(江苏选考)2018版高考物理二轮复习第一部分专题四电路和电磁感应专题跟踪检测(十八)直流电路的分析和计
- 格式:doc
- 大小:228.00 KB
- 文档页数:6
电流互感器把大电流变成小电流,测量时更安全,据变压器原理,n2>n1,原线圈要接在火线上,故本题只有A正确.N1:N2:1I1:I N2:N正确.A.发电机产生的交流电的频率是100 Hz.降压变压器输出的电压有效值是340 V.输电线的电流仅由输送功率决定n1:n=:k n3:n=:1模拟输电导线的电阻r=3 Ω,T2的负载是规格为“15 当T1的输入电压正常发光,两个变压器可视为理想变压器,则).由于磁场方向周期性变化,电流表示数也周期性变化.电压表的示数在导体棒位于图中ab位置时最大.当导体棒运动到图中虚线cd位置时,水平外力F=0.由于乙交变电流的周期短,因此灯泡比第一次亮.由于乙的频率比甲的大,因此电容器有可能被击穿.无论接甲电源,还是接乙电源,若滑动触头P向上移动,灯泡都变暗副线圈的匝数比为,a、b”的灯泡,两电表为理想交流电表.当滑动变阻器的滑片处于中间位置时,两灯泡恰好都正常发光.下列说法正确的是1:2错.原、副线圈两端电压2:144 V,B移动时,副线圈电路的电阻变小,电流变大,则原线圈电路中电流也变大,即通过灯泡的电流变大,灯泡.如图所示,平行金属板中带电质点P原来处于静止状态,不考虑电流表和电压表对r相等.将滑动变阻器R4n1:n2=:,原线圈两端.电流表的读数为 2 A.电压表的读数为110 V的功率为110 W.矩形线圈产生的感应电动势的瞬时值表达式为e=NBSωcosωt.矩形线圈从图示位置经过π2ω时间内,通过电流表A1的电荷量为n1:n=:10放在导轨上,在水平外力速度随时间变化的规律是棒中产生的电动势的表达式;ab棒中产生的是什么电流?上的电热功率P.0.025 s的时间内,通过外力F所做的功.棒中产生的电动势的表达式为。
专题跟踪检测(十) 应用功能关系破解叠放体中的能量问题1.一个质量为m 的物体以某一速度从固定斜面底端冲上倾角为30°的斜面,其加速度为34g ,如图所示,此物体在斜面上上升的最大高度为h ,则此过程中( ) A .物体动能增加了32mghB .物体克服重力做功mghC .物体机械能损失了mghD .物体克服摩擦力做功14mgh解析:选B 物体在斜面上加速度为34g ,方向沿斜面向下,物体所受合力F 合=ma =34mg ,方向沿斜面向下,斜面倾角为30°,由几何关系知,物体从斜面底端到最大高度处的位移为2h ,物体从斜面底端到最大高度处,合力做功W 合=-F 合×2h =-32mgh ,根据动能定理得W 合=ΔE k ,所以物体动能减小32mgh ,故A 错误;根据功的定义式得:重力做功W G =-mgh ,故B 正确;重力做功量度重力势能的变化,所以物体重力势能增加了mgh ,而物体动能减小32mgh ,所以物体机械能损失了12mgh ,故C 错误;除了重力之外的力做的功量度机械能的变化,物体除了重力之外还有摩擦力做功,物体机械能减小了12mgh ,所以摩擦力做功为-12mgh ,故D 错误。
2.如图所示,足够长的木板B 置于光滑水平面上,木块A 置于木板B 上,A 、B 接触面粗糙,动摩擦因数为一定值,现用一水平恒力F 作用在B 上使其由静止开始运动,A 、B 之间有相对运动,下列说法正确的是( )A .B 对A 的摩擦力的功率是不变的B .力F 做的功一定等于A 、B 系统动能的增加量C .力F 对B 做的功等于B 动能的增加量D .B 对A 的摩擦力做的功等于A 动能的增加量解析:选D B 对A 的摩擦力一定,A 的速度增大,由P =Fv 知B 对A 的摩擦力的功率增大,故A 错误;对整体分析可知,F 做功转化为A 、B 系统的动能及内能,故F 做的功一定大于A 、B 系统动能的增加量,故B 错误;由动能定理可知,力F 对B 做的功与A 对B 的摩擦力做功的代数和等于B 动能的增加量,故C 错误;只有B 对A 的摩擦力对A 做功,由动能定理知B 对A 的摩擦力做的功等于A 动能的增加量,故D 正确。
专题跟踪检测(十四) 带电体在电场中的运动问题一、选择题(第1~5题为单项选择题,第6~9题为多项选择题) 1.(2017·东海期中)如图所示,带电的平行金属板电容器水平放置,质量相同、重力不计的带电微粒A 、B 以平行于极板的相同初速度从不同位置射入电场,结果打在极板上同一点P 。
不计两微粒之间的库仑力,下列说法正确的是( )A .在电场中微粒A 运动的时间比B 长 B .在电场中微粒A 运动的时间比B 短C .静电力对微粒A 做的功比B 少D .微粒A 所带的电荷量比B 多解析:选D 水平方向两微粒做匀速直线运动,运动时间为 t =x v 0,因为x 、v 0相等,则t 相等,故A 、B 错误;在竖直方向上两微粒做初速度为零的匀加速直线运动,由y =12at2=Eq 2m t 2得电荷量为:q =2myEt2,可知,q ∝y ,所以微粒A 所带的电荷量多。
电场力做功为:W =qEy =2my Et 2·Ey =2my 2t2,则有:W ∝y 2,可知电场力对微粒A 做的功多,故C 错误,D 正确。
2.(2017·姑苏模拟)如图,左侧为加速电场,右侧为偏转电场,加速电场的加速电压是偏转电场电压的k 倍,有一初速度为零的电荷经加速电场加速后,从偏转电场两板正中间垂直电场方向射入,且正好能从极板下边缘穿出电场,不计电荷的重力,则偏转电场长宽之比⎝ ⎛⎭⎪⎫l d的值为( )A.kB.2kC.3kD.5k解析:选B 设加速电压为kU ,偏转电压为U ,对直线加速过程,根据动能定理,有:q ·kU =12mv 2,对类平抛运动过程,有:l =vt ,d 2=qU 2md t 2,联立解得:ld=2k ,故B 正确。
3.(2017·南通一模)如图甲所示,两平行金属板MN 、PQ 的板长和板间距离相等,板间存在如图乙所示的随时间周期性变化的电场,电场方向与两板垂直,在t =0时刻,一不计重力的带电粒子沿板间中线垂直电场方向射入电场,粒子射入电场时的速度为v 0,t =T 时刻粒子刚好沿MN 板右边缘射出电场。
专题限时集训(八) 磁场、带电粒子在磁场及复合场中的运动(对应学生用书第131页)(建议用时:40分钟)一、选择题(本题共8小题,每小题6分.在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分.)1.中国宋代科学家沈括在《梦溪笔谈》中最早记载了地磁偏角:“以磁石磨针锋,则能指南,然常微偏东,不全南也.”进一步研究表明,地球周围地磁场的磁感线分布示意如图8-21所示.结合上述材料,下列说法不正确的是()【导学号:17214143】图8-21A.地理南、北极与地磁场的南、北极不重合B.地球内部也存在磁场,地磁南极在地理北极附近C.地球表面任意位置的地磁场方向都与地面平行D.地磁场对射向地球赤道的带电宇宙射线粒子有力的作用C[地球为一巨大的磁体,地磁场的南极、北极在地理上的北极和南极附近,两极并不重合;且地球内部也存在磁场,只有赤道上空磁场的方向才与地面平行;对射向地球赤道的带电宇宙射线粒子的速度方向与地磁场方向不会平行,一定受到地磁场力的作用,故C项说法不正确.]2.(2017·洛阳三模)如图8-22所示,一个静止的质量为m、带电荷量为q的粒子(不计重力),经电压U加速后垂直进入磁感应强度为B的匀强磁场中,粒子在磁场中转半个圆后打在P点,设OP=x,能够正确反映x与U之间的函数关系的是()图8-22B [带电粒子经电压U 加速,由动能定理,qU =12m v 2,垂直进入磁感应强度为B 的匀强磁场中,洛伦兹力提供向心力,q v B =m v 2R ,而R =x 2,联立解得x =8m qB 2U .由此可知能够正确反映x 与U 之间的函数关系的是选项B 中图象.]3.如图8-23,在磁感应强度大小为B 0的匀强磁场中,两长直导线P 和Q 垂直于纸面固定放置,两者之间的距离为l .在两导线中均通有方向垂直于纸面向里的电流I 时,纸面内与两导线距离均为l 的a 点处的磁感应强度为零.如果让P 中的电流反向、其他条件不变,则a 点处磁感应强度的大小为( )【导学号:17214144】图8-23A .0B .33B 0C .233B 0D .2B 0C [在两导线中均通有方向垂直于纸面向里的电流I 时,纸面内与两导线距离为l 的a 点处的磁感应强度为零,如图所示:由此可知,外加的磁场方向与PQ 平行,且由Q 指向P ,即B 1=B 0依据几何关系及三角知识,则有:B P cos 30°=12B 0解得:P 或Q 通电导线在a 处的磁场大小为B P =33B 0当P 中的电流反向,其他条件不变,再依据几何关系,及三角知识,则有:B 2=33B 0因外加的磁场方向与PQ 平行,且由Q 指向P ,磁场大小为B 0;最后由矢量的合成法则,那么a 点处磁感应强度的大小为B =B 20+⎝ ⎛⎭⎪⎫33B 02=233B 0,故C 正确,A 、B 、D 错误.]4.质谱仪是一种测定带电粒子质量和分析同位素的重要工具.图8-24中的铅盒A 中的放射源放出大量的带正电粒子(可认为初速度为零),从狭缝S 1进入电压为U 的加速电场区加速后,再通过狭缝S 2从小孔G 垂直于MN ,以速度v 射入偏转磁场,该偏转磁场是以直线MN 为切线、磁感应强度为B 、方向垂直于纸面向外、半径为R 的圆形匀强磁场.现在MN 上的F 点(图中未画出)接收到该粒子,且GF =3R .则该粒子的荷质比为(粒子的重力忽略不计)( )【导学号:17214145】图8-24A .8U R 2B 2 B .4U R 2B 2C .6U R 2B 2D .2U R 2B 2C [带电粒子运动轨迹如图设粒子加速后获得的速度为v ,由动能定理有:qU =12m v 2tan ∠GOF =3R R =3得∠GOF =60°∠EO ′G =120°tan ∠OO ′G =tan 60°=R r ,得r =33R所以粒子在磁场中做匀速圆周运动的轨道半径r =33R又q v B =m v 2r ,则q m =6U R 2B 2.]5.两平行的金属板沿水平方向放置,极板上所带电荷情况如图8-25所示,且极板间有垂直纸面向里的匀强磁场,现将两个质量相等的带电小球分别从P 点沿水平方向射入极板间,两小球均能沿直线穿过平行板,若撤去磁场,仍将这两个带电小球分别保持原来的速度从P 点沿水平方向射入极板间,则两个小球会分别落在A 、B 两点,设落在A 、B 两点的小球的带电荷量分别为q A 、q B ,则下列关于此过程的说法正确的是( )【导学号:17214146】图8-25A .两小球一定带负电B .若q A >q B ,则两小球射入时的初速度一定有v A >v BC .若q A >q B ,则两小球射入时的动能一定有E k A <E k BD .撤去磁场后,两个小球在极板间运动的加速度可能相等C [根据题意可知,没有磁场时,小球所受合力竖直向下;有磁场时,小球做匀速直线运动,故可知洛伦兹力一定竖直向上,由左手定则可知,小球一定带正电,选项A 错误;同时可知小球的重力不能忽略,当小球做匀速直线运动时有q A v A B +q A E =mg ,q B v B B +q B E =mg ,联立可得q A v A B +q A E =q B v B B +q B E ,即q A (v A B +E )=q B (v B B +E ),由此可知,若q A >q B ,则一定有v A <v B ,选项B 错误;由E k =12m v 2可知,选项C 正确;没有磁场时,由受力分析可知mg -qE =ma ,当q A =q B 时,则有a A =a B ,v A =v B ,而由题意可知x A >x B ,则应有v A >v B ,与上述矛盾,由此可知,两个小球在极板间运动的加速度不可能相等,选项D 错误.]6.(2017·湖南十三校一联)如图8-26所示,直角坐标系xOy 位于竖直平面内,y 轴竖直向上.第Ⅲ、Ⅳ象限内有垂直于坐标平面向外的匀强磁场,第Ⅳ象限同时存在方向平行于y 轴的匀强电场(图中未画出).一带电小球从x 轴上的A 点由静止释放,恰好从P 点垂直于y 轴进入第Ⅳ象限,然后做圆周运动,从Q 点垂直于x 轴进入第Ⅰ象限,Q 点距O 点的距离为d ,重力加速度为g .根据以上信息,可以求出的物理量有( )图8-26A .磁感应强度大小B .小球在第Ⅳ象限运动的时间C .电场强度的大小和方向D .圆周运动的速度大小BD [由A 到P 点过程有mgd =12m v 2,则小球做圆周运动的速度大小v =2gd ,选项D 正确;小球在第Ⅳ象限运动的时间t =14T =πd 2v =πd 22gd,选项B 正确;在第Ⅳ象限,小球做圆周运动,则有mg =qE ,由于m 、q 未知,不能求电场强度的大小,由d =m v qB 知,不能求磁感应强度大小,选项A 、C 错误.]7.如图8-27所示,直角三角形ABC 区域中存在一匀强磁场,比荷相同的两个粒子(不计重力)从A 点沿AB 方向射入磁场,分别从AC 边上的P 、Q 两点射出,则( )图8-27A .从P 点射出的粒子速度大B .从Q 点射出的粒子速度大C .从Q 点射出的粒子在磁场中运动的时间长D .两个粒子在磁场中运动的时间一样长BD [粒子在磁场中做匀速圆周运动,根据几何关系(如图所示,弦切角相等),粒子在磁场中偏转的圆心角相等,根据粒子在磁场中运动的时间t =θ2πT ,粒子在磁场中做圆周运动的周期T =2πm qB ,可知粒子在磁场中运动的时间相等,故D 项正确,C 项错误;如图所示,粒子在磁场中做圆周运动,分别从P 点和Q 点射出,由图知,粒子运动的半径R P <R Q ,又粒子在磁场中做圆周运动的半径R =m v Bq ,可知粒子运动速度v P <v Q ,故A 项错误、B 项正确.]8.(名师原创)如图8-28所示,在区域Ⅰ和区域Ⅱ内分别存在与纸面垂直但方向相反的匀强磁场,区域Ⅱ内磁感应强度是区域Ⅰ内磁感应强度的2倍,一带电粒子在区域Ⅰ左侧边界处以垂直边界的速度进入区域Ⅰ,发现粒子离开区域Ⅰ时速度方向改变了30°,然后进入区域Ⅱ,测得粒子在区域Ⅱ内的运动时间与区域Ⅰ内的运动时间相等,则下列说法正确的是( )图8-28A .粒子在区域Ⅰ和区域Ⅱ中的速率之比为1∶1B .粒子在区域Ⅰ和区域Ⅱ中的角速度之比为2∶1C .粒子在区域Ⅰ和区域Ⅱ中的圆心角之比为1∶2D .区域Ⅰ和区域Ⅱ的宽度之比为1∶1ACD [由于洛伦兹力对带电粒子不做功,故粒子在两磁场中的运动速率不变,故A 正确;由洛伦兹力f =qB v =ma 和a =v ·ω可知,粒子运动的角速度之比为ω1∶ω2=B 1∶B 2=1∶2,则B 错误;由于粒子在区域Ⅰ和区域Ⅱ内的运动时间相等,由t =θm qB 可得t =θ1m qB 1=θ2m qB 2,且B 2=2B 1,所以可得θ1∶θ2=1∶2,则C 正确;由题意可知,粒子在区域Ⅰ中运动的圆心角为30°,则粒子在区域Ⅱ中运动的圆心角为60°,由R =m v qB 可知粒子在区域Ⅰ中的运动半径是在区域Ⅱ中运动半径的2倍,设粒子在区域Ⅱ中的运动半径为r ,作粒子运动的轨迹如图所示,则由图可知,区域Ⅰ的宽度d 1=2r sin 30°=r ;区域Ⅱ的宽度d 2=r sin 30°+r cos(180°-60°-60°)=r ,故D 正确.]二、计算题(共2小题,32分)9.(16分)(2017·辽宁省辽南协作校联考)如图8-29所示,在矩形ABCD 内,对角线BD 以上的区域存在平行于AD 向下的匀强电场,对角线BD 以下的区域存在垂直于纸面的匀强磁场(图中未标出),其中AD 边长为L ,AB 边长为3L ,一个质量为m 、电荷量为+q 的带电粒子(不计重力)以初速度v 0从A 点沿AB 方向进入电场,经对角线BD 某处垂直BD 进入磁场.求:图8-29(1)该粒子进入磁场时速度的大小;(2)电场强度的大小;(3)要使该粒子能从磁场返回电场,磁感应强度应满足什么条件?(结论可用根式来表示)【导学号:17214147】【解析】 (1)如题图所示,由几何关系可得∠BDC =30°,带电粒子受电场力作用做类平抛运动,由速度三角形可得v x =v 0v y =3v 0则v =v 2x +v 2y =2v 0.(2)设BP 的长度为x ,则有x sin 30°=v y 2t 13L -x cos 30°=v 0t 1Eq =mav y =at 1,解得x =6L 5,t 1=23L 5v 0,E =5m v 202qL . (3)若磁场方向向外,轨迹与DC 相切,如图甲所示有R 1+R 1sin 30°=4L 5得R 1=4L 15由B 1q v =m v 2R 1得B 1=15m v 02qL 磁场方向向外,要使粒子返回电场,则B 1≥15m v 02qL若磁场方向向里,轨迹与BC 相切时,如图乙所示有R 2+R 2cos 30°=6L 5,得R 2=6(23-3)L 5 由B 2q v =m v 2R 2得B 2=5(23+3)m v 09qL 磁场方向向里,要使粒子返回电场,则B 2≥5(23+3)m v 09qL.【答案】 见解析10.(16分)北京正、负电子对撞机是国际上唯一高亮度对撞机,它主要由直线加速器、电子分离器、环形储存器和对撞测量区组成,其简化原理如图8-30所示:MN 和PQ 为足够长的水平边界,竖直边界EF 将整个区域分成左右两部分,Ⅰ区域的磁场方向垂直纸面向里,磁感应强度为B ,Ⅱ区域的磁场方向垂直纸面向外.调节Ⅱ区域的磁感应强度的大小可以使正、负电子在测量区内不同位置进行对撞.经加速和积累后的电子束以相同速率分别从注入口C 和D 同时入射,入射方向平行于EF 且垂直磁场.已知注入口C 、D 到EF 的距离均为d ,边界MN 和PQ 的间距为8d ,正、负电子的质量均为m ,所带电荷量分别为+e 和-e .图8-30(1)试判断从注入口C 入射的是哪一种电子?忽略电子进入加速器的初速度,电子经加速器加速后速度为v 0,求直线加速器的加速电压U ;(2)若将Ⅱ区域的磁感应强度大小调为B ,正、负电子以v 1=deB m 的速率同时射入,则正、负电子经多长时间相撞?(3)若将Ⅱ区域的磁感应强度大小调为B 3,正、负电子仍以v 1=deB m 的速率射入,但负电子射入时刻滞后于正电子Δt =πm eB ,以F 点为原点建立如图8-30所示的坐标系,求正、负电子相撞的位置坐标.【导学号:17214148】【解析】 (1)从C 入射的电子在C 点受到的洛伦兹力向右,粒子向右偏转,经过Ⅱ区反向偏转,再进入Ⅰ区,这样才能持续向下运动直至与从D 入射的电子碰撞;若从C 入射的电子在C 点受到的洛伦兹力向左,则粒子可能还未碰撞就从MN 边界射出,所以,由左手定则可判断从C 入射的电子为正电子;忽略电子进入加速器的初速度,电子经加速器加速后速度为v 0,则由动能定理可得:Ue =12m v 20,所以,U =m v 202e .(2)电子在磁场中运动,洛伦兹力提供向心力,所以有B v 1e =m v 21R 1,则R 1=m v 1Be =d ,T =2πR 1v 1=2πm eB 电子在Ⅰ、Ⅱ区域中运动时半径相同,电子射入后的轨迹如图甲所示,甲所以,电子在射入后正好转过360°后对撞,那么,对撞时间:t =T =2πm eB .(3)电子在Ⅰ区域中运动时半径不变,仍为R 1=d ,运动周期T 1=2πm eB ;将Ⅱ区域的磁感应强度大小调为B 3,则电子在Ⅱ区域中运动时半径R 2=3d ,运动周期T 2=6πm eB ;负电子射入时刻滞后于正电子Δt =πm eB =16T 2,乙电子射入后的轨迹如图乙所示,若两电子同时射出,则两电子交与H 点;现负电子射入时刻滞后于正电子16T 2,则负电子比正电子在Ⅱ区域中少转16×360°=60°,所以,两电子相撞的位置在H 点以圆心向负电子方向转过30°,即A 点;易知H 点坐标为(3d ,4d ),所以,A 点坐标为(3d cos 30°,4d -3d sin 30°)=⎝ ⎛⎭⎪⎫332d ,52d . 【答案】 (1)正电子m v 202e (2)2πmeB (3)⎝ ⎛⎭⎪⎫332d ,52d。
电学综合练4一、选择题(第1~3题为单项选择题,第4~5题为多项选择题)1.如图甲所示为电场中的一条电场线,在电场线上建立坐标轴,则坐标轴上O~x2间各点的电势分布如图乙所示,则( )A.在O~x2间,场强先减小后增大B.在O~x2间,场强方向一定发生了变化C.若一负电荷从O点运动到x2点,电势能逐渐减小D.从O点由静止释放一仅受电场力作用的正电荷,则该电荷在O~x2间一直做加速运动解析:选D φx图像的斜率的绝对值等于电场强度大小,由题图乙可知,在O~x2间,斜率的大小先增大后减小,则电场强度先增大后减小,但斜率一直是负值,场强方向没有改变,故A、B错误;由题图乙知,O~x2间电势逐渐降低,若一负电荷从O点运动到x2点,电势能逐渐升高,故C错误;从O点由静止释放一仅受电场力作用的正电荷,受到的电场力方向与运动方向相同,做加速运动,即该电荷在O~x2间一直做加速运动,故D正确。
2.如图为安检门原理图,左边门框中有一通电线圈,右边门框中有一接收线圈。
工作过程中某段时间通电线圈中存在顺时针方向均匀减小的电流,则( )A.无金属片通过时,接收线圈中的感应电流方向为逆时针B.无金属片通过时,接收线圈中没有感应电流C.有金属片通过时,接收线圈中的感应电流方向为顺时针D.有金属片通过时,接收线圈中没有感应电流解析:选C 无金属片通过时,当通电线圈中通有不断减小的顺时针方向的电流时,知穿过接收线圈的磁通量向右,且减小,根据楞次定律,接收线圈中产生顺时针方向的感应电流,故A、B错误;有金属片通过时,则穿过金属片中的磁通量发生变化时,金属片中也会产生感应电流,感应电流的方向与接收线圈中的感应电流的方向相同,所以也会将该空间中的磁场的变化削弱一些,引起接收线圈中的感应电流大小发生变化,但是电流的方向不会发生变化,仍为顺时针,故C正确,D错误。
3.如图所示,L1、L2为两个相同的灯泡,线圈L的直流电阻不计,灯泡L1与一理想二极管D连接。
专题十 电磁感应规律及其应用考点1| 电磁感应规律及其应用难度:中档题 题型:选择题、计算题 五年4考(对应学生用书第48页)1.(2016·江苏高考T 13)据报道,一法国摄影师拍到了“天宫一号”空间站飞过太阳的瞬间.照片中,“天宫一号”的太阳帆板轮廓清晰可见.如图101所示,假设“天宫一号”正以速度v =7.7 km/s 绕地球做匀速圆周运动,运动方向与太阳帆板两端M 、N 的连线垂直,M 、N 间的距离L =20 m ,地磁场的磁感应强度垂直于v 、MN 所在平面的分量B =1.0×10-5 T .将太阳帆板视为导体.图101(1)求M 、N 间感应电动势的大小E ;(2)在太阳帆板上将一只“1.5 V ,0.3 W”的小灯泡与M 、N 相连构成闭合电路,不计太阳帆板和导线的电阻,试判断小灯泡能否发光,并说明理由;(3)取地球半径R =6.4×103 km ,地球表面的重力加速度g 取9.8 m/s 2,试估算“天宫一号”距离地球表面的高度h (计算结果保留一位有效数字).【导学号:17214162】【解题关键】(2)不能,因为穿过闭合回路的磁通量不变,不产生感应电流.(3)在地球表面有G MmR2=mg “天宫一号”做匀速圆周运动,有G Mm R+h 2=m v 2R +h解得h =gR 2v2-R ,代入数据得h ≈4×105 m(数量级正确都算对). 【答案】 (1)1.54 V (2)见解析 (3)4×105m2.(2014·江苏高考T 1)如图102所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中.在Δt 时间内,磁感应强度的方向不变,大小由B 均匀地增大到2B .在此过程中,线圈中产生的感应电动势为( )【导学号:17214163】图102A .Ba 22ΔtB .nBa 22ΔtC .nBa 2Δt D .2nBa 2ΔtB [由法拉第电磁感应定律知线圈中产生的感应电动势E =nΔΦΔt =n ΔB Δt ·S =n 2B -B Δt ·a 22,得E =nBa 22Δt,选项B 正确.]3.(多选)(2014·江苏高考T7)如图103所示,在线圈上端放置一盛有冷水的金属杯,现接通交流电源,过了几分钟,杯内的水沸腾起来.若要缩短上述加热时间,下列措施可行的有( )图103A.增加线圈的匝数B.提高交流电源的频率C.将金属杯换为瓷杯D.取走线圈中的铁芯AB [利用法拉第电磁感应定律和涡电流解题.当电磁铁接通交流电源时,金属杯处在变化的磁场中产生涡电流发热,使水温升高.要缩短加热时间,需增大涡电流,即增大感应电动势或减小电阻.增加线圈匝数、提高交变电流的频率都是为了增大感应电动势.瓷杯不能产生涡电流,取走铁芯会导致磁性减弱.所以选项A、B正确,选项C、D错误.]4.(多选)(2016·江苏高考T6)电吉他中电拾音器的基本结构如图104所示,磁体附近的金属弦被磁化,因此弦振动时,在线圈中产生感应电流,电流经电路放大后传送到音箱发出声音.下列说法正确的有( )图104A.选用铜质弦,电吉他仍能正常工作B.取走磁体,电吉他将不能正常工作C.增加线圈匝数可以增大线圈中的感应电动势D.弦振动过程中,线圈中的电流方向不断变化BCD [铜不能被磁化,铜质弦不能使电吉他正常工作,选项A错误;取走磁体后,弦的振动无法通过电磁感应转化为电信号,音箱不能发声,选项B 正确;增加线圈匝数,根据法拉第电磁感应定律E =N ΔΦΔt知,线圈的感应电动势变大,选项C 正确;弦振动过程中,线圈中感应电流的磁场方向发生变化,则感应电流的方向不断变化,选项D 正确.]1.感应电流方向的判断方法一是利用右手定则,即根据导体在磁场中做切割磁感线运动的情况进行判断;二是利用楞次定律,即根据穿过回路的磁通量的变化情况进行判断.2.楞次定律中“阻碍”的主要表现形式(1)阻碍原磁通量的变化——“增反减同”;(2)阻碍相对运动——“来拒去留”;(3)使线圈面积有扩大或缩小的趋势——“增缩减扩”;(4)阻碍原电流的变化(自感现象)——“增反减同”.3.求感应电动势的两种方法(1)E =n ΔΦΔt,用来计算感应电动势的平均值. (2)E =BLv ,主要用来计算感应电动势的瞬时值.●考向1 法拉第电磁感应定律的应用1.(2017·资阳模拟)用一根横截面积为S 、电阻率为ρ的硬质导线做成一个半径为r 的圆环,ab 为圆环的一条直径.如图105所示,在ab 的左侧存在一个均匀变化的匀强磁场,磁场垂直圆环所在的平面,方向如图,磁感应强度大小随时间的变化率ΔB Δt=k (k <0),则( )【导学号:17214164】图105A .圆环具有收缩的趋势B .圆环中产生的感应电流为逆时针方向C .圆环中a 、b 两点的电压U ab =⎪⎪⎪⎪⎪⎪14k πr 2 D .圆环中产生的感应电流大小为-krS3ρC [由楞次定律的“来拒去留”可知,为了阻碍磁通量的减小,线圈有扩张的趋势,故A 错误;磁通量向里减小,由楞次定律“增反减同”可知,线圈中的感应电流方向为顺时针,故B 错误;根据法拉第电磁感应定律,有:E =ΔB Δt ·12πr 2=⎪⎪⎪⎪⎪⎪12k πr 2,由闭合电路欧姆定律可知,ab 两点间的电势差为U ab =E 2=⎪⎪⎪⎪⎪⎪14k πr 2,故C 正确;由法拉第电磁感应定律可知,E =ΔB Δt ·12πr 2=⎪⎪⎪⎪⎪⎪12k πr 2,线圈电阻R =ρ2πr S ,感应电流I =⎪⎪⎪⎪⎪⎪krS 4ρ=-krS4ρ,故D 错误.]●考向2 楞次定律的应用2.(多选)(2017·南京四模)超导体具有电阻为零的特点,图为超导磁悬浮原理图,a 是一个超导闭合环,置于一个电磁铁线圈b 正上方,当闭合电键S 后,超导环能悬浮在电磁铁上方平衡.下列说法正确的有( )图106A .闭合电键S 瞬间,a 环中感应电流受到的安培力向上B .闭合电键S ,稳定后通过a 环磁通量不变,a 环中不再有电流C .闭合电键S ,稳定后通过a 环的电流是恒定电流D .R 取不同的电阻值,稳定后a 环所受安培力都相等ACD [闭合电键S 瞬间,线圈中磁通量增大,则由楞次定律可知,a 中产生的安培力将使a 环有向上运动的趋势,故a 环中感应电流受到的安培力向上,故A 正确;由于线圈由超导体制成,没有电阻所以不消耗能量,故电流一直存在,故B 错误;闭合电键S ,稳定后通过a 环的电流不再变化,故为恒定电流,故C 正确;因圆环存于平衡状态,所以受到的安培力一定等于重力,故稳定时受安培力与电阻R 无关,故D 正确.]3.(2017·苏锡常二模)图中L 是线圈,D 1、D 2是发光二极管(电流从“+”极流入才发光).闭合S ,稳定时灯泡A 正常发光,然后断开S 瞬间,D 2亮了一下后熄灭,则( )【导学号:17214165】图107A.图是用来研究涡流现象的实验电路B.开关S闭合瞬间,灯泡A立即亮起来C.开关S断开瞬间,P点电势比Q点电势高D.干电池的左端为电源的正极D [该电路是用来研究线圈的自感现象的,与涡流无关,故A错误;L是自感系数足够大的线圈,D1和D2是两个相同的二极管,S闭合瞬间,但由于线圈的电流增加,导致线圈中出现感应电动势从而阻碍电流的增加,所以灯泡A逐渐变亮,故B错误;S断开,D2亮了一下后熄灭,说明S断开的瞬间电流从右向左流过二极管,则P点电势比Q点电势低,故C错误;S断开,D2亮了一下后熄灭,说明S断开的瞬间电流从右向左流过二极管;根据线圈中出现感应电动势从而阻碍电流的减小可知,流过L的电流的方向在S 断开前从左向右,所以L的左侧为正极,则干电池的左端为电源的正极,故D正确.] ●考向3 涡流的应用4.(2017·湖南三模)随着科技的不断发展,无线充电已经进入人们的视线.小到手表、手机,大到电脑、电动汽车的充电,都已经实现了从理论研发到实际应用的转化.如图108所示,给出了某品牌的无线充电手机利用电磁感应方式无线充电的原理图.关于无线充电,下列说法正确的是( )图108A.无线充电时手机接收线圈部分的工作原理是“电流的磁效应”B.只有将充电底座接到直流电源上才能对手机进行充电C.接收线圈中交变电流的频率与发射线圈中交变电流的频率相同D.只要有无线充电底座,所有手机都可以进行无线充电C [无线充电时手机接收线圈部分的工作原理是电磁感应现象,不是“电流的磁效应”现象,故A错误;当充电设备通以恒定直流,无线充电设备不会产生交变磁场,那么不能够正常使用,故B错误;接收线圈中交变电流的频率与发射线圈中交变电流的频率相同,故C正确;被充电手机内部,应该有一类似金属线圈的部件,与手机电池相连,当有交变磁场时,则出现感应电动势,那么普通手机不能够利用无线充电设备进行充电,故D错误.]考点2| 电磁感应中的图象问题难度:中档题题型:选择题(对应学生用书第50页)5.(2011·江苏高考)如图109所示,水平面内有一平行金属导轨,导轨光滑且电阻不计.匀强磁场与导轨平面垂直.阻值为R 的导体棒垂直于导轨静止放置,且与导轨接触.T =0时,将开关S 由1掷到2.q 、i 、v 和a 分别表示电容器所带的电荷量、棒中的电流、棒的速度和加速度.下列图象正确的是( )【导学号:17214166】图109A BC D【解题分析】 1.知道电容器放电后会在电路中产生电流.2.导体棒在安培力的作用下加速运动.3.导体棒切割磁感线产生的感应电流与电容器放电电流反向.D [开关S 由1掷到2,电容器放电后会在电路中产生电流.导体棒通有电流后会受到安培力的作用,会产生加速度而加速运动.导体棒切割磁感线,速度增大,感应电动势E =Blv ,即增大,则实际电流减小,安培力F =BIL ,即减小,加速度a =F m,即减小.因导轨光滑,所以在有电流通过棒的过程中,棒是一直加速运动(变加速).由于通过棒的电流是按指数递减的,那么棒受到的安培力也是按指数递减的,由牛顿第二定律知,它的加速度是按指数递减的.由于电容器放电产生电流使得导体棒受安培力运动,而导体棒运动产生感应电动势会给电容器充电.当充电和放电达到一种平衡时,导体棒做匀速运动.当棒匀速运动后,棒因切割磁感线有电动势,所以电容器两端的电压能稳定在某个不为0的数值,即电容器的电量应稳定在某个不为0的数值(不会减少到0).这时电容器的电压等于棒的电动势数值,棒中无电流.]解决电磁感应图象问题的一般步骤(1)明确图象的种类,即是B t 图还是Φt 图,或者E t 图、I t 图等.(2)分析电磁感应的具体过程.(3)用右手定则或楞次定律确定方向对应关系.(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式.(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等.(6)画图象或判断图象.●考向1 图象的确定5.(2017·徐州二模)如图1010所示,闭合导线框匀速穿过垂直纸面向里的匀强磁场区域,磁场区域宽度大于线框尺寸,规定线框中逆时针方向的电流为正,则线框中电流i 随时间t 变化的图象可能正确的是( )图1010B [线框进入磁场过程中磁通量增加,根据楞次定律可得电流方向为逆时针(正方向),线框离开磁场过程中磁通量减小,根据楞次定律可得电流方向为顺时针(负方向);根据法拉第电磁感应定律和闭合电路的欧姆定律可得感应电流i =BLv R,刚进入时有效切割长度最大,感应电流最大、一半进入磁场过程中有效切割长度变为原来一半,感应电流变为原来一半,完全进入后磁通量不变,不会产生感应电流,离开磁场的过程中有效切割长度与进入过程相同,感应电流变化也相同,故B 正确,A 、C 、D 错误.]●考向2 图象的转换6.(2017·泰州一模)在竖直方向的匀强磁场中,水平放置一个面积不变的单匝金属圆线圈,规定线圈中感应电流的正方向如图1011甲所示,取线圈中磁场B 的方向向上为正,当磁场中的磁感应强度B 随时间t 如图乙变化时,下列图中能正确表示线圈中感应电流变化的是( )甲 乙图1011A BC DA [在0~T 2 s 内,根据法拉第电磁感应定律,E =n ΔΦΔt =4nB 0S T.根据楞次定律,感应电动势的方向与图示箭头方向相反,为负值;在T 2~T 内,根据法拉第电磁感应定律,E ′=n ΔΦΔt =8nB 0S T=2E ,所以感应电流是之前的2倍.再根据楞次定律,感应电动势的方向与图示方向相反,为负值.故A 正确,B 、C 、D 错误.]●考向3 图象的应用7.(2017·锡山中学月考)如图1012甲,圆形线圈P 静止在水平桌面上,其正上方固定一螺线管Q ,P 和Q 共轴,Q 中通有变化电流i ,电流随时间变化的规律如图1012乙所示,P 所受的重力为G ,桌面对P 的支持力为N ,则( )甲 乙图1012A.t1时刻N>G,P有收缩的趋势B.t2时刻N=G,P有扩张的趋势C.t3时刻N=G,此时P中没有感应电流D.t4时刻N<G,此时P中无感应电流A [当螺线管中电流增大时,其形成的磁场不断增强,因此线圈P中的磁通量增大,根据楞次定律可知线圈P将阻碍其磁通量的增大,故线圈有远离和面积收缩的趋势,则N >G,P有收缩的趋势,故A正确;当螺线管中电流不变时,其形成磁场不变,线圈P中的磁通量不变,因此磁铁线圈中无感应电流产生,此时P没有扩张的趋势,故B错误;t3时刻螺线管中电流为零,N=G;但是线圈P中磁通量是变化的,因此此时线圈中有感应电流,故C错误.当螺线管中电流不变时,其形成磁场不变,线圈P中的磁通量不变,因此磁铁线圈中无感应电流产生,故t4时刻N=G,此时P中无感应电流,故D错误.]考点3| 电磁感应中电路和能量问题难度:较大题型:选择题、计算题五年3考(对应学生用书第51页)6.(2015·江苏高考T13)做磁共振(MRI)检查时,对人体施加的磁场发生变化时会在肌肉组织中产生感应电流.某同学为了估算该感应电流对肌肉组织的影响,将包裹在骨骼上的一圈肌肉组织等效成单匝线圈,线圈的半径r=5.0 cm,线圈导线的截面积A=0.80 cm2,电阻率ρ=1.5 Ω·m.如图1013所示,匀强磁场方向与线圈平面垂直,若磁感应强度B在0.3 s内从1.5 T均匀地减为零,求:(计算结果保留一位有效数字)图1013(1)该圈肌肉组织的电阻R;(2)该圈肌肉组织中的感应电动势E;(3)0.3 s内该圈肌肉组织中产生的热量Q.【解题关键】解此题的关键有两点:(1)注意区分线圈的面积和线圈导线的截面积.(2)磁感应强度均匀减小,线圈中电流恒定不变.【解析】(1)由电阻定律得R=ρ2πrA,代入数据得R≈6×103Ω.(2)感应电动势E =ΔB ·πr 2Δt,代入数据得E ≈4×10-2V .(3)由焦耳定律得Q =E 2RΔt ,代入数据得Q =8×10-8J .【答案】 (1)6×103Ω (2)4×10-2V (3)8×10-8J7.(2013·江苏高考T 13)如图1014所示,匀强磁场中有一矩形闭合线圈abcd ,线圈平面与磁场垂直.已知线圈的匝数N =100,边长ab =1.0 m 、bc =0.5 m ,电阻r =2 Ω.磁感应强度B 在0~1 s 内从零均匀变化到0.2 T .在1~5 s 内从0.2 T 均匀变化到-0.2 T ,取垂直纸面向里为磁场的正方向.求:图1014(1)0.5 s 时线圈内感应电动势的大小E 和感应电流的方向; (2)在1~5 s 内通过线圈的电荷量q ; (3)在0~5 s 内线圈产生的焦耳热Q .【导学号:17214167】【解析】 (1)感应电动势E 1=N ΔΦ1Δt 1,磁通量的变化量ΔΦ1=ΔB 1S ,解得E 1=N ΔB 1S Δt 1,代入数据得E 1=10 V ,感应电流的方向为a →d →c →b →a . (2)同理可得E 2=N ΔB 2S Δt 2,感应电流I 2=E 2r电荷量q =I 2Δt 2,解得q =N ΔB 2Sr,代入数据得q =10 C .(3)0~1 s 内的焦耳热Q 1=I 21r Δt 1,且I 1=E 1r,1~5 s 内的焦耳热Q 2=I 22r Δt 2 由Q =Q 1+Q 2,代入数据得Q =100 J .【答案】 (1)10 V ,感应电流的方向为a →d →c →b →a (2)10 C (3)100 J8.(2017·江苏高考T 13)如图1015所示,两条相距d 的平行金属导轨位于同一水平面内,其右端接一阻值为R 的电阻.质量为m 的金属杆静置在导轨上,其左侧的矩形匀强磁场区域MNPQ 的磁感应强度大小为B 、方向竖直向下.当该磁场区域以速度v 0匀速地向右扫过金属杆后,金属杆的速度变为v .导轨和金属杆的电阻不计,导轨光滑且足够长,杆在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:图1015(1)MN 刚扫过金属杆时,杆中感应电流的大小I ; (2)MN 刚扫过金属杆时,杆的加速度大小a ; (3)PQ 刚要离开金属杆时,感应电流的功率P .【导学号:17214168】【解析】 (1)MN 刚扫过金属杆时,金属杆的感应电动势E =Bdv 0① 回路的感应电流I =E R② 由①②式解得I =Bdv 0R.③ (2)金属杆所受的安培力F =BId ④ 由牛顿第二定律得,对金属杆F =ma ⑤由③④⑤式得a =B 2d 2v 0mR.⑥(3)金属杆切割磁感线的相对速度v ′=v 0-v ⑦ 感应电动势E =Bdv ′⑧感应电流的电功率P =E 2R⑨由⑦⑧⑨式得P =B 2d 2 v 0-v 2R.⑩【答案】 (1)Bdv 0R (2)B 2d 2v 0mR (3)B 2d 2 v 0-v 2R用动力学观点、能量观点解答电磁感应问题的一般步骤●考向1 电磁感应中的电路问题8.(2017·盐城二模)如图1016所示,两根水平放置的平行金属导轨,其末端连接等宽的四分之一圆弧导轨,圆弧半径r =0.41 m ,导轨的间距为L =0.5 m ,导轨的电阻与摩擦均不计.在导轨的顶端接有阻值为R 1=1.5 Ω的电阻,整个装置处在竖直向上的匀强磁场中,磁感应强度B =0.2 T ,现有一根长度稍大于L 、电阻R 2=0.5 Ω、质量m =1.0 kg 的金属棒,金属棒在水平拉力F 作用下,从图中位置ef 由静止开始匀加速运动,在t =0时刻,F 0=1.5 N ,经2.0 s 运动到cd 时撤去拉力,棒刚好能冲到最高点ab 、(重力加速度g =10 m/s 2).求:图1016(1)金属棒做匀加速直线运动的加速度; (2)金属棒运动到cd 时电压表的读数;(3)金属棒从cd 运动到ab 过程中电阻R 1上产生的焦耳热.【导学号:17214169】【解析】 (1)根据题意,金属棒从ef 位置开始匀加速运动,根据牛顿第二定律,有F 0=ma解得:a =F 0m =1.51.0=1.5 m/s 2.(2)金属棒运动到cd 时的速度v =at =1.5×2.0 m/s =3 m/s 感应电动势E =BLv =0.2×0.5×3 V=0.3 V感应电流I =ER 1+R 2=0.31.5+0.5A =0.15 A电压表的读数U =IR 1=0.15×1.5 V =0.225 V . (3)根据能量守恒定律,有:12mv 2=mgr +Q解得:Q =0.4 J电阻R 1上产生的焦耳热为Q 1=R 1R 1+R 2Q =1.51.5+0.5×0.4 J =0.3 J【答案】 (1)1.5 m/s 2(2)0.225 V (3)0.3 J ●考向2 电磁感应的动力学问题9.(多选)(2017·南京一模)如图1017所示,均匀导体围成等腰闭合三角形线圈abc ,底边与匀强磁场的边界平行,磁场的宽度大于三角形的高度.线圈从磁场上方某一高度处由静止开始竖直下落,穿过该磁场区域,不计空气阻力.则下列说法中正确的是( )图1017A .线圈进磁场的过程中,可能做匀速直线运动B .线圈底边进、出磁场时线圈的加速度可能一样C .线圈出磁场的过程中,可能做先减速后加速的直线运动D .线圈底边进、出磁场时,线圈所受安培力可能大小相等,方向不同BC [如果匀速,因为有效切割长度越小来越小,安培力会越来越小,不可能匀速运动,故A 错误;如果线圈比较高,进入磁场后先减速后加速,可能导致进磁场的速度和出磁场的速度是一样的,安培力F 安=B 2L 2vR ,速度一样,安培力一样,根据牛顿第二定律,mg -F 安=ma ,加速度一样,故B 正确; 如果出磁场时,安培力比重力大,那么线圈先减速,但是在减速的过程中,上面比较窄,安培力会越来越小,最终必然是一个先减速后加速的直线运动,故C 正确;线圈进出磁场时的速度可能相等,根据F =B 2L 2vR,安培力大小可能相等,但安培力方向都是向上的,阻碍线圈向下运动,所以安培力方向相同,故D 错误.]10.(2017·南京四模)如图1018甲所示,两根平行的光滑金属导轨MN 、PQ 和左侧M 、P间连接的电阻R 构成一个固定的水平U 型导体框架,导轨电阻不计且足够长.框架置于一个方向竖直向下、范围足够大的匀强磁场中,磁场左侧边界是OO ′.质量为m 、电阻为r 的导体棒垂直放置在两导轨上,并与导轨接触良好,给导体棒一个水平向右的初速度v 0,棒进入磁场区后回路中的电流I 随棒在磁场区中运动位移x (O 点为x 轴坐标原点)的变化关系如图乙所示,根据题设条件和图中给定数据求:甲 乙图1018(1)导体棒进入磁场瞬间回路总电功率P 0; (2)导体棒进入磁场瞬间加速度大小a 0;(3)导体棒运动全过程中电阻R 上产生的电热Q R .【导学号:17214170】【解析】 (1)根据图乙可得导体棒进入磁场瞬间回路的电流强度为I 0, 根据电功率的计算公式可得:P 0=I 20(R +r ). (2)进入磁场时刻电动势:E 0=BLv 0=I 0(R +r )根据牛顿第二定律可得棒受安培力产生加速度:BI 0L =ma 0解得:a 0=I 20 R +rmv 0.(3)棒从进入磁场到停止运动,由动能定理可得:W A =0-12mv 2根据功能关系可得回路产生电热:Q =-W A =12mv 2R 上产生电热:Q R =RR +r Q =Rmv 202 R +r.【答案】 (1)I 2(R +r ) (2)I 20 R +r mv 0 (3)Rmv 202 R +r●考向3 电磁感应的能量问题11.(2017·南京一模)如图1019甲所示,质量m =1 kg 、边长ab =1.0 m 、电阻r =2 Ω的单匝正方形闭合线圈abcd 放置在倾角θ=30°的斜面上,保持静止状态.匀强磁场垂直线圈平面向上,磁感应强度B 随时间t 变化如图乙所示,整个线圈都处在磁场中,重力加速度g =10 m/s 2.求:甲 乙图1019(1)t =1 s 时穿过线圈的磁通量; (2)4 s 内线圈中产生的焦耳热; (3)t =3.5 s 时,线圈受到的摩擦力.【解析】 (1)根据磁通量定义式,那么t =1 s 时穿过线圈的磁通量:Φ=BS =0.1 Wb . (2)由法拉第电磁感应定律E =ΔB ·S Δt ,结合闭合电路欧姆定律,I =E r ,那么感应电流,4 s 内线圈中产生的感应电流大小,I =ΔB ·SΔt ·r =0.05 A由图可知,t 总=2 s ;依据焦耳定律,则有:Q =I 2rt 总=0.01 J .(3)虽然穿过线圈的磁通量变化,线圈中产生感应电流,但因各边均受到安培力,依据矢量的合成法则,则线圈受到的安培力的合力为零,因此t =3.5 s 时,线圈受到的摩擦力等于重力沿着斜面的分力,即:f =mg sin θ=5 N . 【答案】 (1)0.1 Wb (2)0.01 J (3)5 N12.(2017·徐州模拟)如图1020甲所示,质量为M 的“∩”形金属框架MNPQ 放在倾角为θ的绝缘斜面上,框架MN 、PQ 部分的电阻不计,相距为L ,上端NP 部分的电阻为R .一根光滑金属棒ab 在平行于斜面的力(图中未画出)的作用下,静止在距离框架上端NP 为L 的位置.整个装置处于垂直斜面向下的匀强磁场中,磁感应强度B 随时间t 变化的规律如图乙所示,其中B 0、t 0均为已知量.已知ab 棒的质量为m ,电阻为R ,长为L ,与框架接触良好并始终相对斜面静止,t 0时刻框架也静止,框架与斜面间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力,重力加速度为g .求:甲 乙图1020(1)t 0时刻,流过ab 棒的电流大小和方向;(2)0~t 0时间内,通过ab 棒的电荷量及ab 棒产生的热量; (3)框架MNPQ 什么时候开始运动?【导学号:17214171】【解析】 (1)设回路中的感应电动势为E ,由法拉第电磁感应定律有:E =n ΔΦΔt =ΔBΔtS=B 0L 2t 0由闭合电路欧姆定律可得金属棒中的电流大小为:I =E 2R =B 0L 22Rt 0由楞次定律知,金属棒中的电流方向是a →b .(2)由电荷量的计算公式可得流过ab 棒的电荷量为:q =It 0=B 0L 22R,根据焦耳定律可得ab 棒产生的热量为:Q =I 2Rt 0=B 20L44Rt 0.(3)设经时间t 框架恰好要动,对框架分析受力,有:Mg sin θ+F 安=f 而 f =μ(M +m )g cos θ,根据安培力的计算公式可得:F 安=B t IL , 而磁感应强度为:B t =B 0+B 0t 0t代入解得:t =2Rt 20[μ M +m g cos θ-Mg sin θ]B 20L3-t 0. 【答案】 (1)B 0L 22Rt 0,方向是a →b (2)B 0L 22R B 20L44Rt 0(3)经过2Rt 20[μ M +m g cos θ-Mg sin θ]B 20L3-t 0开始运动热点模型解读| 电磁感应中的“杆+导轨”模型(对应学生用书第54页)[典例] (2017·湖南益阳调研)如图1021所示,两条足够长的平行金属导轨倾斜放置(导轨电阻不计),倾角为30°,导轨间距为0.5 m ,匀强磁场垂直导轨平面向下,B =0.2 T ,两根材料相同的金属棒a 、b 与导轨构成闭合回路,a 、b 金属棒的质量分别为3 kg 、2 kg ,两金属棒的电阻均为R =1 Ω,刚开始两根金属棒都恰好静止,假设最大静摩擦力近似等于滑动摩擦力.现对a 棒施加一平行导轨向上的恒力F =60 N ,经过足够长的时间后,两金属棒都达到了稳定状态.求:图1021(1)金属棒与导轨间的动摩擦因数;(2)当两金属棒都达到稳定状态时,b 棒所受的安培力大小.(3)设当a 金属棒从开始受力到向上运动5 m 时,b 金属棒向上运动了2 m ,且此时a 的速度为4 m/s ,b 的速度为1 m/s ,则求此过程中回路中产生的电热及通过a 金属棒的电荷量.【导学号:17214172】【解析】 (1)a 棒恰好静止时,有m a g sin 30°=μm a g cos 30°. 解得μ=33. (2)两棒稳定时以相同的加速度向上匀加速运动,此时两棒有恒定的速度差. 对a 棒:F -m a g sin 30°-μm a g cos 30°-F 安=m a a 对b 棒:F 安-m b g sin 30°-μm b g cos 30°=m b a 解得F 安=24 N .(3)此过程对a 、b 棒整体根据功能关系,有Q =Fx a -(m a g sin 30°+μm a g cos 30°)x a -(m b g sin 30°+μm b g cos 30°)x b -12m a v 2a -12m b v 2b解得Q =85 J .q =I ·ΔtI =E 2RE =ΔΦΔt =B ·ΔSΔt解得q =Bd x a -x b2R=0.15 C .【答案】 (1)33(2)24 N (3)85 J 0.15 C [拓展应用] (2017·湖北八校联考)如图1022所示,两根平行的光滑金属导轨MN 、PQ 放在水平面上,左端向上弯曲,导轨间距为L ,电阻不计,水平段导轨所处空间存在方向竖直向上的匀强磁场,磁感应强度为B .导体棒a 与b 的质量均为m ,电阻值分别为R a =R ,R b =2R .b 棒放置在水平导轨上足够远处,a 棒在弧形导轨上距水平面h 高度处由静止释放.运动过程中导体棒与导轨接触良好且始终与导轨垂直,重力加速度为g .图1022(1)求a 棒刚进入磁场时受到的安培力的大小和方向; (2)求最终稳定时两棒的速度大小;(3)从a 棒开始下落到最终稳定的过程中,求b 棒上产生的内能. 【解析】 (1)设a 棒刚进入磁场时的速度为v ,从开始下落到进入磁场 根据机械能守恒定律有mgh =12mv 2a 棒切割磁感线产生感应电动势E =BLv根据闭合电路欧姆定律有I =ER +2Ra 棒受到的安培力F =BIL联立以上各式解得F =B 2L 22gh3R,方向水平向左.(2)设两棒最后稳定时的速度为v ′,从a 棒开始下落到两棒速度达到稳定 根据动量守恒定律有mv =2mv ′ 解得v ′=122gh .(3)设a 棒产生的内能为E a ,b 棒产生的内能为E b。
第一部分专题四第1讲基础题——知识基础打牢1. (2022·四川自贡三诊)如图甲所示为一种自耦变压器(可视为理想变压器)的结构示意图.线圈均匀绕在圆环型铁芯上,滑动触头P在某一位置,在BC间接一个交流电压表和一个电阻R.若AB间输入图乙所示的交变电压,则( C )A.t=2×10-2 s时,电压表的示数为零B.电阻R中电流方向每秒钟改变50次C.滑动触头P逆时针转动时,R两端的电压增大D.滑动触头P顺时针转动时,AB间输入功率增大【解析】电压表的示数是交流电的有效值,则t=2×10-2 s时,电压表的示数不为零,选项A错误;交流电的周期为0.02 s,一个周期内电流方向改变2次,则电阻R中电流方向每秒钟改变100次,选项B错误;滑动触头P逆时针转动时,次级匝数变大,则次级电压变大,即R两端的电压增大,选项C正确;滑动触头P顺时针转动时,次级匝数减小,次级电压减小,次级消耗的功率减小,则AB间输入功率减小,选项D错误.2. (2022·四川成都三诊)发电站通过升压变压器和降压变压器给某用户端供电,发电机组输出交变电压的有效值恒定,输电线总电阻r保持不变.当用户端用电器增加后( A )A.若滑片P位置不变,则输电线上损失的功率变大B.若滑片P位置不变,则用户端电压升高C.若将滑片P上移,则用户端电压可能不变D.若将滑片P上移,则输电线上损失的功率可能减小【解析】若滑片P位置不变,当用户端用电器增加后,用户端总功率变大,发电机的输出功率增大,输电线的电流变大,ΔU=Ir,输电线两端承担的电压变大,损耗的功率增大;发电机的输入电压不变,升压变压器、降压变压器的匝数不变,故用户端电压降低,A正确,B 错误;若将滑片P 上移,升压变压器的副线圈与原线圈的匝数比变小,发电机组输出交变电压的有效值恒定,则副线圈两端电压变小.用户端用电器使用相同功率,则输电线上的电流会更大,输电线两端承担的电压更大,损耗的功率更大,则用户端的电压更小,故C 、D 错误.3. (多选)(2022·河南押题卷)图甲是一种振动式发电机的截面图,半径r =0.1 m 、匝数n =30的线圈位于辐射状分布的磁场中,磁场的磁感线沿半径方向均匀分布,线圈所在位置的磁感应强度大小均为B =12πT .如图乙,施加外力使线圈沿轴线做往复运动,线圈运动的速度随时间变化的规律如图丙中正弦曲线所示.发电机通过灯泡L 后接入理想变压器,对图乙中电路供电,三个完全相同的小灯泡均正常发光,灯泡的阻值R L =1 Ω,电压表为理想电压表,线圈及导线电阻均不计.下列说法正确的是( AC )A .发电机产生电动势的瞬时值为e =6sin 5πt (V)B .变压器原、副线圈的匝数之比为1∶3C .每个小灯泡正常发光时的功率为2 WD .t =0.1 s 时电压表的示数为6 V【解析】 由图丙可知,线圈运动的速度最大值v m =2 m/s ,速度变化周期为T =0.4 s ,则线圈运动的速度瞬时值v =v m sin 2πTt =2sin 5πt (m/s),发电机产生电动势的瞬时值为e =nB ·2πr ·v =6sin 5πt (V),A 正确;设灯泡正常发光时通过灯泡的电流为I ,则通过原线圈的电流I 1=I ,通过副线圈的电流I 2=2I ,变压器原、副线圈的匝数之比为n 1n 2=I 2I 1=21,B 错误;根据能量关系可知,U 出I 1=3I 2R L ,其中U 出=E m 2=62 V =3 2 V ,I 1=I ,解得I = 2 A ,每个小灯泡正常发光时的功率为P L =I 2R L =2 W ,C 正确;电压表示数为发电机两端电压的有效值,即电压表示数为U =E 2=62V =3 2 V ,D 错误.故选AC. 4. (多选)(2022·四川巴中一诊)在如图所示的电路中,定值电阻R 1=R 4=3 kΩ,R 2=2 kΩ,R 3=R 5=12 kΩ,电容器的电容C =6 μF,电源的电动势E =10 V ,内阻不计,当开关S 1闭合电流达到稳定时,处在电容器中间带电量q =2×10-3C 的油滴恰好保持静止,当开关S 2闭合后,则以下判断正确的是( BD )A .电容器上极板是高电势点B .带电油滴加速向下运动C .a 、b 两点的电势差U ab =8 VD .通过R 3的电量Q =4.8×10-5C【解析】 当开关S 2闭合后,由电路图可知,电容器上极板是低电势点,A 错误;当开关S 1闭合电流达到稳定时,处在电容器中油滴保持静止,而开关S 2闭合后,电容器上极板是低电势点,油滴受到的电场力方向发生变化,故可得带电油滴加速向下运动,B 正确;由电路图可知,a 、b 两点的电势差为U R 5-U R 2=8 V -4 V =4 V ,C 错误;由开关S 1闭合电流达到稳定时,再到当开关S 2闭合后的过程中,通过R 3的电量为Q =Q 1+Q 2=4×6×10-6 C +(8-4)×6×10-6 C =4.8×10-5 C ,D 正确.5. (多选)(2022·天津南开二模)如图甲所示电路中,L 1为标有“4 V,2 W”字样的小灯泡,L 2、L 3为两只标有“8 V,6 W”字样的相同灯泡,变压器为理想变压器,各电表为理想电表,当ab 端接如图乙所示的交变电压时,三只灯泡均正常发光.下列说法正确的是( ACD )A .电流表的示数为1.5 AB .交变电压的最大值U m =28 VC .变压器原、副线圈的匝数之比为3∶1D .电压表的示数为24 V【解析】 L 2、L 3的额定电流为I 23=P 23U 23=34A ,所以电流表的示数为I 2=2I 23=1.5 A ,故A 正确;通过原线圈的电流等于L 1的额定电流,为I 1=P 1U 1′=0.5 A ,所以变压器原、副线圈的匝数之比为n 1n 2=I 2I 1=31,故C 正确;副线圈两端电压等于L 2和L 3的额定电压,为U 2=8 V ,所以电压表的示数,即原线圈两端电压为U 1=n 1n 2U 2=24 V ,故D 正确;根据闭合电路的欧姆定律可得U m2-U 1′=U 1,解得U m =28 2 V ,故B 错误.故选ACD.6. (多选)(2022·广西桂林模拟)在一小型交流发电机中,矩形金属线圈abcd 的面积为S ,匝数为n ,线圈总电阻为r ,在磁感应强度为B 的匀强磁场中,绕轴OO ′(从上往下看逆时针转动)以角速度ω匀速转动,从如图甲所示的位置作为计时的起点,产生的感应电动势随时间的变化关系如图乙所示,矩形线圈与阻值为R 的电阻构成闭合电路,下列说法中正确的是( AD )A .在t 1~t 3时间内,穿过线圈的磁通量的变化量大小为2BSB .在t 1~t 3时间内,通过电阻R 电流方向先向上然后向下C .t 4时刻穿过线圈的磁通量的变化率大小为E 0D .在t 1~t 3时间内,通过电阻R 的电荷量为2E 0R +r ω【解析】 由图乙可知t 1和t 3时刻,线圈的感应电动势都为0,可知这两个时刻穿过线圈的磁通量一正一负,大小均为BS ,故此过程穿过线圈的磁通量的变化量大小为ΔΦ=BS -(-BS )=2BS ,A 正确;由图乙可知,在t 1~t 3时间内,线圈中的电流方向不变,根据右手定则可知通过电阻R 电流方向始终向上,B 错误;由图乙可知,t 4时刻的感应电动势为E 0,根据法拉第电磁感应定律可得E 0=n ΔΦΔt 可得穿过线圈的磁通量的变化率大小为ΔΦΔt =E 0n,C 错误;在t 1~t 3时间内,通过电阻R 的电荷量为q =n ΔΦR +r =2nBS R +r,又E 0=nBSω,联立可得q =2E 0R +r ω,D 正确.故选AD. 7. (多选)(2022·河北秦皇岛三模)如图所示,变压器为理想变压器,原、副线圈的匝数比为2∶1,原线圈的输入端接有正弦交变电流,开关S 闭合.已知L 1、L 2、L 3是相同的电灯且灯丝的电阻不随温度变化,灯丝不会被烧断.下列说法正确的是( BD )A .L 1、L 2中的电流之比为1∶2B .L 1两端的电压与原线圈两端的电压之比为1∶2C .开关S 断开后,L 1、L 2中的电流之比为1∶1D .开关S 断开后,L 1两端的电压与原线圈两端的电压之比为1∶4【解析】 原、副线圈中的电流之比为1∶2,由于开关S 闭合时L 2与L 3并联,因此L 1、L 2中的电流之比I 1∶I 2=1∶1,A 错误;设电灯的电阻为R ,由于原、副线圈两端的电压之比为2∶1,因此原线圈两端的电压U =2I 2R ,L 1两端的电压U 1=I 1R ,结合I 1∶I 2=1∶1,解得U 1U=12,B 正确;开关S 断开后,L 1、L 2中的电流与线圈匝数成反比I 1′∶I 2′=1∶2,C 错误;开关S 断开后,原线圈两端的电压U ′=2I 2′R ,L 1两端的电压U 1′=I 1′R ,结合I 1′∶I 2′=1∶2解得U 1′U ′=14,D 正确.故选BD. 8. (多选)(2022·辽宁鞍山预测)如图甲所示,理想变压器的原副线圈匝数之比n 1∶n 2=2∶1,定值电阻R 1和R 2的阻值分别为5 Ω和3 Ω,电表均为理想交流电表,电源输出的电流如图乙所示,图中的前半周期是正弦交流的一部分,后半周期是稳恒直流的一部分,则( BD )A .电流表示数为2 AB .电压表示数为6 VC .R 1的功率为10 WD .R 2的功率为12 W【解析】 设电源输出电流的有效值即电流表示数为I 1,根据等效热值法可得I 21RT =⎝ ⎛⎭⎪⎫i m 22RT 2+i 2m ·RT 2,解得I 1= 3 A ,故A 错误;由于变压器不能对稳恒直流电进行变压,所以每个周期内有半个周期副线圈无电流,设副线圈中电流的有效值为I 2,根据等效热值法有⎝⎛⎭⎪⎫n 1n 2·i m 22RT 2=I 22RT ,解得I 2=2 A ,电压表示数为U 2=I 2R 2=6 V ,故B 正确;R 1的功率为P 1=I 21R 1=15 W ,故C 错误;R 2的功率为P 2=I 22R 2=12 W ,故D 正确.故选BD.9. (多选)(2022·湖南押题卷)如图所示在竖直平面的电路,闭合开关S 1和S 2后,带电油滴在电容器内部处于静止状态,R 1为滑动变阻器,R 2为定值电阻,二极管为理想二极管,电容器的下极板接地,则下列说法正确的是( AC )A .滑动变阻器的滑动头P 向右滑动,油滴向上运动B .滑动变阻器的滑动头P 向左滑动,油滴向下运动C .极板M 向上运动,M 板的电势升高D .断开S 2,油滴不动【解析】 滑动变阻器的滑动头P 向右滑动,则R 1阻值减小,回路电流变大,则R 2两端电压变大,则电容器要充电,此时电容器两板电压变大,场强变大,则油滴向上运动,选项A 正确;滑动变阻器的滑动头P 向左滑动,则R 1阻值变大,回路电流变小,则R 2两端电压变小,则电容器要放电,但是由于二极管的单向导电性使得电容器不能放电,则使得电容器两板电压不变,则油滴仍静止,选项B 错误;极板M 向上运动,根据C =εr S 4πkd可知电容器电容减小,则带电量应该减小,但是由于二极管的单向导电性使得电容器不能放电,则两板间电量不变,结合E =U d =Q Cd =Q εr S 4πkdd =4πkQ εr S 可知两板间场强不变,则根据U =Ed 可知,两板电势差变大,则M 板的电势升高,选项C 正确;断开S 2,则电容器两板间的电压等于电源的电动势,即电压变大,电容器充电,两板间场强变大,则油滴向上运动,选项D 错误.故选AC.10. (多选)(2022·山东威海二模)如图所示为远距离输电的原理图,升压变压器T 1、降压变压器T 2均为理想变压器,T 1、T 2的原、副线圈匝数比分别为k 1、k 2.输电线间的总电阻为R 0,可变电阻R 为用户端负载.U 1、I 1分别表示电压表V 1、电流表A 1的示数,输入电压U 保持不变,当负载电阻R 减小时,理想电压表V 2的示数变化的绝对值为ΔU ,理想电流表A 2的示数变化的绝对值为ΔI ,下列说法正确的是( BD )A .R 0=U 1I 1B .R 0=ΔU ΔI k 22C .电压表V 1示数增大D .电流表A 1的示数增加了ΔI k 2【解析】 设降压变压器T 2原线圈电压为U 3,副线圈电压为U 2,根据题意可知,电阻R 0两端的电压等于U R 0=U 1-U 3,则R 0=U 1-U 3I 1,故A 错误;设降压变压器T 2原线圈电压变化为ΔU 3,则ΔU 3ΔU =k 2,设降压变压器T 2原线圈电流变化为ΔI 3,则ΔI 3ΔI =1k 2,可得ΔI 3=ΔI k 2,根据欧姆定律得ΔU 3=ΔI 3R 0,即k 2ΔU =ΔI k 2R 0,解得R 0=ΔU ΔIk 22,故B 、D 正确;输入电压不变,升压变压器T 1原副线圈匝数比不变,则升压变压器T 1副线圈的电压不变,电压表V 1示数不变,故C 错误.故选BD.应用题——强化学以致用11. (多选)(2022·安徽合肥预测)如图所示,理想变压器的原、副线圈分别接有R 1=250 Ω与R 2=10 Ω的电阻.当原线圈一侧接入u =311sin 100πt (V)的交流电时,两电阻消耗的功率相等,则有( AC )A .原、副线圈的匝数比为5∶1B .电阻R 1两端电压有效值是电阻R 2两端电压有效值的2倍C .电阻R 2消耗的功率为48.4 WD .1 s 内流过电阻R 2的电流方向改变200次【解析】 设原线圈电流为I 1,副线圈电流为I 2,由题意可知I 21R 1=I 22R 2,故n 1n 2=I 2I 1=R 1R 2=5,A 正确;电阻R 1两端电压有效值和电阻R 2两端电压有效值之比为U R 1U R 2=I 1R 1I 2R 2=5,B 错误;设原线圈输入电压为U 1,副线圈输出电压为U 2,故U 1U 2=n 1n 2=5,解得U 1=5U 2,又U R 1=I 1R 1,U 2=I 2R 2,又因为U =U R 1+U 1,外接交流电压有效值为220 V ,联立代入数据解得U 2=110U =22 V ,电阻R 2消耗的功率为P =U 22R 2=48.4 W ,C 正确;由题意可知,交流电的频率为f =ω2π=50 Hz ,变压器不改变交流电的频率,一个周期内电流方向改变2次,故1 s 内流过电阻R 2的电流方向改变100次,D 错误.故选AC.12. (多选)(2022·湖北恩施预测)为了适应特高压输电以实现地区间电力资源的有效配置,需要对原来线路中的变压器进行调换.某输电线路可简化为如图所示,变压器均为理想变压器,调换前后发电机输出电压、输电线电阻、用户得到的电压均不变,改造后输送电压提升为原来的5倍,假设特高压输电前后输送的功率不变,下列说法正确的是( AB )A .线路改造后升压变压器原、副线圈的匝数比改变B .线路上电阻的功率变为原来的125C .特高压输电后,电压损失变为原来的125D .线路改造后用户端降压变压器匝数比不变【解析】 发电机输出电压不变,应改变升压变压器原、副线圈的匝数比,故A 项正确;根据线路上功率的损失ΔP =I 22r ,输送功率不变,电压提升为原来的5倍,输送的电流变为原来的15,线路电阻不变,损失的功率变为原来的125,故B 项正确;输电线上的电压损失为ΔU =I 2r ,输送功率为P 2=U 2I 2则输送功率不变,电压增为原来的5倍,电流变为原来的15,损失的电压变为原来的15,故C 项错误;用户端的降压变压器改造前后输出端电压U 4不变,输入端电压U 3变大,根据U 3U 4=n 3n 4,可得原、副线圈的匝数比一定变化,故D 项错误.故选AB.13. (多选)(2022·湖北襄阳模拟)如图所示,矩形线圈abcd 在匀强磁场中绕垂直于磁场的轴OO ′匀速转动,线圈的电阻为R ,线圈共N 匝,理想变压器原、副线圈的匝数比为1∶2,定值电阻R 1=R ,当线圈转动的转速为n 时,电压表的示数为U ,则( ACD )A .电流表的示数为2U RB .从线圈转动到图示位置开始计时,线圈中产生的电动势的瞬时表达式为e =52U cos2πntC .线圈在转动过程中通过线圈磁通量的最大值为52U 4Nn πD .当线圈转动的转速为2n 时,电压表的示数为2U 【解析】 依题意有I 2=U R 1=U R ,I 1∶I 2=2∶1则有I 1=2I 2=2U R,故A 正确;根据欧姆定律,发电机产生的感应电动势的最大值为E m ,有E m 2=R ×I 1+U 1,U 1U =12,ω=2n π rad/s,从线圈转动到图示位置开始计时,线圈中产生的电动势的瞬时表达式为e =E m cos ωt =52U 2cos 2n πt (V),故B 错误;依题意有,线圈在转动过程中通过线圈磁通量的最大值为Φm ,则有52U 2=NΦm 2n π,解得Φm =52U 4Nn π,故C 正确;当线圈转动的转速为2n 时,线圈中产生的电动势的最大值为E m ′=NΦm 4n π,因52U 2=NΦm 2n π=E m ,所以E m ′=52U ,其有效值为5U ,假定电压表示数为U 2′,则有5U =I 1′R +U 1′=2U 2′R 1×R +U 1′=12U 2′+2U 2′=52U 2′,解得U 2′=2U ,当线圈转动的转速为2n 时,电压表的示数为2U ,故D 正确.故选ACD.。
专题限时集训(十) 电磁感应规律及其应用(对应学生用书第135页)(建议用时:40分钟)一、选择题(本题共8小题,每小题6分.在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分.)1.如图1023,在方向垂直于纸面向里的匀强磁场中有一U形金属导轨,导轨平面与磁场垂直.金属杆PQ置于导轨上并与导轨形成闭合回路PQRS,一圆环形金属框T位于回路围成的区域内,线框与导轨共面.现让金属杆PQ突然向右运动,在运动开始的瞬间,关于感应电流的方向,下列说法正确的是( )【导学号:17214173】图1023A.PQRS中沿顺时针方向,T中沿逆时针方向B.PQRS中沿顺时针方向,T中沿顺时针方向C.PQRS中沿逆时针方向,T中沿逆时针方向D.PQRS中沿逆时针方向,T中沿顺时针方向D [PQ向右运动,导体切割磁感线,根据右手定则,可知电流由Q流向P,即逆时针方向,根据楞次定律可知,通过T的磁场减弱,则T的感应电流产生的磁场应指向纸面里面,则感应电流方向为顺时针.]2.如图1024所示,将一铝管竖立在水平桌面上,把一块直径比铝管内径小一些的圆柱形的强磁铁从铝管上端由静止释放,强磁铁在铝管中始终与管壁不接触.则强磁铁在下落过程中( )图1024A.若增加强磁铁的磁性,可使其到达铝管底部的速度变小B.铝管对水平桌面的压力一定逐渐变大C.强磁铁落到铝管底部的动能等于减少的重力势能D.强磁铁先加速后减速下落A [磁铁通过铝管时,导致铝管的磁通量发生变化,从而产生感应电流,感应电流阻碍磁铁相对于铝管的运动;结合法拉第电磁感应定律可知,磁铁的磁场越强、磁铁运动的速度越快,则感应电流越大,感应电流对磁铁的阻碍作用也越大,所以若增加强磁铁的磁性,可使其到达铝管底部的速度变小,故A正确.磁铁在整个下落过程中,由楞次定律“来拒去留”可知,铝管对桌面的压力大于铝管的重力;同时,结合法拉第电磁感应定律可知,磁铁运动的速度越快,则感应电流越大,感应电流对磁铁的阻碍作用也越大,所以磁铁将向下做加速度逐渐减小的加速运动.磁铁可能一直向下做加速运动,也可能磁铁先向下做加速运动,最后做匀速直线运动,不可能出现减速运动;若磁铁先向下做加速运动,最后做匀速直线运动,则铝管对水平桌面的压力先逐渐变大,最后保持不变,故B错误,D错误.磁铁在整个下落过程中,除重力做功外,还有产生感应电流对应的安培力做功,导致减小的重力势能,部分转化为动能外,还有部分产生内能,动能的增加量小于重力势能的减少量,故C错误.]3.(2017·咸阳二模)如图1025所示,一呈半正弦形状的闭合线框abc,ac=l,匀速穿过边界宽度也为l的相邻磁感应强度大小相同的匀强磁场区域,整个过程线框中感应电流图象为(取顺时针方向为正方向)( )图1025B [线框从左边磁场进入右边磁场的过程中,两边都切割磁感线,磁通量变化得更快,感应电动势更大,感应电流方向沿逆时针,为负,选项B正确.]4.在如图1026甲所示的电路中,电阻R1=R2=2R,圆形金属线圈半径为r1,线圈导线的电阻为R,半径为r2(r2<r1)的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图乙所示,图线与横、纵轴的交点坐标分别为t0和B0,其余导线的电阻不计,闭合S,至t1时刻,电路中的电流已稳定,下列说法正确的是( )【导学号:17214174】图1026①电容器上极板带正电 ②电容器下极板带正电 ③线圈两端的电压为B 0πr 21t 0④线圈两端的电压为4B 0πr 225t 0A .①③B .①④C .②③D .②④ D [由楞次定律知圆形金属线圈内的感应电流方向为顺时针,金属线圈相当于电源,电源内部的电流从负极流向正极,则电容器的下极板带正电,上极板带负电,①错②对.由法拉第电磁感应定律知感应电动势为E =ΔΦΔt =ΔB Δt S =B 0t 0×πr 22,由闭合电路欧姆定律得感应电流为I =E R +R 1+R 2,所以线圈两端的电压U =I (R 1+R 2)=4B 0πr 225t 0,③错④对,故应选 D .]5.(2017·河北邯郸一模)如图1027所示,一足够长的光滑平行金属轨道,轨道平面与水平面成θ角,上端与一电阻R 相连,处于方向垂直轨道平面向上的匀强磁场中.质量为m 、电阻为r 的金属杆ab ,从高为h 处由静止释放,下滑一段时间后,金属杆开始以速度v 匀速运动直到轨道的底端.金属杆始终保持与轨道垂直且接触良好,轨道的电阻及空气阻力均可忽略不计,重力加速度为g .则( )图1027A .金属杆加速运动过程中的平均速度为v /2B .金属杆加速运动过程中克服安培力做功的功率大于匀速运动过程中克服安培力做功的功率C .当金属杆的速度为v /2时,它的加速度大小为g sin θ2D .整个运动过程中电阻R 产生的焦耳热为mgh -12mv 2 C [对金属杆分析知,金属杆ab 在运动过程中受到重力、轨道支持力和安培力作用,先做加速度减小的加速运动,后做匀速运动,因金属杆加速运动过程不是匀加速,故其平均速度不等于v 2,A 错误.当安培力等于重力沿斜面的分力,即mg sin θ=B 2l 2v R 时,杆ab 开始匀速运动,此时v 最大,F 安最大,故匀速运动时克服安培力做功的功率大,B 错误;当金属杆速度为v 2时,F 安′=B 2l 2·v 2R =12mg sin θ,所以F 合=mg sin θ-F 安′=12mg sin θ=ma ,得a =g sin θ2,C 正确;由能量守恒可得mgh -12mv 2=Q ab +Q R ,即mgh -12mv 2应等于电阻R 和金属杆上产生的总焦耳热,D 错误.] 6.如图1028所示,粗细均匀的矩形金属导体方框abcd 固定于匀强磁场中,磁场方向垂直线圈所在平面,磁感应强度B 随时间t 变化的规律如图所示.以垂直于线圈所在平面向里为磁感应强度B 的正方向,则下列关于ab 边的热功率P 、ab 边受到的安培力F (以向右为正方向)随时间t 变化的图象中正确的是( )图1028AD [根据法拉第电磁感应定律:E =n ΔΦΔt =n ΔB ΔtS 可知,产生的感应电动势大小不变,所以感应电流大小也不变,ab 边热功率P =I 2R ,恒定不变,A 正确,B 错误;根据安培力公式F =BIL ,因为电流大小、ab 边长度不变,安培力与磁感应强度成正比,根据左手定则判定方向,可知C 错误,D 正确.]7.如图1029所示是法拉第制作的世界上第一台发电机的模型原理图.把一个半径为r 的铜盘放在磁感应强度大小为B 的匀强磁场中,使磁感线水平向右垂直穿过铜盘,铜盘安装在水平的铜轴上,两块铜片C 、D 分别与转动轴和铜盘的边缘接触,G 为灵敏电流表.现使铜盘按照图示方向以角速度ω匀速转动,则下列说法中正确的是( )图1029A .C 点电势一定高于D 点电势B .圆盘中产生的感应电动势大小为12B ωr 2C .电流表中的电流方向为由a 到bD .若铜盘不转动,使所加磁场磁感应强度均匀增大,在铜盘中可以产生涡旋电流 BD [把铜盘看作由中心指向边缘的无数条铜棒组合而成,当铜盘转动时,每根铜棒都在切割磁感线,相当于电源,由右手定则知,盘边缘为电源正极,中心为电源负极,C 点电势低于D 点电势,选项A 错误;此电源对外电路供电,电流由b 经电流表再从a 流向铜盘,选项C 错误;铜棒转动切割磁感线,相当于电源,回路中感应电动势为E =Brv=Br ω12r =12B ωr 2,选项B 正确;若铜盘不转动,使所加磁场磁感应强度均匀增大,在铜盘中产生感生环形电场,使铜盘中的自由电荷在电场力的作用下定向移动,形成环形电流,选项D 正确.]8.(2017·贵州三校联考)如图1030所示,竖直光滑导轨上端接入一定值电阻R ,C 1和C 2是半径都为a 的两圆形磁场区域,其区域内的磁场方向都垂直于导轨平面向外,区域C 1中磁场的磁感应强度随时间按B 1=b +kt (k >0)变化,C 2中磁场的磁感应强度恒为B 2,一质量为m 、电阻为r 、长度为L 的金属杆AB 穿过区域C 2的圆心垂直地跨放在两导轨上,且与导轨接触良好,并恰能保持静止.则( )图1030A .通过金属杆的电流大小为mgB 2LB .通过金属杆的电流方向为从B 到AC .定值电阻的阻值为R =2πkB 2a 3mg-r D .整个电路的热功率P =πkamg 2B 2BCD [根据题述金属杆恰能保持静止,由平衡条件可得:mg =B 2I ·2a ,通过金属杆的电流大小为I =mg 2aB 2,选项A 错误.由楞次定律可知,通过金属杆的电流方向为从B 到A ,选项B 正确.根据区域C 1中磁场的磁感应强度随时间按B 1=b +kt (k >0)变化,可知ΔB 1Δt =k ,C 1中磁场变化产生的感应电动势E =ΔB 1Δtπa 2=k πa 2,由闭合电路欧姆定律,E =I (r +R ),联立解得定值电阻的阻值为R =2πkB 2a 3mg-r ,选项C 正确.整个电路的热功率P =EI =k πa 2·mg 2aB 2=πkamg 2B 2,选项D 正确.] 二、计算题(共2小题,32分)9.(14分)(2016·全国甲卷T 24)如图1031所示,水平面(纸面)内间距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上.t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.t 0时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求:图1031(1)金属杆在磁场中运动时产生的电动势的大小;(2)电阻的阻值.【解析】 (1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得ma =F -μmg ①设金属杆到达磁场左边界时的速度为v ,由运动学公式有v =at 0②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为E =Blv ③联立①②③式可得E =Blt 0⎝ ⎛⎭⎪⎫F m -μg .④(2)设金属杆在磁场区域中匀速运动时,金属杆中的电流为I ,根据欧姆定律I =E R⑤ 式中R 为电阻的阻值.金属杆所受的安培力为f =BlI ⑥因金属杆做匀速运动,由牛顿运动定律得F -μmg -f =0⑦联立④⑤⑥⑦式得R =B 2l 2t 0m.⑧ 【答案】 (1)Blt 0⎝ ⎛⎭⎪⎫F m -μg (2)B 2l 2t 0m 10.(18分)如图1032甲所示,两根平行光滑金属导轨相距L =1 m ,导轨平面与水平面的夹角θ=30°,导轨的下端PQ 间接有R =8 Ω的电阻.相距x =6 m 的MN 和PQ 间存在磁感应强度大小为B 、方向垂直于导轨平面向上的匀强磁场.磁感应强度B 随时间t 的变化情况如图乙所示.将阻值r =2 Ω的导体棒ab 垂直放在导轨上,使导体棒从t =0时由静止释放,t =1 s 时导体棒恰好运动到MN ,开始匀速下滑.g 取10 m/s 2.求:甲 乙图1032(1)0~1 s 内回路中的感应电动势;(2)导体棒ab 的质量;(3)0~2 s 时间内导体棒所产生的热量.【导学号:17214175】【解析】 (1)0~1 s 内,磁场均匀变化,由法拉第电磁感应定律有:E 1=ΔΦΔt =ΔB ΔtS 由图象得ΔB Δt=2 T/s ,且S =Lx =6 m2 代入解得:E 1=12 V .(2)导体棒从静止开始做匀加速运动,加速度 a =g sin θ=10×0.5 m/s 2=5 m/s 2 t =1 s 末进入磁场区域的速度为 v =at 1=5×1 m/s=5 m/s导体棒切割磁感线产生的电动势 E 2=BLv =2×1×5 V=10 V根据导体棒进入磁场区域做匀速运动,可知导体受到的合力为零,有:mg sin θ=F 安=BIL根据闭合电路欧姆定律有:I =E 2R +r联立以上各式得:m =0.4 kg .(3)在0~1 s 内回路中产生的感应电动势为 E 1=12 V根据闭合电路欧姆定律可得I 1=E 1R +r =128+2 A =1.2 A 1 s ~2 s 内,导体棒切割磁感线产生的电动势为 E 2=10 V根据闭合电路欧姆定律可得 I 2=E 2R +r =108+2A =1 A 0~2 s 时间内导体棒所产生的热量 Q =I 21rt 1+I 22r (t 2-t 1)代入数据解得 Q =4.88 J .【答案】 (1)12 V (2)0.4 kg (3)4.88 J。
专题四功能关系的应用考情分析201520162017功与能T9:功能关系、能量守恒定律T14:动能定理的应用T14:机械能守恒定律的应用T3:物体在斜面上运动的E k-x图象T5:圆周运动中的功能问题T9:连接体中的功能问题T14(3):叠加体中的功能问题命题解读本专题共6个考点,其中功和功率、动能动能定理、重力势能、机械能守恒定律及其应用四个考点为Ⅱ要求,弹性势能、能量守恒为Ⅰ要求,这些考点皆属于高频考点。
从近三年命题情况看,命题特点为:(1)注重基础知识与实际问题结合.如2011年的抛鸡蛋、2013年的球碰撞等,难度较小。
(2)注重方法与综合。
如2012年、2013年、2015年的“弹簧问题"、2016年的连接体等,难度较大。
整体难度偏难,命题指数★★★★★,复习目标是达B冲A。
1。
(2017·江苏泰州中学月考)弹弓是孩子们喜爱的弹射类玩具,其构造原理如图1所示,橡皮筋两端点A、B固定在把手上,橡皮筋处于ACB时恰好为原长状态,在C处(AB连线的中垂线上)放一固体弹丸,一手执把,另一手将弹丸拉至D点放手,弹丸就会在橡皮筋的作用下发射出去,打击目标.现将弹丸竖直向上发射,已知E是CD中点,则()图1A.从D到C过程中,弹丸的机械能守恒B。
从D到C过程中,弹丸的动能一直在增大C。
从D到E过程橡皮筋对弹丸做的功大于从E到C过程橡皮筋对弹丸做的功D。
从D到C过程中,橡皮筋的弹性势能先增大后减小解析从D到C,橡皮筋的弹力对弹丸做功,所以弹丸的机械能增大,故A项错误;弹丸在与橡皮筋作用过程中,受到向上的弹力和向下的重力,橡皮筋ACB恰好处于原长状态,在C处橡皮筋的拉力为0,在CD连线中的某一处,弹力和重力相等时,弹丸受力平衡,所以从D到C,弹丸的合力先向上后向下,速度先增大后减小,弹丸的动能先增大后减小,故B项错误;从D到C,橡皮筋对弹丸一直做正功,橡皮筋的弹性势能一直减小,故D项错误;从D到E橡皮筋作用在弹丸上的合力大于从E到C橡皮筋作用在弹丸上的合力,两段位移相等,所以DE段橡皮筋对弹丸做功较多,故C项正确。
专题跟踪检测(十八)直流电路的分析和计算一、选择题(第1~5题为单项选择题,第6~9题为多项选择题)1.(2017·盐城三模)甲、乙、丙、丁是四个长度、横截面积均相同的金属导体,某同学对它们各进行了一次测量,把每个导体中通过的电流和两端的电压在I U坐标系中描点,如图所示,四个导体中电阻率最大的是( )A.甲B.乙C.丙D.丁解析:选A 根据U=IR可知,I U图像的斜率倒数的大小表示电阻,则由图可知,甲的斜率最小,那么其对应的电阻最大,由于四个金属导体长度、横截面积均相同,因此甲的电阻率也最大,故A正确,B、C、D错误。
2.(2017·南通一模)如图所示的电路,R1是定值电阻,R2是滑动变阻器,L是小灯泡,C是电容器,电源内阻为r。
开关S闭合后,在滑动变阻器触头P向上移动过程中( )A.小灯泡变亮B.电容器所带电荷量增大C.电压表示数变小D.电源的总功率变大解析:选B 闭合开关S后,当滑动变阻器触头P向上移动时,R2增大,外电路总电阻增大,干路中电流减小,则小灯泡亮度变暗。
电源的内电压减小,路端电压增大,则电压表的示数变大,故A、C错误;电路稳定时电容器的电压等于R2的电压,根据串联电路电压分配规律可知,R2增大,电容器的电压增大,则电容器所带电荷量增大,故B正确;电源的总功率为P=EI,干路电流I减小,则电源的总功率变小,故D错误。
3.(2017·镇江一模)如图所示,开关S闭合后,带电质点P在平行金属板中处于静止状态。
则( )A.质点P一定带正电B.滑片向a端移动时,两只电表的示数均增大C.滑片向a端移动时,质点P将向上板运动D.若将开关S断开,质点P将向下板运动解析:选C 由题图可知,开关S闭合后,R2与R4串联后与R3并联,再与R1串联,电容器与并联部分并联;电容器的上极板带正电,板间场强向下,质点处于平衡状态,则知受到的电场力向上,故质点P一定带负电,故A错误;滑片向a端移动时,滑动变阻器接入电阻增大,则总电阻增大,总电流减小,内电压减小,由闭合电路的欧姆定律可知路端电压增大,R1两端的电压减小,故并联部分电压增大;电容器两端的电压增大,质点P所受的电场力增大,则质点P将向上板运动;因并联部分电压增大,则R3中的电流增大,而干路电流减小,故电流表中的电流减小;并联部分电压增大,即R2与R4两端的总电压增大;而由于电流表示数减小,由欧姆定律可知R2两端的电压减小,故R4两端的电压增大,电压表示数增大,故B错误,C正确;若将开关S断开,电容器两端的电压等于电源的电动势,电容器两端电压增大,板间场强增大,质点P受到的电场力变大,质点P将向上板运动,故D错误。
4.(2017·江苏二模)如图所示,电源为恒流电源(能始终提供恒定的电流),R0为定值电阻,电流表和电压表均为理想电表,移动滑动变阻器R的滑片,则下列表示电压表示数U和电路总功率P随电流表示数I变化的关系图线中,正确的是( )解析:选D 设恒流电源提供的电流为I0,则通过R0的电流为:I R0=I0-I。
则电压表示数为:U=I R0R0=(I0-I)R0=-IR0+I0R0。
I0和R0是定值,则根据数学知识可知U I图像是不过原点的倾斜的直线,故A、B错误;电路总功率为:P=UI0=(I0-I)R0I0=-R0I0I+R0I02,I0和R0是定值,可知P I图像是向下倾斜的直线,故C错误,D正确。
5.如图所示电路中,电源电动势为E,内阻为r,当滑动变阻器的滑动触头P向上移动时,电压表的示数U和电流表的示数I的变化情况是( )A.U变大,I变大B.U变小,I变小C.U变大,I变小D.U变小,I变大解析:选C 当滑动变阻器的滑动触头P向上移动时,滑动变阻器接入电路的电阻增大,外电路的总电阻增大,根据欧姆定律分析得知,干路电流I干减小。
电压表的读数U=E-I r+R1),I干减小,U变大。
滑动变阻器与R3并联部分电压为U并=E-I干(r+R1+R2),I干干(减小,U并增大,电阻R3的电流I3增大。
电流表的读数I=I干-I3,I干减小,I3增大,则I 变小,所以U变大,I变小。
故C正确,A、B、D错误。
6.(2017·江苏三模)硅光电池是一种太阳能电池,具有低碳环保的优点。
如图所示,图线a 是该电池在某光照强度下路端电压U 和电流I 的关系图像(电池内阻不是常数),图线b 是某电阻R 的U I 图像。
在该光照强度下将它们组成闭合回路时,下列相关叙述正确的是( )A .此时硅光电池的内阻为12.5 ΩB .此时硅光电池的输出功率为0.4 WC .此时硅光电池的总功率为 0.72 WD .此时硅光电池的输出效率为40%解析:选BC 由闭合电路欧姆定律得 U =E -Ir ,当I =0时,E =U ,由图线a 与纵轴的交点读出电动势为E =3.6 V 。
根据两图线交点处的状态可知,将它们组成闭合回路时路端电压为 U =2 V ,电流为 I =0.2 A ,则此时硅光电池的内阻为r =E -U I =3.6-20.2Ω=8 Ω,故A 错误;此时硅光电池的输出功率为:P 出=UI =0.4 W ,故B 正确;此时硅光电池的总功率为:P 总=EI =3.6×0.2 W=0.72 W ,故C 正确;此时硅光电池的输出效率为:η=P 出P 总×100%=0.40.72×100%≈55.6%,故D 错误。
7.两位同学在实验室中利用如图(a)所示的电路进行实验,调节滑动变阻器的滑动触头P 向某一方向移动时,一位同学记录电流表A 和电压表V 1的测量数据,另一位同学记录电流表A 和电压表V 2的测量数据。
两位同学根据记录的数据描绘出如图(b)所示的两条U I 图线。
则图像中两图线的交点表示的物理意义是( )A .滑动变阻器的滑动触头P 滑到了最右端B .电源的输出功率最大C .定值电阻R 0消耗的功率为0.5 WD .电源的效率达到最大值解析:选BC 由题图可得,电源电动势E =1.5 V ,内阻r =1 Ω,在交点位置有R +R 0=U 1I =2 Ω,R 0=U 2I=2 Ω,则R =0,滑动变阻器的滑动触头P 滑到了最左端,选项A 错误;当电路中外电阻等于电源内阻时,电源的输出功率最大,但R 0>r ,故改变滑动变阻器的阻值时无法使电路中外电阻等于电源内阻,此时外电阻越接近电源内阻,电源的输出功率越大,故图线的交点对应的电源输出功率最大,选项B 正确;P 0=U 2I =0.5 W ,选项C 正确;电源的效率η=EI -I 2r EI,电流越小,电源的效率越大,可见滑动变阻器的滑动触头P 滑到最右端时电源的效率最大,选项D 错误。
8.在如图所示的电路中,电源内阻r ≠0,定值电阻R 2消耗的功率用P 表示,两电表均为理想电表,电容器与滑动变阻器并联,电压表和电流表的读数分别用U 、I 表示,电容器所带的电荷量用Q 表示,通过电源的电荷量为q 时,电源所做的功用W 表示。
当滑动变阻器的滑片向右移动时,下列图像正确的是( )解析:选AB 电阻R 2消耗的功率P =I 2R 2,图像A 正确;电容器所带电荷量Q =U C C =[E -I (r +R 2)]C =EC -IC (r +R 2),图像B 正确;电压表的读数U =E -Ir ,图像C 错误;电源做功W =qE ,图像D 错误。
9.某同学将一直流电源的总功率P E 、输出功率P R 和电源内部的发热功率P r 随电流I 变化的图线画在同一坐标系内,如图所示,根据图线可知下列说法正确的是( )A .反映P r 变化的图线是bB .电源电动势约为8 VC .当外电阻约为2 Ω时,输出功率最大D .当电流为0.5 A 时,外电路的电阻约为6 Ω解析:选CD 电源内部发热功率P r =I 2r ,所以P r I 图像为抛物线,则反映P r 变化的图线为c ,A 错误;电源的总功率为P E =EI ,其图线为a ,则E =P E I =82V =4 V ,B 错误;由图线c 知,当I =1 A 时,P r =2 W ,由P r =I 2r 得r =2 Ω,当外电阻为2 Ω时,输出功率最大,C 正确;当电流为0.5 A 时,由I =E R +r 解得R =6 Ω,D 正确。
二、非选择题10.一台小型电动机在3 V 电压下工作,用此电动机提升重力为4 N 的物体时,通过电动机的电流是0.2 A 。
在30 s 内可将该物体匀速提升3 m 。
若不计除电动机线圈生热之外的能量损失,求:(1)电动机的输入功率;(2)在开始提升物体后的30 s 内,电动机线圈所产生的热量;(3)电动机线圈的电阻。
解析:(1)电动机的输入功率P 入=IU =0.2×3 W=0.6 W 。
(2)电动机提升物体的机械功率P 机=Fv =G ·s t=0.4 W 由能量守恒定律得P 入=P 机+P 热故P 热=P 入-P 机=(0.6-0.4)W =0.2 W所以电动机线圈产生的热量Q =P 热t =0.2×30 J=6 J 。
(3)根据焦耳定律Q =I 2Rt 可得线圈电阻 R =Q I 2t =60.22×30Ω=5 Ω。
答案:(1)0.6 W (2)6 J (3)5 Ω11.在如图甲所示的电路中,R 1、R 2均为定值电阻,且R 1=100 Ω,R 2的阻值未知,R 3是滑动变阻器,在其滑片从最左端滑至最右端的过程中,测得电源的路端电压U 随电流I 的变化图线如图乙所示,其中图线上的A 、B 两点是滑片在滑动变阻器的两个不同端点时分别得到的。
求:(1)电源的电动势和内电阻;(2)定值电阻R 2的阻值;(3)滑动变阻器R 3的最大值。
解析:(1)由闭合电路欧姆定律得E =U +Ir将图线上A 、B 两点的U 、I 值代入得E =16+0.2r ,E =4+0.8r解得E =20 V ,r =20 Ω。
(2)当R 3的滑片自左向右滑动时,R 3的有效阻值变小,电路中的总电阻变小,总电流变大,由此可知,图线上的A 、B 两点分别对应滑片位于最左端和最右端。
当滑片位于最右端时,R 3=0,R 1被短路,外电路电阻即为R 2,故由B 点的U 、I 值得R 2=U B I B =40.8Ω=5 Ω。
(3)当滑片在最左端时,R 3的有效阻值最大,并对应着图线上的A 点,故由A 点的U 、I 值可求出此时外电路的电阻,再根据串、并联电路的规律求出R 3的最大值。
R 外=U A I A =160.2 Ω=80 Ω,又R 外=R 1R 3R 1+R 3+R 2代入数据解得滑动变阻器的最大值R3=300 Ω。