1),所以a n =2×3n -1-1(n ≥2),又a 1=1也满足上式,故a n =2×3n -1-1. 法二 由a n +1+1a n +1=3, 即a n +1+1=3(a n +1),当n ≥2时,a n +1=3(a n -1+1),∴a n +1=3(a n -1+1)=32(a n -2+1)=33(a n -3+1)=… =3n -1(a 1+1)=2×3n -1, ∴a n =2×3n -1-1;当n =1时,a 1=1=2×31-1-1也满足.∴a n =2×3n -1-1. 法三 由a n +1+1a n +1=3,所以数列{a n +1}是首项为2,公比为3的等比数列,所以a n +1=2×3n -1,即a n =2×3n -1-1.(2)∵(n +1)a 2n +1+a n +1·a n -na 2n =0,∴(a n +1+a n )[(n +1)a n +1-na n ]=0, 又a n +1+a n >0,∴(n +1)a n +1-na n =0, 即a n +1a n =n n +1,∴a 2a 1·a 3a 2·a 4a 3·a 5a 4·…·a n a n -1=12×23×34×45×…×n -1n ,∴a n =1n. 答案 (1)2×3n -1-1 (2)1n 微型专题 数列问题中的函数思想数列的单调性问题作为高考考查的一个难点,掌握其处理的方法非常关键,由于数列可看作关于n 的函数,所以可借助函数单调性的处理方法来解决.常见的处理方法如下:一是利用作差法比较a n +1与a n 的大小;二是借助常见函数的图象判断数列单调性;三是利用导函数. 【例4】 数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值.(2)对于n ∈N *,都有a n +1>a n .求实数k 的取值范围.点拨 (1)求使a n <0的n 值;从二次函数看a n 的最小值.(2)数列是一类特殊函数,通项公式可以看作相应的解析式f (n )=n 2+kn +4.f (n )在N *上单调递增,可利用二次函数的对称轴研究单调性,但应注意数列通项中n 的取值. 解 (1)由n 2-5n +4<0,解得1<n <4.∵n ∈N *,∴n =2,3.∴数列中有两项是负数,即为a 2,a 3.∵a n =n 2-5n +4=⎝ ⎛⎭⎪⎫n -522-94,由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n 知该数列是一个递增数列, 又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *, 所以-k 2<32,即得k >-3.点评 (1)本题给出的数列通项公式可以看做是一个定义在正整数集N *上的二次函数,因此可以利用二次函数的对称轴来研究其单调性,得到实数k 的取值范围,使问题得到解决.(2)在利用二次函数的观点解决该题时,一定要注意二次函数对称轴位置的选取.(3)易错分析:本题易错答案为k >-2.原因是忽略了数列作为函数的特殊性,即自变量是正整数.[思想方法]1.由数列的前几项求数列通项,通常用观察法(对于交错数列一般有(-1)n 或(-1)n +1来区分奇偶项的符号);已知数列中的递推关系,一般只要求写出数列的前几项,若求通项可用归纳、猜想和转化的方法. 2.强调a n 与S n 的关系:a n =⎩⎨⎧S 1 (n =1),S n -S n -1(n ≥2).3.已知递推关系求通项:对这类问题的要求不高,但试题难度较难把握.一般有两种常见思路:(1)算出前几项,再归纳、猜想;(2)利用累加或累乘法求数列的通项公式. [易错防范]1.数列是一种特殊的函数,在利用函数观点研究数列时,一定要注意自变量的取值,如数列a n =f (n )和函数y =f (x )的单调性是不同的. 2.数列的通项公式不一定唯一.3.在利用数列的前n 项和求通项时,往往容易忽略先求出a 1,而是直接把数列的通项公式写成a n =S n -S n -1的形式,但它只适用于n ≥2的情形.基础巩固题组 (建议用时:40分钟)一、选择题1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n 等于 ( )A.(-1)n +12B .cos n π2C .cos n +12πD .cos n +22π解析 令n =1,2,3,…,逐一验证四个选项,易得D 正确. 答案 D2.(2014·开封摸底考试)数列{a n }满足a n +1+a n =2n -3,若a 1=2,则a 8-a 4=( )A .7B .6C .5D .4解析 依题意得(a n +2+a n +1)-(a n +1+a n )=[2(n +1)-3]-(2n -3),即a n +2-a n =2,所以a 8-a 4=(a 8-a 6)+(a 6-a 4)=2+2=4. 答案 D3.数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6等于 ( ) A .3×44B .3×44+1C .45D .45+1解析 当n ≥1时,a n +1=3S n ,则a n +2=3S n +1, ∴a n +2-a n +1=3S n +1-3S n =3a n +1,即a n +2=4a n +1, ∴该数列从第二项开始是以4为公比的等比数列. 又a 2=3S 1=3a 1=3,∴a n =⎩⎨⎧1,n =1,3×4n -2,n ≥2. ∴当n =6时,a 6=3×46-2=3×44. 答案 A4.设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( )A.163B.133C .4D .0解析 ∵a n =-3⎝ ⎛⎭⎪⎫n -522+34,由二次函数性质,得当n =2或3时,a n 最大,最大为0. 答案 D5.(2014·东北三校联考)已知数列{a n }的通项公式为a n =n 2-2λn (n ∈N *),则“λ<1”是“数列{a n }为递增数列”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析 若数列{a n }为递增数列,则有a n +1-a n >0,即2n +1>2λ对任意的n ∈N *都成立,于是有3>2λ,λ<32.由λ<1可推得λ<32,但反过来,由λ<32不能得到λ<1,因此“λ<1”是“数列{a n }为递增数列”的充分不必要条件,故选A. 答案 A二、填空题6.(2015·大连双基测试)已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a n =________.解析 当n ≥2时,a n =S n -S n -1=2n +1,当n =1时,a 1=S 1=4≠2×1+1,因此a n =⎩⎨⎧4,n =1,2n +1,n ≥2.答案 ⎩⎨⎧4,n =12n +1,n ≥27.数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=________.解析 由题意知:a 1·a 2·a 3·…·a n -1=(n -1)2,∴a n =⎝ ⎛⎭⎪⎫n n -12(n ≥2),∴a 3+a 5=⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫542=6116. 答案 61168.数列{a n }中,已知a 1=1,a 2=2,a n +1=a n +a n +2(n ∈N *),则a 7=________. 解析 由已知a n +1=a n +a n +2,a 1=1,a 2=2,能够计算出a 3=1,a 4=-1,a 5=-2,a 6=-1,a 7=1.答案 1三、解答题9.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0). (1)若a =-7,求数列{a n }的最大项和最小项的值;(2)若对任意的n ∈N *,都有a n ≤a 6成立,求实数a 的取值范围.解 (1)因为a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0), 又a =-7,所以a n =1+12n -9. 结合函数f (x )=1+12x -9的单调性, 可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *).所以数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2(n -1)=1+12n -2-a 2. 因为对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性, 所以5<2-a 2<6,解得-10<a <-8.故实数a 的取值范围是(-10,-8).10.(2015·陕西五校模拟)设数列{a n }的前n 项和为S n ,且S n =4a n -p ,其中p 是不为零的常数.(1)证明:数列{a n }是等比数列;(2)当p =3时,数列{b n }满足b n +1=b n +a n (n ∈N *),b 1=2,求数列{b n }的通项公式.(1)证明 因为S n =4a n -p ,所以S n -1=4a n -1-p (n ≥2),所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1,整理得a n a n -1=43. 由S n =4a n -p ,令n =1,得a 1=4a 1-p ,解得a 1=p 3.所以{a n }是首项为p 3,公比为43的等比数列.(2)解 当p =3时,由(1)知,a n =⎝ ⎛⎭⎪⎫43n -1, 由b n +1=b n +a n ,得b n +1-b n =⎝ ⎛⎭⎪⎫43n -1, 当n ≥2时,可得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=2+1-⎝ ⎛⎭⎪⎫43n -11-43=3⎝ ⎛⎭⎪⎫43n -1-1,当n =1时,上式也成立.∴数列{b n }的通项公式为b n =3⎝ ⎛⎭⎪⎫43n -1-1. 能力提升题组(建议用时:25分钟)11.数列{a n }的通项a n =n n 2+90,则数列{a n }中的最大项是 ( ) A .310B .19 C.119 D.1060解析 因为a n =1n +90n ,运用基本不等式得,1n +90n ≤1290,由于n ∈N *,不难发现当n =9或10时,a n =119最大.答案 C12.(2015·大庆质量检测)已知数列{a n }满足a n +1=a n -a n -1(n ≥2),a 1=1,a 2=3,记S n =a 1+a 2+…+a n ,则下列结论正确的是( ) A .a 2 014=-1,S 2 014=2B .a 2 014=-3,S 2 014=5C .a 2 014=-3,S 2 014=2D .a 2 014=-1,S 2 014=5 解析 由a n +1=a n -a n -1(n ≥2),知a n +2=a n +1-a n ,则a n +2=-a n -1(n ≥2),a n +3=-a n ,…,a n +6=a n ,又a 1=1,a 2=3,a 3=2,a 4=-1,a 5=-3,a 6=-2,所以当k ∈N 时,a k +1+a k +2+a k +3+a k +4+a k +5+a k +6=a 1+a 2+a 3+a 4+a 5+a 6=0,所以a 2 014=a 4=-1,S 2 014=a 1+a 2+a 3+a 4=1+3+2+(-1)=5. 答案 D13.(2014·山西四校联考)已知数列{a n }的前n 项和为S n ,S n =2a n -n ,则a n =________.解析 当n ≥2时,a n =S n -S n -1=2a n -n -2a n -1+(n -1),即a n =2a n -1+1,∴a n +1=2(a n -1+1),∴数列{a n +1}是首项为a 1+1=2,公比为2的等比数列,∴a n +1=2·2n -1=2n ,∴a n =2n -1.答案 2n -114.设数列{a n }的前n 项和为S n .已知a 1=a (a ≠3),a n +1=S n +3n ,n ∈N *.(1)设b n =S n -3n ,求数列{b n }的通项公式;(2)若a n +1≥a n ,n ∈N *,求a 的取值范围.解 (1)依题意,S n +1-S n =a n +1=S n +3n ,即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n ),又S 1-31=a -3(a ≠3),故数列{S n -3n }是首项为a -3,公比为2的等比数列, 因此,所求通项公式为b n =S n -3n =(a -3)2n -1,n ∈N *.(2)由(1)知S n =3n +(a -3)2n -1,n ∈N *,于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2=2×3n -1+(a -3)2n -2,当n =1时,a 1=a 不适合上式,故a n =⎩⎨⎧a ,n =1,2×3n -1+(a -3)2n -2,n ≥2.a n +1-a n =4×3n -1+(a -3)2n -2=2n -2⎣⎢⎡⎦⎥⎤12·⎝ ⎛⎭⎪⎫32n -2+a -3, 当n ≥2时,a n +1≥a n ⇔12·⎝ ⎛⎭⎪⎫32n -2+a -3≥0⇔a ≥-9. 又a 2=a 1+3>a 1.综上,所求的a 的取值范围是[-9,+∞).第2讲 等差数列及其前n 项和最新考纲 1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题;4.了解等差数列与一次函数、二次函数的关系.知 识 梳 理1.等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数),或a n -a n -1=d (n ≥2,d 为常数).2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . 通项公式的推广:a n =a m +(n -m )d (m ,n ∈N *).(2)等差数列的前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d (其中n ∈N *,a 1为首项,d 为公差,a n 为第n 项).3.等差数列及前n 项和的性质(1)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b 2.(2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(5)S 2n -1=(2n -1)a n .(6)若n 为偶数,则S 偶-S 奇=nd 2;若n 为奇数,则S 奇-S 偶=a 中(中间项).4.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).5.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.诊 断 自 测1.判断正误(在括号内打“√”或“×”) 精彩PPT 展示(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.(×)(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.(√)(3)等差数列{a n }的单调性是由公差d 决定的.(√)(4)数列{a n }满足a n +1-a n =n ,则数列{a n }是等差数列.(×)2.(2014·福建卷)等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( )A .8B .10C .12D .14解析 由题知3a 1+3×22d =12,∵a 1=2,解得d =2,又a 6=a 1+5d ,∴a 6=12.故选C.答案 C3.(2013·新课标全国Ⅰ卷)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( )A .3B .4C .5D .6解析 ∵数列{a n }为等差数列,且前n 项和为S n ,∴数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列. ∴S m -1m -1+S m +1m +1=2S m m ,即-2m -1+3m +1=0, 解得m =5,经检验为原方程的解,故选C.答案 C4.(2014·北京卷)若等差数列{a n}满足a7+a8+a9>0,a7+a10<0,则当n=________时,{a n}的前n项和最大.解析因为数列{a n}是等差数列,且a7+a8+a9=3a8>0,所以a8>0.又a7+a10=a8+a9<0,所以a9<0.∴当n=8时,其前n项和最大.答案85.(人教A必修5P68A8改编)在等差数列{a n}中,若a3+a4+a5+a6+a7=450,则a2+a8=________.解析由等差数列的性质,得a3+a4+a5+a6+a7=5a5=450,∴a5=90,∴a2+a8=2a5=180.答案180考点一等差数列的性质及基本量的求解【例1】(1)设S n为等差数列{a n}的前n项和,S8=4a3,a7=-2,则a9=() A.-6 B.-4 C.-2 D.2解析法一(常规解法):设公差为d,则8a1+28d=4a1+8d,即a1=-5d,a7=a1+6d=-5d+6d=d=-2,所以a9=a7+2d=-6.法二(结合性质求解):根据等差数列的定义和性质可得,S8=4(a3+a6),又S8=4a3,所以a6=0,又a7=-2,所以a8=-4,a9=-6.答案 A(2)(2014·浙江卷)已知等差数列{a n}的公差d>0.设{a n}的前n项和为S n,a1=1,S2·S3=36.①求d及S n;②求m,k(m,k∈N*)的值,使得a m+a m+1+a m+2+…+a m+k=65.解①由题意知(2a1+d)(3a1+3d)=36,将a1=1代入上式解得d=2或d=-5.因为d>0,所以d=2.从而a n=2n-1,S n=n2(n∈N*).②由①得a m+a m+1+a m+2+…+a m+k=(2m+k-1)(k+1),所以(2m+k-1)(k+1)=65.由m ,k ∈N *知2m +k -1≥k +1>1,故⎩⎨⎧2m +k -1=13,k +1=5, 所以⎩⎨⎧m =5,k =4.规律方法 (1)一般地,运用等差数列性质,可以化繁为简、优化解题过程.但要注意性质运用的条件,如m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *),只有当序号之和相等、项数相同时才成立.(2)在求解等差数列基本量问题中主要使用的是方程思想,要注意公式使用时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意整体代换思想的运用,使运算更加便捷.【训练1】 (1)设数列{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( )A .0B .37C .100D .-37(2)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为( )A .13B .12C .11D .10(3)已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 解析 (1)设{a n },{b n }的公差分别为d 1,d 2,则(a n +1+b n +1)-(a n +b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2,∴{a n +b n }为等差数列,又a 1+b 1=a 2+b 2=100,∴{a n +b n }为常数列,∴a 37+b 37=100.(2)因为a 1+a 2+a 3=34,a n -2+a n -1+a n =146,a 1+a 2+a 3+a n -2+a n -1+a n =34+146=180,又因为a 1+a n =a 2+a n -1=a 3+a n -2,所以3(a 1+a n )=180,从而a 1+a n =60,所以S n =n (a 1+a n )2=n ·602=390,即n =13. (3)∵S 10,S 20-S 10,S 30-S 20成等差数列,∴2(S 20-S 10)=S 10+S 30-S 20,∴40=10+S 30-30,∴S 30=60.答案 (1)C (2)A (3)60考点二 等差数列的判定与证明【例2】 (2014·梅州调研改编)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n-1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列; (2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0,得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2, 又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n=2n ,∴S n =12n . 当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1). 当n =1时,a 1=12不适合上式.故a n =⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.规律方法 证明一个数列是否为等差数列的基本方法有两种:一是定义法,证明a n -a n -1=d (n ≥2,d 为常数);二是等差中项法,证明2a n +1=a n +a n +2.若证明一个数列不是等差数列,则只需举出反例即可,也可以用反证法.【训练2】 (2015·西安模拟)已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =S n n +c,是否存在非零实数c 使得{b n }为等差数列?若存在,求出c 的值;若不存在,请说明理由.解 (1)设等差数列{a n }的公差为d ,且d >0,由等差数列的性质,得a 2+a 5=a 3+a 4=22,所以a 3,a 4是关于x 的方程x 2-22x +117=0的解,所以a 3=9,a 4=13,易知a 1=1,d =4,故通项为a n =1+(n -1)×4=4n -3.(2)由(1)知S n =n (1+4n -3)2=2n 2-n ,所以b n =S n n +c =2n 2-n n +c. 法一 所以b 1=11+c ,b 2=62+c ,b 3=153+c(c ≠0). 令2b 2=b 1+b 3,解得c =-12. 当c =-12时,b n =2n 2-n n -12=2n ,当n ≥2时,b n -b n -1=2.故当c =-12时,数列{b n }为等差数列.法二 由b n =S n n +c =n (1+4n -3)2n +c =2n ⎝ ⎛⎭⎪⎫n -12n +c, ∵c ≠0,∴可令c =-12,得到b n =2n .∵b n +1-b n =2(n +1)-2n =2(n ∈N *),∴数列{b n }是公差为2的等差数列.即存在一个非零常数c =-12,使数列{b n }也为等差数列.考点三 等差数列前n 项和的最值问题【例3】 等差数列{a n }的首项a 1>0,设其前n 项和为S n ,且S 5=S 12,则当n 为何值时,S n 有最大值?深度思考 解决此类问题你首先想到的是哪种方法?在这里提醒大家:本题可用四种方法,请大家先思考.解 法一 由题意知d <0,因为S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n , 则可设f (x )=d 2x 2+⎝ ⎛⎭⎪⎫a 1-d 2x ,如图:由S 5=S 12知,抛物线的对称轴为x =5+122=172, 由图可知,当1≤n ≤8时,S n 单调递增; 当n ≥9时,S n 单调递减.又n ∈N *,所以当n =8或9时,S n 最大.法二 设等差数列{a n }的公差为d ,由S 5=S 12得5a 1+10d =12a 1+66d , d =-18a 1<0.所以S n =na 1+n (n -1)2d =na 1+n (n -1)2·(-18a 1) =-116a 1(n 2-17n )=-116a 1⎝ ⎛⎭⎪⎫n -1722+28964a 1,因为a 1>0,n ∈N *,所以当n =8或n =9时,S n 有最大值. 法三 设等差数列{a n }的公差为d ,由法二得d =-18a 1<0. 设此数列的前n 项和最大,则⎩⎨⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a n =a 1+(n -1)·⎝ ⎛⎭⎪⎫-18a 1≥0,a n +1=a 1+n ·⎝ ⎛⎭⎪⎫-18a 1≤0,解得⎩⎨⎧n ≤9,n ≥8,即8≤n ≤9,又n ∈N *,所以当n =8或n =9时,S n 有最大值. 法四 同法二得d =-18a 1<0,又S 5=S 12,得a 6+a 7+a 8+a 9+a 10+a 11+a 12=0, ∴7a 9=0,∴a 9=0,∴当n =8或9时,S n 有最大值.规律方法 求等差数列前n 项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项;(2)利用性质求出其正负转折项,便可求得和的最值;(3)将等差数列的前n 项和S n =An 2+Bn (A ,B 为常数)看作二次函数,根据二次函数的性质求最值.【训练3】 (1)等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时,n 的值是( ) A .5 B .6 C .7 D .8(2)(2014·望江中学模拟)设数列{a n }是公差d <0的等差数列,S n 为前n 项和,若S 6=5a 1+10d ,则S n 取最大值时,n 的值为( ) A .5 B .6 C .5或6 D .11(3)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________.解析 (1)依题意得2a 6=4,2a 7=-2,a 6=2>0,a 7=-1<0;又数列{a n }是等差数列,因此在该数列中,前6项均为正数,自第7项起以后各项均为负数,于是当S n 取最大值时,n =6,选B.(2)由题意得S 6=6a 1+15d =5a 1+10d ,所以a 6=0,故当n =5或6时,S n 最大,选C.(3)因为等差数列{a n }的首项a 1=20,公差d =-2,代入求和公式得, S n =na 1+n (n -1)2d =20n -n (n -1)2×2=-n 2+21n =-⎝ ⎛⎭⎪⎫n -2122+⎝ ⎛⎭⎪⎫2122,又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110. 答案 (1)B (2)C (3)110[思想方法]1.判断数列为等差数列的方法(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列. (2)等差中项法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列.(3)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列. (4)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列.2.方程思想和化归思想:在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解.3.在遇到三个数成等差数列问题时,可设三个数为(1)a ,a +d ,a +2d ;(2)a -d ,a ,a +d ;(3)a -d ,a +d ,a +3d 等,可视具体情况而定. [易错防范]1.当公差d ≠0时,等差数列的通项公式是n 的一次函数,当公差d =0时,a n 为常数.2.公差不为0的等差数列的前n 项和公式是n 的二次函数,且常数项为0.若某数列的前n 项和公式是常数项不为0的二次函数,则该数列不是等差数列. 3.求等差数列的前n 项和S n 的最值时,需要注意“自变量n 为正整数”这一隐含条件.若对称轴取不到,需考虑最接近对称轴的自变量n (n 为正整数);若对称轴对应两个正整数的中间,此时应有两个符合题意的n 值.基础巩固题组 (建议用时:40分钟)一、选择题1.(2014·温州二模)记S n 为等差数列{a n }的前n 项和,若S 33-S 22=1,则其公差d =( )A.12B .2C .3D .4解析 由S 33-S 22=1,得a 1+a 2+a 33-a 1+a 22=1,即a 1+d -⎝ ⎛⎭⎪⎫a 1+d 2=1,∴d =2.答案 B2.设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1= ( )A .2B .-2C.12D .-12解析 由题意知S 1=a 1,S 2=2a 1-1,S 4=4a 1-6,因为S 1,S 2,S 4成等比数列,所以S 22=S 1·S 4,即(2a 1-1)2=a 1(4a 1-6),解得a 1=-12,故选D. 答案 D3.(2015·石家庄模拟)已知等差数列{a n },且3(a 3+a 5)+2(a 7+a 10+a 13)=48,则数列{a n }的前13项之和为( )A .24B .39C .104D .52解析 因为{a n }是等差数列,所以3(a 3+a 5)+2(a 7+a 10+a 13)=6a 4+6a 10=48,所以a 4+a 10=8,其前13项的和为13(a 1+a 13)2=13(a 4+a 10)2=13×82=52,故选D. 答案 D4.(2015·广州综合测试)设S n 是等差数列{a n }的前n 项和,公差d ≠0,若S 11=132,a 3+a k =24,则正整数k 的值为( )A .9B .10C .11D .12解析 依题意得S 11=11(a 1+a 11)2=11a 6=132,a 6=12,于是有a 3+a k =24=2a 6,因此3+k =2×6=12,k =9,故选A. 答案 A5.(2014·武汉调研)已知数列{a n }满足a n +1=a n -57,且a 1=5,设{a n }的前n 项和为S n ,则使得S n 取得最大值的序号n 的值为( )A .7B .8C .7或8D .8或9解析 由题意可知数列{a n }是首项为5,公差为-57的等差数列,所以a n =5- 57(n -1)=40-5n 7,该数列前7项是正数项,第8项是0,从第9项开始是负数项,所以S n 取得最大值时,n =7或8,故选C. 答案 C 二、填空题6.(2014·肇庆二模)在等差数列{a n }中,a 15=33,a 25=66,则a 35=________.解析 a 25-a 15=10d =66-33=33,∴a 35=a 25+10d =66+33=99. 答案 997.设S n 为等差数列{a n }的前n 项和,S 2=S 6,a 4=1,则a 5=________. 解析 由题意知⎩⎪⎨⎪⎧2a 1+d =6a 1+6×52d ,a 1+3d =1,解得⎩⎨⎧a 1=7,d =-2,∴a 5=a 4+d =1+(-2)=-1.答案 -18.已知等差数列{a n }中,S 3=9,S 6=36,则a 7+a 8+a 9=________. 解析 ∵{a n }为等差数列,∴S 3,S 6-S 3,S 9-S 6成等差数列, ∴2(S 6-S 3)=S 3+(S 9-S 6), ∴a 7+a 8+a 9=S 9-S 6 =2(S 6-S 3)-S 3 =2(36-9)-9=45. 答案 45 三、解答题9.(2014·新课标全国Ⅰ卷)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数. (1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由. (1)证明 由题设知,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1. 两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)解 由题设知,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. 由(1)知,a 3=λ+1.令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得 {a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3; {a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.10.设等差数列{a n }的前n 项和为S n ,若a 1<0,S 2 015=0. (1)求S n 的最小值及此时n 的值; (2)求n 的取值集合,使a n ≥S n . 解 (1)设公差为d ,则由S 2 015=0⇒ 2 015a 1+2 015×2 0142d =0⇒a 1+1 007d =0,d =-11 007a 1,a 1+a n =2 015-n 1 007a 1,∴S n =n 2(a 1+a n )=n 2·2 015-n 1 007a 1=a 12 014(2 015n -n 2). ∵a 1<0,n ∈N *,∴当n =1 007或1 008时,S n 取最小值504a 1. (2)a n =1 008-n1 007a 1,S n ≤a n ⇔a 12 014(2 015n -n 2)≤1 008-n 1 007a 1. ∵a 1<0,∴n 2-2 017n +2 016≤0, 即(n -1)(n -2 016)≤0,解得1≤n ≤2 016. 故所求n 的取值集合为{n |1≤n ≤2 016,n ∈N *}.能力提升题组 (建议用时:25分钟)11.(2015·东北三省四市联考)《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为 ( ) A.53B.103C.56D.116解析 依题意,设这100份面包所分成的五份由小到大依次为a -2m ,a -m ,a ,a +m ,a +2m ,则有⎩⎨⎧5a =100,a +(a +m )+(a +2m )=7(a -2m +a -m ),解得a =20,m =11a 24,a -2m =a 12=53,即其中最小一份为53,故选A.答案 A12.(2014·杭州质量检测)设S n 为等差数列{a n }的前n 项和,(n +1)S n <nS n +1(n ∈N *).若a 8a 7<-1,则( )A .S n 的最大值是S 8B .S n 的最小值是S 8C .S n 的最大值是S 7D .S n 的最小值是S 7解析 由条件得S n n <S n +1n +1,即n (a 1+a n )2n <(n +1)(a 1+a n +1)2(n +1),所以a n <a n +1,所以等差数列{a n }为递增数列.又a 8a 7<-1,所以a 8>0,a 7<0,即数列{a n }前7项均小于0,第8项大于零,所以S n 的最小值为S 7,故选D. 答案 D13.(2014·陕西卷)已知f (x )=x1+x ,x ≥0,若f 1(x )=f (x ),f n +1(x )=f (f n (x )),n ∈N *,则f 2 014(x )的表达式为________. 解析 由已知易知f n (x )>0, ∵f n +1(x )=f (f n (x ))=f n (x )1+f n (x ),∴1f n +1(x )=1+f n (x )f n (x )=1f n (x )+1⇒1f n +1(x )-1f n (x )=1, ∴⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1f n (x )是以1f 1(x )=1+x x 为首项,1为公差的等差数列.∴1f n (x )=1+x x +(n -1)×1=1+nx x , ∴f n (x )=x 1+nx ,∴f 2 014(x )=x1+2 014x .答案 x1+2 014x14.已知等差数列的前三项依次为a ,4,3a ,前n 项和为S n ,且S k =110. (1)求a 及k 的值;(2)设数列{b n }的通项b n =S nn ,证明数列{b n }是等差数列,并求其前n 项和T n . 解 (1)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a ,由已知有a +3a =8,得a 1=a =2,公差d =4-2=2, 所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k .由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10. (2)由(1)得S n =n (2+2n )2=n (n +1),则b n=S nn =n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列, 所以T n =n (2+n +1)2=n (n +3)2.第3讲 等比数列及其前n 项和最新考纲 1.理解等比数列的概念,掌握等比数列的通项公式及前n 项和公式;2.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题;3.了解等比数列与指数函数的关系.知 识 梳 理1.等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (q ≠0)表示.数学语言表达式:a n a n -1=q (n ≥2,q 为非零常数),或a n +1a n =q (n ∈N *,q 为非零常数).2. 等比数列的通项公式及前n 项和公式(1)若等比数列{a n }的首项为a 1,公比是q ,则其通项公式为a n =a 1q n -1; 通项公式的推广:a n =a m q n -m .(2)等比数列的前n 项和公式:当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q.3.等比数列及前n 项和的性质(1)如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇔G 2=ab .(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n . (3)相隔等距离的项组成的数列仍是等比数列,即a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m .(4)当q ≠-1,或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n .诊 断 自 测1.判断正误(在括号内打“√”或“×”)精彩PPT 展示(1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.(×) (2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .(×)(3)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a.(×)(4)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.(×) 2.已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10等于( ) A .7 B .5 C .-5 D .-7解析 法一 由题意得⎩⎨⎧a 4+a 7=a 1q 3+a 1q 6=2,a 5a 6=a 1q 4×a 1q 5=a 21q 9=-8,∴⎩⎨⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,∴a 1+a 10=a 1(1+q 9)=-7. 法二 由⎩⎨⎧a 4+a 7=2,a 5a 6=a 4a 7=-8,解得⎩⎨⎧a 4=-2,a 7=4或⎩⎨⎧a 4=4,a 7=-2.∴⎩⎨⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,∴a 1+a 10=a 1(1+q 9)=-7. 答案 D3.(2014·大纲全国卷)设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( ) A .31 B .32 C .63 D .64解析 由等比数列的性质,得(S 4-S 2)2=S 2·(S 6-S 4),即122=3×(S 6-15),解得S 6=63.故选C. 答案 C4.(2014·广东卷)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则lna 1+ln a 2+…+ln a 20=________.解析 由等比数列的性质可知,a 10a 11+a 9a 12=2e 5,所以a 10·a 11=e 5,于是 ln a 1+ln a 2+…+ln a 20=10ln(a 10·a 11)=10ln e 5=50. 答案 505.(人教A 必修5P54A8改编)在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为________. 解析 设该数列的公比为q ,由题意知, 243=9×q 3,q 3=27,∴q =3.所以插入的两个数分别为9×3=27,27×3=81. 答案 27,81考点一 等比数列中基本量的求解【例1】 (1)设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5等于( ) A.152 B.314 C.334 D.172(2)在等比数列{a n }中,a 4=2,a 7=16,则a n =________.(3)在等比数列{a n }中,a 2+a 5=18,a 3+a 6=9,a n =1,则n =________.解析(1)显然公比q ≠1,由题意得⎩⎨⎧a 1q ·a 1q 3=1,a 1(1-q 3)1-q =7,解得⎩⎪⎨⎪⎧a 1=4,q =12或⎩⎪⎨⎪⎧a 1=9,q =-13(舍去),∴S 5=a 1(1-q 5)1-q=4⎝ ⎛⎭⎪⎫1-1251-12=314. (2)由a 7a 4=q 3=8,知q =2,所以a n =a 4q n -4=2·2n -4=2n -3.(3)因为a 3+a 6=q (a 2+a 5),所以q =12,由a 1q +a 1q 4=18,知a 1=32, 所以a n =a 1q n -1=1,解得n =6. 答案 (1)B (2)2n -3 (3)6规律方法 等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.【训练1】 在等比数列{a n }中,a 2-a 1=2,且2a 2为3a 1和a 3的等差中项,求数列{a n }的首项、公比及前n 项和.解 设该数列的公比为q ,由已知可得a 1q -a 1=2, 4a 1q =3a 1+a 1q 2,所以a 1(q -1)=2,q 2-4q +3=0, 解得q =3或q =1.由于a 1(q -1)=2,因此q =1不合题意,应舍去. 故公比q =3,首项a 1=1. 所以数列的前n 项和S n =3n -12. 考点二 等比数列的性质及应用【例2】 (1)公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则log 2a 10=( )A .4B .5C .6D .7(2)等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q =________.解析 (1)法一 由等比中项的性质得a 3a 11=a 27=16,又数列{a n }各项为正,所以a 7=4.所以a 10=a 7×q 3=32.所以log 2a 10=5. 法二 设等比数列的公比为q ,由题意知,a n >0,则a 3·a 11=a 27=⎝⎛⎭⎪⎫a 10q 32=126a 210=24,所以a 210=210,解得a 10=25.故log 2a 10=5.(2)由S 10S 5=3132,a 1=-1知公比q ≠1,则S 10-S 5S 5=-132.由等比数列前n项和的性质知S5,S10-S5,S15-S10成等比数列,且公比为q5,故q5=-132,q=-1 2.答案(1)B(2)-1 2规律方法(1)在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m+n=p+q,则a m·a n=a p·a q”,可以减少运算量,提高解题速度.(2)在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.【训练2】(1)已知x,y,z∈R,若-1,x,y,z,-3成等比数列,则xyz的值为()A.-3 B.±3 C.-3 3 D.±3 3(2)已知各项均为正数的等比数列{a n}中,a1a2a3=5,a7a8a9=10,则a4a5a6等于()A.5 2 B.7 C.6 D.4 2解析(1)由等比中项知y2=3,∴y=±3,又∵y与-1,-3符号相同,∴y=-3,y2=xz,所以xyz=y3=-3 3.(2)把a1a2a3,a2a3a4,…,a7a8a9各看成一个整体,由题意知它们分别是一个等比数列的第1项、第4项和第7项,这里的第4项刚好是第1项与第7项的等比中项.因为数列{a n}的各项均为正数,所以a4a5a6=(a1a2a3)·(a7a8a9)=5×10=5 2.答案(1)C(2)A考点三等比数列的判定与证明【例3】已知数列{a n}的前n项和为S n,数列{b n}中,b1=a1,b n=a n-a n-1(n≥2),且a n+S n=n.(1)设c n=a n-1,求证:{c n}是等比数列;(2)求数列{b n}的通项公式.深度思考 若本题除去第(1)问后如何求b n ?在这里给大家介绍一种方法:构造法,如本例中构造等比数列{a n -1}. (1)证明 ∵a n +S n =n ,① ∴a n +1+S n +1=n +1.② ②-①得a n +1-a n +a n +1=1, ∴2a n +1=a n +1, ∴2(a n +1-1)=a n -1,∴a n +1-1a n -1=12,∴{a n -1}是等比数列.又a 1+a 1=1,∴a 1=12,∵首项c 1=a 1-1,∴c 1=-12, 公比q =12.又c n =a n -1,∴{c n }是以-12为首项,以12为公比的等比数列. (2)解 由(1)可知c n =⎝ ⎛⎭⎪⎫-12·⎝ ⎛⎭⎪⎫12n -1=-⎝ ⎛⎭⎪⎫12n,∴a n =c n +1=1-⎝ ⎛⎭⎪⎫12n.∴当n ≥2时,b n =a n -a n -1=1-⎝ ⎛⎭⎪⎫12n -⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n =⎝ ⎛⎭⎪⎫12n . 又b 1=a 1=12代入上式也符合,∴b n =⎝ ⎛⎭⎪⎫12n.规律方法 证明数列{a n }是等比数列常用的方法:一是定义法,证明a na n -1=q (n ≥2,q 为常数);二是等比中项法,证明a 2n =a n -1·a n +1.若判断一个数列不是等比数列,则只需举出反例即可,也可以用反证法.【训练3】 成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{b n }中的b 3,b 4,b 5. (1)求数列{b n }的通项公式;(2)数列{b n }的前n 项和为S n ,求证:数列⎩⎨⎧⎭⎬⎫S n +54是等比数列.(1)解 设成等差数列的三个正数分别为a -d ,a ,a +d ,依题意,得a -d +a。
第一节 数列的概念及简单表示法A 组 专项基础测试 三年模拟精选一、选择题1.(2015·玉溪一中模拟)已知数列{a n }满足a 1=1,a n +1=⎩⎪⎨⎪⎧2a n (n 为正奇数),a n +1(n 为正偶数),则其前6项之和是( ) A .16B .20C .33D .120解析 a 2=2a 1=2,a 3=a 2+1=3,a 4=2a 3=6,a 5=a 4+1=7,a 6=2a 5=14,∴S 6=1+2+3+6+7+14=33. 答案 C2.(2015·天津南开中学月考)下列可作为数列{a n }:1,2,1,2,1,2,…的通项公式的是( ) A .a n =1B .a n =(-1)n+12C .a n =2-|sinn π2|D .a n =(-1)n -1+32解析 A 项显然不成立;n =1时,a 1=-1+12=0,故B 项不正确;n =2时,a 2=(-1)2-1+32=1,故D 项不正确.由a n =2-|sin n π2|可得a 1=1,a 2=2,a 3=1,a 4=2,…,故选C.答案 C3.(2014·济南外国语学校模拟)数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6等于( )A .44B .3×44+1 C .3×44D .44+1解析 由a n +1=3S n (n ≥1)得a n +2=3S n +1,两式相减得a n +2-a n +1=3a n +1, ∴a n +2=4a n +1,即a n +2a n +1=4,a 2=3S 1=3,∴a 6=a 244=3×44.答案 C4.(2014·北大附中模拟)在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 013的值是( ) A .8B .6C .4D .2解析 a 1a 2=2×7=14,∴a 3=4,4×7=28,∴a 4=8,4×8=32,∴a 5=2,2×8=16,∴a 6=6,a 7=2,a 8=2,a 9=4,a 10=8,a 11=2,∴从第三项起,a n 的值成周期排列,周期数为6,2 013=335×6+3,∴a 2 013=a 3=4. 答案 C5.(2013·潍坊模拟)已知a n =⎝ ⎛⎭⎪⎫13n,把数列{a n }的各项排列成如下的三角形状,记A (m ,n )表示第m 行的第n 个数,则A (10,12)=( )a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9…A.⎝ ⎛⎭⎪⎫1393B.⎝ ⎛⎭⎪⎫1392C.⎝ ⎛⎭⎪⎫1394D.⎝ ⎛⎭⎪⎫13112解析 前9行共有1+3+5+…+17=(1+17)×92=81(项),∴A (10,12)为数列中的第81+12=93(项),∴a 93=⎝ ⎛⎭⎪⎫1393. 答案 A 二、填空题6.(2014·山东聊城二模)如图所示是一个类似杨辉三角的数阵,则第n (n ≥2)行的第2个数为________.1 3 3 5 6 5 7 11 11 7 9 18 22 18 9……解析 每行的第2个数构成一个数列{a n },由题意知a 2=3,a 3=6,a 4=11,a 5=18,所以 a 3-a 2=3,a 4-a 3=5,a 5-a 4=7,…,a n -a n -1=2(n -1)-1=2n -3,由累加法得a n -a 2=[(2n -3)+3]×(n -2)2=n 2-2n ,所以a n =n 2-2n +a 2=n 2-2n +3(n ≥2).答案 n 2-2n +3一年创新演练7.数列{a n }的前n 项和为S n ,已知a 1=15,且对任意正整数m ,n ,都有a m +n =a m a n ,若S n <t恒成立,则实数t 的最小值为________. 解析 令m =1,则a n +1a n=a 1, ∴{a n }是以a 1为首项,15为公比的等比数列.∴a n =⎝ ⎛⎭⎪⎫15n. ∴S n =15-⎝ ⎛⎭⎪⎫15n +11-15=14⎝⎛⎭⎪⎫1-15n =14-14·5n <14.由S n <t 恒成立,∴t >S n 的最大值,可知t =14.答案 148.我们可以利用数列{a n }的递推公式a n =⎩⎪⎨⎪⎧n ,n 为奇数时,a n 2,n 为偶数时(n ∈N *),求出这个数列各项的值,使得这个数列中的每一项都是奇数,则a 24+a 25=________;研究发现,该数列中的奇数都会重复出现,那么第8个5是该数列的第________项. 解析 a 24+a 25=a 12+25=a 6+25=a 3+25=3+25= 28.5=a 5=a 10=a 20=a 40=a 80=a 160=a 320=a 640. 答案 28 640B 组 专项提升测试 三年模拟精选一、选择题9.(2015·广东佛山一模)数列{a n }满足a 1=1,a 2=1,a n +2=⎝⎛⎭⎪⎫1+sin2n π2a n +4cos2n π2,则a 9,a 10的大小关系为( )A .a 9>a 10B .a 9=a 10C .a 9<a 10D .大小关系不确定解析 n 为奇数时,a 3=2a 1=2,a 5=2a 3=22,a 7=2a 5=23,a 9=2a 7=24;n 为偶数时,a 4=a 2+4=5,a 6=a 4+4=9,a 8=a 6+4=13,a 10=a 8+4=17.所以a 9<a 10.故选C. 答案 C 二、填空题10.(2015·合肥模拟)数列{a n }满足a n +1=⎩⎪⎨⎪⎧2a n,0≤a n≤12,2a n-1,12<a n<1,a 1=35,则数列的第2 013项为________.解析 ∵a 1=35,∴a 2=2a 1-1=15.∴a 3=2a 2=25.∴a 4=2a 3=45,a 5=2a 4-1=35,a 6=2a 5-1=15,…,∴该数列的周期T =4.∴a 2 013=a 1=35.答案 3511.(2014·温州质检)已知数列{a n }的通项公式为a n =(n +2)·⎝ ⎛⎭⎪⎫78n,则当a n 取得最大值时,n 等于________.解析 由题意知⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1,∴⎩⎪⎨⎪⎧(n +2)⎝ ⎛⎭⎪⎫78n ≥(n +1)⎝ ⎛⎭⎪⎫78n -1,(n +2)⎝ ⎛⎭⎪⎫78n ≥(n +3)⎝ ⎛⎭⎪⎫78n +1.解得⎩⎪⎨⎪⎧n ≤6,n ≥5.∴n =5或6.答案 5或612.(2014·天津新华中学模拟)已知数列{a n }的前n 项和S n =2a n -1,则满足a nn≤2的正整数n 的集合为________.解析 因为S n =2a n -1, 所以当n ≥2时,S n -1=2a n -1-1, 两式相减得a n =2a n -2a n -1, 整理得a n =2a n -1,所以{a n }是公比为2的等比数列. 又因为a 1=2a 1-1,所以a 1=1, 故a n =2n -1,而a n n≤2,即2n -1≤2n ,所以有n ∈{1,2,3,4}. 答案 {1,2,3,4}13.(2013·江苏期末调研)对于数列{a n },定义数列{a n +1-a n }为数列{a n }的差数列.若a 1=2,{a n }的“差数列”的通项公式为2n,则数列{a n }的前n 项和S n =________.解析 由已知a n +1-a n =2n ,a 1=2得a 2-a 1=2,a 3-a 2=22,…,a n -a n -1=2n -1,由累加法得a n =2+2+22+…+2n -1=2n,从而S n =2(1-2n)1-2=2n +1-2.答案 2n +1-2三、解答题14.(2014·青岛一中模拟)在数列{a n }中,a 1=1,a 1+2a 2+3a 3+…+na n =n +12a n +1(n ∈N *).(1)求数列{a n }的通项a n ;(2)若存在n ∈N *,使得a n ≤(n +1)λ成立,求实数λ的最小值. 解 (1)当n ≥2时,由题可得a 1+2a 2+3a 3+…+(n -1)a n -1=n2a n .①a 1+2a 2+3a 3+…+na n =n +12a n +1,②②-①得na n =n +12a n +1-n2a n ,即(n +1)a n +1=3na n ,(n +1)a n +1na n=3,∴{na n }是以2a 2=2为首项,3为公比的等比数列(n ≥2), ∴na n =2·3n -2,∴a n =2n·3n -2(n ≥2),∵a 1=1,∴a n =⎩⎪⎨⎪⎧1,n =1,2n·3n -2,n ≥2. (2)a n ≤(n +1)λ⇔λ≥a n n +1,由(1)可知当n ≥2时,a nn +1=2·3n -2n (n +1),设f (n )=n (n +1)2·3n(n ≥2,n ∈N *),a nn +1=132·1f (n ), 则f (n +1)-f (n )=2(n +1)(1-n )2·3n +1<0, ∴1f (n +1)>1f (n )(n ≥2),又132·1f (2)=13及a 12=12, ∴所求实数λ的最小值为13.一年创新演练15.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围. 解 (1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0),又∵a =-7,∴a n =1+12n -9.结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0. (2)a n =1+1a +2(n -1)=1+12n -2-a2.∵对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性,∴5<2-a 2<6,∴-10<a <-8.。