2.3.2离散型随机变量的方差(上课)
- 格式:ppt
- 大小:456.00 KB
- 文档页数:10
[A 组 学业达标]1.下面说法中正确的是( )A .离散型随机变量的均值E (ξ)反映了取值的概率的平均值B .离散型随机变量的方差D (ξ)反映了取值的平均水平C .离散型随机变量的均值E (ξ)反映了取值的平均水平D .离散型随机变量的方差D (ξ)反映了取值的概率的平均值 解析:由E (ξ)与D (ξ)的意义知选C. 答案:C2.已知随机变量X 的分布列为P (X =k )=13,k =3,6,9.则D (X )等于( )A .6B .9C .3D .4解析:由题意得E (X )=3×13+6×13+9×13=6.D (X )=(3-6)2×13+(6-6)2×13+(9-6)2×13=6.答案:A3.设随机变量X ~B (n ,p ),且E (X )=1.6,D (X )=1.28,则( ) A .n =8,p =0.2 B .n =4,p =0.4 C .n =5,p =0.32D .n =7,p =0.45解析:由已知有⎩⎪⎨⎪⎧np =1.6,np (1-p )=1.28,解得n =8,p =0.2.答案:A4.甲、乙两人对同一目标各射击一次,甲命中目标的概率为23,乙命中目标的概率为45,设命中目标的人数为X ,则D (X )等于( )A.86225 B.259675 C.2215D.1522解析:X 取0,1,2,P (X =0)=13×15=115,P (X =1)=25,P (X =2)=815,所以E (X )=2215,D (X )=86225.答案:A5.设0<p <1,随机变量ξ的分布列是则当p 在(0,1)内增大时,A .D (ξ)减小 B .D (ξ)增大C .D (ξ)先减小后增大 D .D (ξ)先增大后减小解析:由分布列可知E (ξ)=0×1-p 2+1×12+2×p 2=p +12,所以方差D (ξ)=⎝⎛⎭⎫0-p -122×1-p 2+⎝⎛⎭⎫1-p -122×12+⎝⎛⎭⎫2-p -122×p 2=-p 2+p +14,所以D (ξ)是关于p 的二次函数,开口向下,所以D (ξ)先增大后减小.答案:D6.若D (ξ)=1,则D (ξ-D (ξ))=________. 解析:D (ξ-D (ξ))=D (ξ-1)=D (ξ)=1. 答案:17.若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为________.解析:∵D (x )=8, ∴D (2x -1)=4D (x )=2D (x )=16.答案:168.已知离散型随机变量X 的可能取值为x 1=-1,x 2=0,x 3=1,且E (X )=0.1,D (X )=0.89,则对应x 1,x 2,x 3的概率p 1,p 2,p 3分别为________,________,________.解析:由题意知,-p 1+p 3=0.1, 1.21p 1+0.01p 2+0.81p 3=0.89.又p 1+p 2+p 3=1,解得p 1=0.4,p 2=0.1,p 3=0.5. 答案:0.4 0.1 0.59.随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,求D (ξ)的值.解析:设P (ξ=1)=a ,P (ξ=2)=b ,则⎩⎪⎨⎪⎧15+a +b =1,a +2b =1,解得⎩⎨⎧a =35,b =15,所以D (ξ)=15+35×0+15×1=25.10.甲、乙两人进行定点投篮游戏,投篮者若投中,则继续投篮,否则由对方投篮,第一次由甲投篮;已知每次投篮甲,乙命中的概率分别为13,34.(1)求第三次由乙投篮的概率.(2)在前3次投篮中,乙投篮的次数为ξ,求ξ的分布列、期望及标准差. 解析:(1)P =13×23+23×34=1318.(2)P (ξ=0)=13×13=19;P (ξ=1)=13×23+23×14=718.P (ξ=2)=23×34=12.故ξ的分布列为:E (ξ)=0×19+1×718+2×12=2518,D (ξ)=⎝⎛⎭⎫0-25182×19+⎝⎛⎭⎫1-25182×718+⎝⎛⎭⎫2-25182×12=149324,所以D (ξ)=14918.[B 组 能力提升]11.已知随机变量ξ满足P (ξ=1)=0.3,P (ξ=2)=0.7,则E (ξ)和D (ξ)的值分别为( ) A .0.6和0.7 B .1.7和0.09 C .0.3和0.7D .1.7和0.21 解析:E (ξ)=1×0.3+2×0.7=1.7,D (ξ)=(1-1.7)2×0.3+(2-1.7)2×0.7=0.21. 答案:D12.若随机变量X 的分布列为P (X =m )=13,P (X =n )=a ,若E (X )=2,则D (X )的最小值等于( )A .0B .1C .4D .2解析:由分布列的性质,得a +13=1,a =23.∵E (X )=2,∴m 3+2n3=2.∴m =6-2n .∴D (X )=13×(m -2)2+23×(n -2)2=23×(n -2)2+13×(6-2n -2)2=2n 2-8n +8=2(n -2)2.∴n =2时,D (X )取最小值0. 答案:A13.已知某随机变量X 的分布列如表(p ,q ∈R ):X 1 -1 Ppq且X 的数学期望E (X )=12,那么X 的方差D (X )=________.解析:根据题意可得⎩⎪⎨⎪⎧p +q =1,p -q =12,解得p =34,q =14,故X 的方差D (X )=⎝⎛⎭⎫1-122×34+⎝⎛⎭⎫-1-122×14=34.答案:3414.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,均值E (X )及方差D (X ).解析:(1)设A 1表示事件“日销售量不低于100个”,A 2表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天的日销售量不低于100个且另1天的日销售量低于50个”.因此P (A 1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108.(2)X可能取的值为0,1,2,3,相应的概率为P(X=0)=C03×(1-0.6)3=0.064,P(X=1)=C13×0.6×(1-0.6)2=0.288,P(X=2)=C23×0.62×(1-0.6)=0.432,P(X=3)=C33×0.63=0.216,则X的分布列为:因为X~B(3,0.6)方差D(X)=3×0.6×(1-0.6)=0.72.。
2.3.2离散型随机变量的方差三维目标1.知识与技能(1)理解取有限个值的离散型随机变量的方差及标准差的概念和意义.(2)能计算简单离散型随机变量的方差和标准差,并能解决一些实际问题.(3)掌握方差的性质,会求两点分布、二项分布的方差.2.过程与方法通过具体实例,理解离散型随机变量方差的概念、公式及意义,在解决实际问题的过程中,掌握解决此类问题的方法与步骤.3.情感、态度与价值观体会数学的应用价值,提高理论联系实际问题的能力.重点、难点重点:离散型随机变量方差的公式及根据分布列求方差.难点:方差的实际应用.教学时要抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,引导学生结合初中学习过的方差知识,类比、观察、分析得到新的方差的概念、性质及如何根据分布列求方差,从而突出重点,通过例题与练习来化解难点.教学建议本节内容安排在均值之后,是刻画随机变量稳定性的工具,也是对学习过的样本方差的直接延伸,教学时引导学生类比样本方差的定义给出随机变量方差的定义,让学生探究它们的联系与区别,要注意对随机变量的方差和标准差概念、含义的解释,让学生在探究中加深对概念的理解.教学流程创设问题情境,提出问题.⇒引导学生回答问题,理解离散型随机变量方差的概念、性质及公式.⇒通过例1及变式训练,掌握离散型随机变量的方差、标准差的求法.⇒通过例2及互动探究,使学生掌握离散型随机变量的方差的性质.⇒通过例3及变式训练,使学生掌握均值、方差的综合应用.⇒归纳整理,进行课堂小结,从整体认识所学知识.⇒完成当堂双基达标,巩固所学知识,并进行反馈、矫正.课标解读1.理解取有限个值的离散型随机变量的方差及标准差的概念.2.能计算简单离散型随机变量的方差,并能解决一些实际问题.3.掌握方差的性质以及两点分布、二项分布的方差的求法,会利用公式求它们的方差.知识1离散型随机变量的方差【问题导思】A ,B 两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表:A 机床次品数X 10 1 2 3 P0.70.20.060.04B 机床次品数X 20 1 2 3 P0.80.060.040.10(1)试求E (X 1),E (X 2);(2)由E (X 1)和E (X 2)的值能比较两台机床的产品质量吗? (3)试想利用什么指标可以比较加工质量?【提示】 (1)E (X 1)=0×0.7+1×0.2+2×0.06+3×0.04=0.44, E (X 2)=0×0.8+1×0.06+2×0.04+3×0.10=0.44. (2)不能.(3)样本方差.1.离散型随机变量的方差、标准差 (1)定义:设离散型随机变量X 的分布列为X x 1 x 2 … x i … x n Pp 1p 2…p i…p n则(x i -E (X ))2描述了x i (i =1,2,…,n )相对于均值E (X )的偏离程度,而D (X )= i =1n(x i -E (X ))2p i 为这些偏离程度的加权平均,刻画了随机变量X 与其均值E (X )的平均偏离程度.称D (X )为随机变量X 的方差,其算术平方根D (X )为随机变量X 的标准差.(2)意义:随机变量的方差和标准差都反映了随机变量取值偏离于均值的平均程度.方差或标准差越小,则随机变量偏离于均值的平均程度越小.(3)离散型随机变量方差的性质: 设a ,b 为常数,则D (aX +b )=a 2D (X ). 2.服从两点分布与二项分布的随机变量的方差 (1)若X 服从两点分布,则D (X )=p (1-p ); (2)若X ~B (n ,p ),则D (X )=np (1-p ).类型1 求离散型随机变量的方差、标准差例1 已知离散型随机变量X 1的概率分布为X 1 1 2 3 4 5 6 7 P17171717171717离散型随机变量X 2的概率分布为X 2 3.7 3.8 3.9 4 4.1 4.2 4.3 P17171717171717求这两个随机变量的均值、方差与标准差.【思路探究】 直接利用离散型随机变量的均值和方差公式求解. 解 E (X 1)=1×17+2×17+…+7×17=4;D (X 1)=(1-4)2×17+(2-4)2×17+…+(7-4)2×17=4;D (X 1)=2.E (X 2)=3.7×17+3.8×17+…+4.3×17=4;D (X 2)=(3.7-4)2×17+(3.8-4)2×17+(3.9-4)2×17+(4-4)2×17+(4.1-4)2×17+(4.2-4)2×17+(4.3-4)2×17=0.04;D (X 2)=0.2.规律方法1.本题已知分布列求均值、方差和标准差,属较容易题,套用公式即可完成.2.给出分布列求方差时,首先要求均值,然后再求方差和标准差,要注意公式应用要准确. 变式训练已知Y 的分布列为Y 0 10 20 50 60 P1325115215115求D (Y ),D (Y ).解 ∵E (Y )=Y 1P 1+Y 2P 2+Y 3P 3+Y 4P 4+Y 5P 5 =0×13+10×25+20×115+50×215+60×115=16.∴D (Y )=(0-16)2×13+(10-16)2×25+(20-16)2×115+(50-16)2×215+(60-16)2×115=384.∴D (Y )=8 6.类型2离散型随机变量的方差的性质及应用例2 已知η的分布列为:η 0 10 20 50 60 P1325115215115(1)求方差及标准差; (2)设Y =2η-E (η),求D (Y ).【思路探究】 (1)利用方差公式求解,首先求出均值E (η),然后利用D (η)定义求方差;(2)由于E (η)是一个常数,所以D (Y )=D (2η-E (η))=22D (η).解 (1)∵E (η)=0×13+10×25+20×115+50×215+60×115=16,D (η)=(0-16)2×13+(10-16)2×25+(20-16)2×115+(50-16)2×215+(60-16)2×115=384,∴D (η)=8 6. (2)∵Y =2η-E (η), ∴D (Y )=D (2η-E (η)) =22D (η)=4×384=1 536. 规律方法1.对于变量间存在关系的方差,在求解过程中应注意方差性质的应用,如D (aξ+b )=a 2D (ξ),这样处理既避免了求随机变量η=aξ+b 的分布列,又避免了繁杂的计算,简化了计算过程. 2.若ξ~B (n ,p ),则D (ξ)=np (1-p ),若ξ服从两点分布,则D (ξ)=p (1-p ),其中p 为成功概率,应用上述性质可大大简化解题过程. 互动探究将本例的分布列改为η 1 2 3 4 5 P0.10.20.40.20.1其他不变,如何求解?解 (1)∵E (η)=1×0.1+2×0.2+3×0.4+4×0.2+5×0.1=3,∴D (η)=(1-3)2×0.1+(2-3)2×0.2+(3-3)2×0.4+(4-3)2×0.2+(5-3)2×0.1=1.2, ∴D (η)= 1.2. (2)∵Y =2η-E (η)∴D (Y )=D (2η-Eη)=22D (η)=4×1.2=4.8.类型3方差的实际应用例3 有甲、乙两种建筑材料,从中各取等量样品检查它们的抗拉强度如下:ξA 110 120 125 130 135 P0.10.20.40.10.2ξB100115125130145P0.10.20.40.10.2其中,ξA,ξB分别表示甲、乙两种材料的抗拉强度,在使用时要求抗拉强度不低于120,试比较甲、乙两种建筑材料的稳定程度(哪一个的稳定性较好).【思路探究】要比较两种材料的质量,需先比较其抗拉强度的期望,然后再看其方差值.解E(ξA)=110×0.1+120×0.2+125×0.4+130×0.1+135×0.2=125.E(ξB)=100×0.1+115×0.2+125×0.4+130×0.1+145×0.2=125.D(ξA)=0.1×(110-125)2+0.2×(120-125)2+0.4×(125-125)2+0.1×(130-125)2+0.2×(135-125)2=50.D(ξB)=0.1×(100-125)2+0.2×(115-125)2+0.4×(125-125)2+0.1×(130-125)2+0.2×(145-125)2=165.由此可见,E(ξA)=E(ξB),D(ξA)<D(ξB),故两种材料的抗拉强度的平均值相等,其稳定程度材料乙明显不如材料甲,即甲的稳定性好.规律方法1.本题采用比较分析法,通过比较两个随机变量的均值和方差得出结论.2.均值体现了随机变量取值的平均大小,在两种产品相比较时,只比较均值往往是不恰当的,还需比较它们的取值的离散程度,即通过比较方差,才能准确地得出更恰当的判断.变式训练甲,乙两名工人加工同一种零件,两人每天加工的零件数相同,所得次品数分别为X,Y,X和Y的分布列如下表.试对这两名工人的技术水平进行比较.X012P 610110310Y012P 510310210解工人甲生产出次品数X的数学期望和方差分别为E(X)=0×610+1×110+2×310=0.7,D(X)=(0-0.7)2×610+(1-0.7)2×110+(2-0.7)2×310=0.81.工人乙生产出次品数Y的数学期望和方差分别为E(Y)=0×510+1×310+2×210=0.7,D(Y)=(0-0.7)2×510+(1-0.7)2×310+(2-0.7)2×210=0.61.由E (X )=E (Y )知,两人出次品的平均数相同,技术水平相当,但D (X )>D (Y ),可见乙的技术比较稳定.易错易误辨析 错用方差公式致误典例 已知η=3ξ+18,且D (ξ)=13,D (η)=________.【错解】 ∵D (ξ)=13,η=3ξ+18.∴D (η)=D (3ξ+18)=9D (ξ)+18=9×13+18=11718【答案】 11718【错因分析】 解答过程中,记错了方差的性质公式D (aξ+b )=a 2D (ξ)直接导致解答出错.【防范措施】 熟练掌握方差的性质是解答此类问题的关键. 【正解】 D (η)=D (3ξ+18)=9D (ξ)=9×13=117.【答案】 117课堂小结1.已知随机变量的概率分布,求它的均值、方差(或标准差),可直接由定义(公式)求解. 2.已知随机变量X 的均值、方差,求X 的线性函数Y =aX +b 的均值和方差,可直接用均值、方差的性质求解,即E (aX +b )=aE (X )+b ,D (aX +b )=a 2D (X ).3.如果能分析出所给随机变量服从两点分布或二项分布,可直接用它们的均值、方差公式计算.当堂检测1.下面说法中正确的是( )A .离散型随机变量X 的期望E (X )反映了X 取值的概率的平均值B .离散型随机变量X 的方差D (X )反映了X 取值的平均水平C .离散型随机变量X 的期望E (X )反映了X 取值的平均水平D .离散型随机变量X 的方差D (X )反映了X 取值的概率的平均值 【解析】 根据期望与方差的概念知选项C 正确. 【答案】 C2.若随机变量X 服从两点分布,且成功概率P =0.5,则D (X )和E (X )分别为( )A .0.25和0.5B .0.75和0.5C .0.25和1D .0.75和1【解析】 E (X )=0.5,D (X )=0.5(1-0.5)=0.25.【答案】 A3.若ξ~B (n ,p ),且E (ξ)=6,D (ξ)=3,则n =________,p =________.【解析】 由⎩⎪⎨⎪⎧np =6np (1-p )=3解得n =12,p =12.【答案】 12 124.已知随机变量X 的分布列如下表:X -1 0 1 P121316求X 的均值、方差和标准差.解 均值E (X )=x 1p 1+x 2p 2+x 3p 3=(-1)×12+0×13+1×16=-13;方差D (X )=(x 1-E (X ))2·p 1+(x 2-E (X ))2·p 2+(x 3-E (X ))2·p 3=(-1+13)2×12+(0+13)2×13+(1+13)2×16=59;标准差D (X )=53.。
2.3.2 离散型随机变量的方差课堂导学三点剖析一、随机变量的方差与标准差的求法例1 设X 是一个离散型随机变量,其分布列如下表,试求EX ,DX .温馨提示解本题时,要防止机械地套用均值与方差的计算公式,即EX =(-1)×21+0×(1-2q )+1×q 2=q 2-21; DX =[-1-(q 2-21)]2×21+(q 2-21)2×(1-2q )+[1-(q 2-21)]2×q 2.这是由于忽略了随机变量分布列的性质所出现的误解,求离散型随机变量的均值与方差,应明确随机变量的分布列,若分布列中的概率值是待定常数时,应先求出待定常数后,再求其均值与方差.二、两点分布、二项分布的方差例2 设一次试验的成功率为p ,进行100次独立重复试验,求当p 为何值时,成功次数的标准差的值最大?并求其最大值. 温馨提示要求成功次数标准差的最大值,就需先建立标准差关于变量p的函数关系式,另外要注意利用分布列的性质求出定义域0≤p≤1.三、方差的应用例3 海关大楼顶端镶有A、B两面大钟,它们的日走时误差分别为X1、X2(单位:s),其分布列如下:根据这两面大钟日走时误差的均值与方差比较这两面大钟的质量.温馨提示随机变量X的方差的意义在于描述随机变量稳定与波动或集中与分散的状况.标准差σX=DX则体现随机变量取值与其均值的偏差,在实际问题中,若有两个随机变量X1、X2,且EX1=EX2或EX1与EX2比较接近时,我们常用DX1与DX2来比较这两个随机变量,方差值大的,则表明X较为离散,反之则表明X较为集中.同样,标准差的值较大,则标明X与其均值的偏差较大,反之,则表明X与其均值的偏差较小.各个击破类题演练1 若随机事件A在一次试验中发生的概率为2a.随机变量ξ表示在一次试验中发生的次数.求方差Dξ的最值.变式提升1 某射击手进行射击练习,每射击5发子弹算一组,一旦命中就停止射击,并进入下一组的练习,否则一直打完5发子弹才能进入下一组练习,若该射手在某组练习中射击命中一次,并且已知他射击一次的命中率为0.8,求在这一组练习中耗用子弹数ξ的分布列,并求出ξ的期望Eξ与方差Dξ(保留两位小数).类题演练2 若随机变量A 在一次试验中发生的概率为p (0<p <1),用随机变量ξ表示A 在1次试验中发生的次数. (1)求方差Dξ的最大值; (2)求ξξE D 12-的最大值.变式提升2 证明:事件在一次实验中发生的次数的方差不超过14.类题演练3 甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量ξ与η,且ξ、η的分布列为:计算ξ、η的期望与方差,并以此分析甲、乙的技术优劣.变式提升3 现要从甲、乙两个技工中选派一个参加技术比赛,已知他们在同样的条件下每天的产量相等,而出次品的个数的分布列如下:甲乙根据以上条件,选派谁去合适?参考答案课堂导学例1 解:由于离散型随机变量的分布列满足(1)p i ≥0,i =1,2,3,...; (2)p 1+p 2+...+p n + (1)故221(12)1,20121,1.q q q q ⎧+-+=⎪⎪≤-≤⎨⎪≤⎪⎩解得q =1-22. 故X 的分布列为∴EX =(-1)×2+0×(2-1)+1×(22-) =-2321++(-2)=1-2; DX =[-1-(1-2)]2×21+(1-2)2×(2-1)+[1-(1-2)]2×(223-)=(2-2)2×21+(2-1)3+2(223-)=2-1.例2 解:设成功次数为随机变量X ,由题意可知X —B (100,p ), 那么σX =)1(100p p DX -=,因为DX =100p (1-p )=100p -100p 2(0≤p ≤1). 把上式看作一个以p 为自变量的一元二次函数,易知当p =21时,DX 有最大值25.所以DX 的最大值为5,即当p =21时,成功次数的标准差的最大值为5. 例3 解:∵EX 1=0,EX 2=0, ∴EX 1=EX 2,∵DX 1=(-2-0)2×0.05+(-1-0)2×0.05+(0-0)2×0.8+(1-0)2×0.05+(2-0)2×0.05=0.5, DX 2=(-2-0)2×0.1+(-1-0)2×0.2+(0-0)2×0.4+(1-0)2×0.2+(2-1)2×0.1=1.2, ∴DX 1<DX 2,由上可知,A 面大钟的质量较好. 各个击破类题演练1 解:由题意得ξ的分布列为∴Eξ=0×(1-2a )+1×2a =2a ∴Dξ=(0-2a )2(1-2a )+(1-2a )22a =(1-2a )2a (2a +1-2a ) =2a (1-2a )=-4[a -41]2+41, 由分布列的性质得0≤1-2a ≤1, 且0≤2a ≤1,∴0≤a ≤21, ∴当a =41时,Dξ最大值为41; 当a =0或21时Dξ的最小值为0.变式提升1 解:该组练习耗用的子弹数ξ为随机变量,ξ可以取值为1,2,3,4,5. ξ≈1表示一发即中,故概率为P (ξ=1)=0.8, ξ=2,表示第一发未中,第二发命中, 故P (ξ=2)=(1-0.8)×0.8=0.16; ξ=3,表示第一、二发未中,第三发命中, 故P (ξ=3)=(1-0.8)2×0.8=0.032;ξ=4,表示第一、二、三发未中,第四发命中, 故P (ξ=4)=(1-0.8)3×0.8=0.006 4;ξ=5,表示第一、二、三、四发未中,第五发命中, 故P (ξ=5)=(1-0.8)4=0.001 6,因此,它的分布列为Eξ=1×0.8+2×0.16+3×0.032+4×0.006 4+5×0.001 6=1.25.Dξ=(1-1.25)2×0.8+(2-1.25)2×0.16+(3-1.25)2×0.032+(4-1.25)2×0.006 4+(5-1.25)2×0.001 6=0.31. 类题演练2 解:随机变量ξ的所有可能取值为0,1,并且有P (ξ=1)=p ,P (ξ=0)=1-p ,从而Eξ=0×(1-p )+1×p =p ,Dξ=(0-p )2×(1-p )+(1-p )2×p =p -p 2. (1)Dξ=p -p 2=-(p -21)2+41, ∵0<p <1,∴当p =21时,Dξ取得最大值为41. (2)ξξE D 12-=)12(21)(22p p p p p +-=--, ∵0<p <1,∴2p +p1≥22. 当且仅当2p =p 1,即p =22时,ξξE D 12-取得最大值2-22.变式提升2 证明:设事件在一次试验中发生的次数为ξ,ξ的可能取值为0或1,又设事件在一次试验中发生的概率为p ,则p (ξ=0)=1-p ,P (ξ=1)=p ,Eξ=0×(1-p )+1×p =p ,Dξ=(1-p )·(0-p )2+p (1-p )2= p (1-p )≤(21p p -+)2=41. 所以事件在一次试验中发生的次数的方差不超过41.类题演练3 解:依题意,有Eξ=10×0.5+9×0.2+8×0.1+7×0.1+6×0.05+5×0.05+0×0=8.85(环). E η=10×0.1+9×0.1+8×0.1+7×0.1+6×0.2+5×0.2+0×0.2=5.6(环).Dξ=(10-8.85)2×0.5+(9-8.85)2×0.2+(8-8.85)2×0.1×…+(5-8.85)2×0.05+(0-8.85)2×0=2.227 5. Dη=(10-5.6)2×0.1+(9-5.6)2×0.1+(8-5.6)2×0.1+…+(5-5.6)2×0.2+(0-5.6)2×0.2=10.24. 所以Eξ<Eη,说明甲的平均水平比乙高,又因为Dξ<Dη,说明甲射中的环数比较集中,比较稳定,而乙射中的环数分散较大,技术波动较大,不稳定,所以甲比乙的技术好. 变式提升3 解:Eξ1=0×0.1+1×0.5+2×0.4=1.3,Eξ2=0×0.3+1×0.3+2×0.2+3×0.2=1.3.由于Eξ1=Eξ2,所以甲技工与乙技工出现次品数的平均水平基本一致,因而还需考查稳定性.Dξ1=(0-1.3)2×0.1+(1-1.3)2×0.5+(2-1.3)2×0.4=0.41;Dξ2=(0-1.3)2×0.3+(1-1.3)2×0.3+(2-1.3)2×0.2+(3-1.3)2×0.2=1.21.因此Dξ1<Dξ2,所以技工乙波动较大,稳定性较差.综上所述,应选派技工甲去参加比赛.。
2.3.2 离散型随机变量的方差[目标] 1.理解取有限个值的离散型随机变量的方差及标准差的概念.2.能计算简单离散型随机变量的方差,并能解决一些实际问题.3.掌握方差的性质,以及两点分布、二项分布的方差的求法.[重点] 离散型随机变量的方差和标准差的概念和计算;方差的性质以及两点分布、二项分布的方差的求法.[难点] 离散型随机变量的方差的计算与应用.知识点一 离散型随机变量的方差、标准差[填一填]1.方差及标准差的定义 设离散型随机变量X 的分布列为X x 1 x 2 … x i … x n Pp 1p 2…p i…p n(1)方差D (X )=∑i =1n(x i -E (X ))2·p i . (2)标准差为D (x ). 2.方差的性质 D (aX +b )=a 2D (X ).[答一答]1.方差与标准差有什么实际意义?提示:随机变量X 的方差和标准差都反映了随机变量X 取值的稳定与波动、集中与离散的程度.D (X )越小,稳定性越高,波动越小.显然D (X )≥0,随机变量的标准差与随机变量本身有相同的单位.2.你能类比样本数据方差的计算公式,理解离散型随机变量方差的计算公式吗? 提示:设x 1、x 2、…、x n 为样本的n 个数据,x =x 1+…+x n n ,则该样本数据的方差s 2=∑i =1n(x i -x )2·1n ,由于x 相当于离散型随机变量中的E (X ),而1n相当于每个数据出现的频率(概率)p i ,故离散型随机变量X 的方差可定义为:D (X )=∑i =1n(x i -E (X ))2·p i (i =1,2,…,n ).3.随机变量的方差与样本方差有什么关系?提示:随机变量的方差即为总体的方差,它是一个客观存在的常数,不随抽样样本的变化而变化;样本方差则是随机变量,它是随着样本的不同而变化的.对于简单随机样本,随着样本容量的增加,样本方差越来越接近于总体方差.知识点二 两个常见分布的方差[填一填]1.若X 服从两点分布,则D (X )=p (1-p ). 2.若X ~B (n ,p ),则D (X )=np (1-p ).[答一答]4.两点分布的方差同二项分布的方差存在什么关系?提示:由于两点分布是特殊的二项分布,故两点分布的方差同二项分布的方差存在特殊与一般的关系.1.对随机变量X 的方差、标准差的理解(1)随机变量X 的方差的定义与一组数据的方差的定义是相同的.(2)随机变量X 的方差和标准差都反映了随机变量X 取值的稳定性和波动、集中与离散程度.(3)D (X )越小,稳定性越高,波动越小.(4)标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛. 2.剖析方差的性质当a ,b 均为常数时,随机变量η=aξ+b 的方差D (η)=D (aξ+b )=a 2D (ξ).特别地: (1)当a =0时,D (b )=0,即常数的方差等于0.(2)当a =1时,D (ξ+b )=D (ξ),即随机变量与常数之和的方差等于这个随机变量的方差本身.(3)当b =0时,D (aξ)=a 2D (ξ),即随机变量与常数之积的方差,等于这个常数的平方与这个随机变量方差的乘积.类型一 离散型随机变量的方差及性质【例1】 已知η的分布列如下:η 0 10 20 50 60 P1325115215115(1)求η(2)设Y =2η-E (η),求D (Y ).【分析】 (1)首先求出均值E (η),然后利用D (η)的定义求方差;(2)由于E (η)是一个常数,所以D (Y )=D [2η-E (η)]=22D (η).【解】 (1)∵E (η)=0×13+10×25+20×115+50×215+60×115=16,∴D (η)=(0-16)2×13+(10-16)2×25+(20-16)2×115+(50-16)2×215+(60-16)2×115=384,∴D (η)=8 6.(2)∵Y =2η-E (η),∴D (Y )=D [2η-E (η)]=22D (η)=4×384=1 536.(1)求离散型随机变量的均值或方差的关键是列分布列,而列分布列的关键是要清楚随机试验中每一个可能出现的结果,同时还要正确求出每一个结果出现的概率.(2)利用离散型随机变量X 的方差的性质:当a ,b 为常数时,随机变量Y =aX +b ,则D (Y )=D (aX +b )=a 2D (X ),可以简化解答过程,提高解题效率.某校从6名学生会干部(其中男生4人,女生2人)中选3人参加市中学生运动会志愿者. (1)所选3人中女生人数为ξ,求ξ的分布列及方差. (2)在男生甲被选中的情况下,求女生乙也被选中的概率. 解:(1)ξ的可能取值为0,1,2. 由题意P (ξ=0)=C 34C 36=15,P (ξ=1)=C 24C 12C 36=35,P (ξ=2)=C 14C 22C 36=15,所以ξ的分布列为ξ 0 1 2 P153515E (ξ)=0×15+1×35+2×15=1,D (ξ)=(0-1)2×15+(1-1)2×35+(2-1)2×15=25.(2)设在男生甲被选中的情况下,女生乙也被选中的事件为C ,男生甲被选中的种数为C 25=10,男生甲被选中,女生乙也被选中的种数为C 14=4,所以P (C )=C 14C 25=410=25,在男生甲被选中的情况下,女生乙也被选中的概率为25.类型二 二项分布的方差【例2】 已知某运动员投篮命中率p =0.6. (1)求一次投篮命中次数ξ的数学期望与方差;(2)求重复5次投篮时,命中次数η的数学期望与方差.【分析】 解本题的关键是正确地判断出第(1)小题属于两点分布,第(2)小题属于二项分布,利用相应的公式计算可得解.【解】 (1)投篮一次命中次数ξ的分布列为:ξ 0 1 P0.40.6则E (ξ)=0×0.4+1×0.6=0.6,D (ξ)=(0-0.6)2×0.4+(1-0.6)2×0.6=0.24.(2)由题意知重复5次投篮,命中的次数η服从二项分布,即η~B (5,0.6). 由二项分布的数学期望与方差的公式得: E (η)=5×0.6=3,D (η)=5×0.6×0.4=1.2.解此类题的一般步骤如下:第一步,判断随机变量X 服从什么分布(两点分布还是二项分布).第二步,代入相应的公式,X 服从两点分布时,D (X )=p (1-p );X 服从二项分布,即X ~B (n ,p )时,D (X )=np (1-p ).甲、乙比赛时,甲每局赢的概率是p =0.51,乙每局赢的概率是p =0.49.甲乙一共进行了10次比赛,当各次比赛的结果是相互独立时,计算甲平均赢多少局,乙平均赢多少局,哪一个技术比较稳定?解:用X 表示10局中甲赢的次数,则X 服从二项分布B (10,0.51).E (X )=10×0.51=5.1,即甲平均赢5.1局.用Y 表示10局中乙赢的次数,则Y 服从二项分布B (10,0.49).E (Y )=10×0.49=4.9,于是乙平均赢4.9局.又D (X )=10×0.51×0.49=2.499,D (Y )=10×0.49×0.51=2.499.所以他们技术一样稳定.类型三 离散型随机变量方差的应用【例3】 某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n 14 15 16 17 18 19 20 频数10201616151310以100①若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列,数学期望及方差.②若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【解】 (1)当n ≥16时,y =16×(10-5)=80. 当n ≤15时,y =5n -5(16-n )=10n -80.得:y =⎩⎨⎧10n -80(n ≤15),80(n ≥16)(n ∈N ).(2)①X可取60,70,80.P(X=60)=0.1,P(X=70)=0.2,P(X=80)=0.7.X的分布列为X 607080P 0.10.20.7E(X)=60×0.1+70×0.2+80×0.7=76,D(X)=162×0.1+62×0.2+42×0.7=44.②购进17枝时,当天的利润的期望值为y=(14×5-3×5)×0.1+(15×5-2×5)×0.2+(16×5-1×5)×0.16+17×5×0.54=76.4.由76.4>76得,应购进17枝.有甲、乙两名同学,据统计,他们在解答同一份数学试卷时,各自的分数在80分,90分,100分的概率分布大致如下表所示:试分析甲、乙两名同学谁的成绩好一些.解:在解答同一份数学试卷时,甲、乙两人成绩的均值分别为E(X甲)=80×0.2+90×0.6+100×0.2=90,E(X乙)=80×0.4+90×0.2+100×0.4=90.方差分别为D (X 甲)=(80-90)2×0.2+(90-90)2×0.6+(100-90)2×0.2=40, D (X 乙)=(80-90)2×0.4+(90-90)2×0.2+(100-90)2×0.4=80. 由上面数据,可知E (X 甲)=E (X 乙),D (X 甲)<D (X 乙).这表示甲、乙两人所得分数的均值相等,但两人的分数的稳定程度不同,甲同学分数较稳定,乙同学分数波动较大,所以甲同学的成绩较好.离散型随机变量期望与方差的综合应用【例4】 设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E (η)=53,D (η)=59,求abc .【思路分析】 第一问关键是分清取出2个球所得分数之和的所有情况,然后分类讨论,根据情况算出相应的概率、写出分布列;第二问类似地写出分布列,根据期望、方差的公式建立方程求解.【解】 (1)由题意得ξ=2,3,4,5,6. 故P (ξ=2)=3×36×6=14,P (ξ=3)=2×3×26×6=13,P (ξ=4)=2×3×1+2×26×6=518,P (ξ=5)=2×2×16×6=19,P (ξ=6)=1×16×6=136.所以ξ的分布列为ξ 2 3 4 5 6 P141351819136(2)由题意知η的分布列为η 1 2 3 paa +b +cba +b +cca +b +c所以E (η)=a a +b +c +2b a +b +c +3c a +b +c =53,D (η)=(1-53)2·a a +b +c +(2-53)2·b a +b +c +(3-53)2·c a +b +c =59.化简得⎩⎪⎨⎪⎧2a -b -4c =0,a +4b -11c =0,解得a =3c ,b =2c ,故abc =321.【解后反思】 离散型随机变量的分布列和期望是理科数学考题中的高频考点之一,其中,浙江省又多以摸球为背景,以对立事件、相互独立事件、两点分布、二项分布等知识为载体,综合考查事件发生的概率及随机变量的分布列、数学期望与方差.解题时首先要理解关键词,其次要准确无误地找出随机变量的所有可能取值,计算出相应的概率,后面一般就是计算问题.若随机事件A 在1次试验中发生的概率为p (0<p <1),用随机变量ξ表示A 在1次试验中发生的次数.(1)求方差D (ξ)的最大值; (2)求2D (ξ)-1E (ξ)的最大值.解:随机变量ξ的所有可能取值为0,1,并且有P (ξ=1)=p ,P (ξ=0)=1-p ,从而E (ξ)=0×(1-p )+1×p =p , D (ξ)=(0-p )2×(1-p )+(1-p )2×p =p -p 2.(1)D (ξ)=p -p 2=-(p 2-p +14)+14=-(p -12)2+14,∵0<p <1,∴当p =12时,D (ξ)取得最大值,最大值为14.(2)2D (ξ)-1E (ξ)=2(p -p 2)-1p =2-(2p +1p ),∵0<p <1,∴2p +1p≥2 2.当2p =1p ,p =22时,取“=”,因此,当p =22时,2D (ξ)-1E (ξ)取得最大值2-2 2.1.下面说法中正确的是(D)A.离散型随机变量ξ的期望E(ξ)反映了ξ取值的概率的平均值B.离散型随机变量ξ的方差D(ξ)反映了ξ取值的平均水平C.离散型随机变量ξ的期望E(ξ)反映了ξ取值的波动水平D.离散型随机变量ξ的方差D(ξ)反映了ξ取值的波动水平解析:由于离散型随机变量ξ的期望E(ξ)反映的是随机变量的平均取值水平,而不是概率的平均值,故A错.而D(ξ)则反映随机变量的集中(或稳定)的程度,即波动水平.2.若X~B(n,p),且E(X)=1.6,D(X)=1.28,则(A)A.n=8,p=0.2 B.n=4,p=0.4C.n=5,p=0.32 D.n=7,p=0.45解析:由E(X)=np=1.6,D(X)=np(1-p)=1.28,可知1-p=0.8,所以p=0.2,n=8.3.已知随机变量ξ,D(ξ)=19,则ξ的标准差为13.解析:D(ξ)=19=13.4.有两台自动包装机甲与乙,包装质量分别为随机变量ξ1,ξ2,已知E(ξ1)=E(ξ2),D(ξ1)>D(ξ2),则自动包装机乙的质量较好.解析:均值仅体现了随机变量取值的平均大小,如果两个随机变量的均值相等,还要看随机变量的取值如何在均值周围变化,方差大说明随机变量取值较分散;方差小,说明取值较集中.故乙的质量较好.5.已知随机变量X的分布列是X 0123 4P 0.2m n 0.20.1且E(X)=1.8.(1)求D(X);(2)设Y=2X-1,求D(Y).解:(1)由分布列可知0.2+m+n+0.2+0.1=1,且E(X)=0×0.2+1×m+2×n+3×0.2+4×0.1=1.8.即⎩⎪⎨⎪⎧ m +n =0.5,m +2n =0.8,解得m =0.2,n =0.3. ∴D (X )=(0-1.8)2×0.2+(1-1.8)2×0.2+(2-1.8)2×0.3+(3-1.8)2×0.2+(4-1.8)2×0.1=1.56.(2)∵D (X )=1.56,∴D (2X -1)=4D (X )=6.24.。
2.3.2 离散型随机变量的方差一、基础达标1.下列说法中,正确的是( )A .离散型随机变量的均值E (X )反映了X 取值的概率平均值B .离散型随机变量的方差D (X )反映了X 取值的平均水平C .离散型随机变量的均值E (X )反映了X 取值的平均水平D .离散型随机变量的方差D (X )反映了X 取值的概率平均值 [答案] C2.设一随机试验的结果只有A 和A ,且P (A )=m ,令随机变量ξ=⎩⎪⎨⎪⎧1,A 发生,0,A 不发生,则ξ的方差D (ξ)等于( ) A .m B .2m (1-m ) C .m (m -1) D .m (1-m )[答案] D[解析] 随机变量ξ的分布列为∴E (ξ)=0×(1-m )+1×m =m .∴D (ξ)=(0-m )2×(1-m )+(1-m )2×m =m (1-m ).∴故选D.3.已知随机变量X 的分布列为P (X =k )=13,k =1,2,3,则D (3X +5)等于( )A .6B .9C .3D .4 [答案] A[解析] E (X )=1×13+2×13+3×13=2,∴D (X )=13×[(1-2)2+(2-2)2+(3-2)2]=23,∴D (3X +5)=9D (X )=9×23=6.4.已知X ~B (n ,p ),E (X )=8,D (X )=1.6,则n 与p 的值分别是( ) A .100和0.08 B .20和0.4 C .10和0.2 D .10和0.8[答案] D[解析] 因随机变量X ~B (n ,p ), 则E (X )=np =8, D (X )=np ·(1-p )=1.6, 所以n =10,p =0.8.5.若D (ξ)=1,则D (ξ-D (ξ))=________. [答案] 1[解析] D (ξ-D (ξ))=D (ξ-1)=D (ξ)=1. 6.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________.[答案] 59[解析] 由题意得2b =a +c ①,a +b +c =1②,c -a =13③,以上三式联立解得a =16,b =13,c =12,故D (ξ)=59. 7.有甲、乙两种建筑材料,从中各取等量样品检查它们的抗拉强度如下:其中ξA ,ξB 120,试比较甲、乙两种建筑材料的稳定程度.(哪一种的稳定性较好)解 E (ξA )=110×0.1+120×0.2+125×0.4+130×0.1+135×0.2=125, E (ξB )=100×0.1+115×0.2+125×0.4+130×0.1+145×0.2=125,D (ξA )=0.1×(110-125)2+0.2×(120-125)2+0.4×(125-125)2+0.1×(130-125)2+0.2×(135-125)2=50,D (ξB )=0.1×(100-125)2+0.2×(115-125)2+0.4×(125-125)2+0.1×(130-125)2+0.2×(145-125)2=165,由此可见,E (ξA )=E (ξB ),D (ξA )<D (ξB ),故两种材料的抗拉强度的平均值相等,其稳定程度材料乙明显不如材料甲,故甲的稳定性好. 二、能力提升8.已知随机变量ξ的分布列如下表,则ξ的标准差为( )A.3.56B. 3.2C .3.2D. 3.56 [答案] D[解析] 依题意:0.4+0.1+x =1, ∴x =0.5,∴E (ξ)=1×0.4+3×0.1+5×0.5=3.2,∴D (ξ)=(1-3.2)2×0.4+(3-3.2)2×0.1+(5-3.2)2×0.5=3.56, ∴D (ξ)= 3.56.9.设随机变量ξ的分布列为P (ξ=k )=C k n (23)k (13)n -k,k =0,1,2,…,n ,且E (ξ)=24,则D (ξ)的值为( ) A .8B .12C.29D .16[答案] A[解析] 由题意可知ξ~B (n ,23),∴E (ξ)=23n =24.∴n =36.∴D (ξ)=36×23×(1-23)=8.10.随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.[答案] 25[解析] 设P (ξ=1)=a ,P (ξ=2)=b , 则⎩⎪⎨⎪⎧15+a +b =1,a +2b =1,解得⎩⎨⎧a =35,b =15,所以D (ξ)=15+35×0+15×1=25.11.有10张卡片,其中8张标有数字2,2张标有数字5,从中随机地抽取3张卡片,设3张卡片数字之和为ξ,求E (ξ)和D (ξ).解 这3张卡片上的数字之和为ξ,这一变量的可能取值为6,9,12.ξ=6表示取出的3张卡片上均标有2, 则P (ξ=6)=C 38C 310=715.ξ=9表示取出的3张卡片上两张标有2,一张标有5,则P (ξ=9)=C 28C 12C 310=715.ξ=12表示取出的3张卡片上一张标有2,两张标有5,则P (ξ=12)=C 18C 22C 310=115.∴ξ的分布列为∴E (ξ)=6×715+9×715+12×115=7.8.D (ξ)=(6-7.8)2×715+(9-7.8)2×715+(12-7.8)2×115=3.36.12.为了迎战下届奥运会,对甲、乙两名射手进行一次选拔赛.已知甲、乙两名射手在每次射击中击中的环数均大于6,且甲射中10,9,8,7环的概率分别为0.5,3a ,a ,0.1,乙射中10,9,8环的概率分别为0.3,0.3,0.2.(1)求ξ,η的分布列;(其中ξ为甲击中的环数,η为乙击中的环数)(2)求ξ,η的均值与方差,并以此比较甲、乙的射击技术.解(1)依据题意,知0.5+3a+a+0.1=1,解得a=0.1.∵乙射中10,9,8环的概率分别为0.3,0.3,0.2,∴乙射中7环的概率为1-(0.3+0.3+0.2)=0.2.∴ξ,η的分布列分别为(2)结合(1)中ξ,η的分布列可得:E(ξ)=10×0.5+9×0.3+8×0.1+7×0.1=9.2,E(η)=10×0.3+9×0.3+8×0.2+7×0.2=8.7,D(ξ)=(10-9.2)2×0.5+(9-9.2)2×0.3+(8-9.2)2×0.1+(7-9.2)2×0.1=0.96,D(η)=(10-8.7)2×0.3+(9-8.7)2×0.3+(8-8.7)2×0.2+(7-8.7)2×0.2=1.21.∵E(ξ)>E(η),说明甲平均射中的环数比乙高.又∵D(ξ)<D(η),说明甲射中的环数比乙集中,比较稳定.∴甲的射击技术好.三、探究与创新13.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,均值E(X)及方差D(X).解(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天的日销售量不低于100个且另1天的日销售量低于50个”.因此P(A1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108.(2)X可能取的值为0,1,2,3,相应的概率为P(X=0)=C03(1-0.6)3=0.064,P(X=1)=C13·0.6(1-0.6)2=0.288,P(X=2)=C23·0.62(1-0.6)=0.432,P(X=3)=C33·0.63=0.216,则X的分布列为因为X~B(3,0.6),所以均值E(X)=3×0.6=1.8,方差D(X)=3×0.6×(1-0.6)=0.72.。