移动通信的IPV6论文
- 格式:pdf
- 大小:460.92 KB
- 文档页数:5
IPv6技术在网络通信中的应用研究随着互联网的快速发展,IPv6技术在网络通信中的应用愈发重要。
IPv6(Internet Protocol version 6),是互联网协议的第六版,针对IPv4地址不足以及其他一些限制进行了改进。
IPv6技术的应用研究,对于推进互联网的发展、提升网络通信能力以及保障网络安全起着至关重要的作用。
IPv6技术的应用研究在网络通信中的第一个重要作用是解决IPv4地址不足的问题。
由于IPv4的地址空间有限,已经出现了IPv4地址枯竭的局面。
而IPv6通过使用128位地址空间,提供了极大数量的地址,有着足够的潜力为未来互联网的发展提供支持。
IPv6技术的推广应用,可以避免因为IP地址不足而导致的网络拥堵,也能满足用户对于更多网络连接的需求。
因此,IPv6的广泛应用对于支持互联网快速发展具有重要意义。
其次,IPv6技术的应用研究在网络通信中还起着提升网络通信能力的作用。
IPv6不仅拥有更大的地址空间,还对于路由协议进行了改进,提升了路由效率。
由于IPv6地址的设计更加合理,减少了地址分配的负担,提高了路由器转发的速度。
同时,IPv6技术还引入了快速寻址和多播等新特性,这些特性使得在网络通信中能更快更准确地找到目标设备,提升了网络通信的效率。
因此,通过IPv6技术的应用研究,可以为用户提供更快、更稳定的网络通信服务。
此外,IPv6技术的应用研究在网络通信中能够提供更可靠的网络安全保障。
IPv6引入了IPsec(Internet Protocol Security)协议作为其一部分,对网络通信进行加密和认证,保护用户的数据安全和隐私。
IPsec协议实现了端到端的加密和身份认证,能够有效抵御各种网络攻击和威胁。
相比之下,IPv4的网络安全机制较为简单,容易受到黑客的攻击。
因此,IPv6技术在网络通信中的应用研究,对于提高网络安全水平具有重要意义。
此外,IPv6技术的应用研究还能够推动物联网的发展。
浅析IPv6技术及其在移动互联网中的用途浅析IPv6技术及其在移动互联网中的用途本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!作为移动互联网建设的关键,IPv6 技术与移动互联网的关系相对紧密。
目前,移动互联网正通过多种方式来更好的展现在用户面前。
在以往的工作中,电脑是唯一能够上网的工具,但是,现阶段的手机、移动可穿戴设备等等,都成为了上网的主流设备。
在用户不断增加的今天,如何稳定移动互联网的性能,成为了IPv6 技术应用的重点。
另一方面,我们不能总是等到移动互联网出现问题的时候,才对其进行维护,应保证通过技术性的措施,为移动互联网提供持续性的保障。
在此,本文主要对IPv6 技术及其在移动互联网中的应用展开讨论。
1 IPv6技术的优点移动互联网是新时代的产物,它虽然是一种虚拟化的东西,但却能够对实质上的生活、工作、休闲、娱乐等多方面产生较大的作用,为了保证移动互联网可以持续的推进我国的社会建设和经济发展,必须利用好一些先进的技术。
IPv6 技术作为计算机技术中的佼佼者,在应用到移动互联网后,取得了非常理想的效果。
综合而言,IPv6 技术具有以下优点:首先,该技术存在海量的地址空间。
以往应用的计算机技术,由于地址空间上的限制,无法在客观上发挥出移动互联网的积极作用。
IPv6 技术在研究过程中,源地址和目的地址,从原来的32 位,直接拓展为128 位,增加海量地址空间的同时,不会对固有的成果造成影响。
其次,IPv6技术在实际的应用中,主要是采用了层次化的网络结构。
移动互联网能够获得广泛的欢迎,其很大一部分原因在于,其层次清晰,能够为用户提供针对性的服务。
IPv6 技术满足了移动互联网的这一重要需求。
第三,通过在实际的工作中应用IPv6 技术,实现了端到端的对等通信。
简单来讲,在IPv6 技术的协议当中,海量地址空间的积极作用在于,促使网络恢复了由于使用NAT 而失去的端到端的功能,在真正意义上实现了全球任意点到任意点的连接,满足了用户的较多需求。
移动IPv6的研究与实现移动IP技术是移动通信技术和IP技术的有机结合,它不只是简单的叠加,而是一种深层的融合。
即对IP协议进行扩展,支持终端的移动性拥有固定的IP地址,而且不论移动到什么地区或者通过什么方式连接到Internet都是如此。
移动IP技术充分利用了IPv6带来的便利与优势,实现了移动IP,因次被称为移动IPv6技术。
它是IPv6重要的研究和应用方向之一。
一、移动IPv6的基本概念移动节点:指移动IPv6中能够从一个链路的连接点移动到另一个连接点,同时,仍能通过其家乡地址被访问的节点。
家乡代理:指移动节点家乡链路上的一个路由器。
当移动节点离开家乡时,能截取其家乡链路上的目的地址。
通信对端:指所有与移动节点通信的节点。
家乡地址:指分配给移动节点的永久的IP地址,属于移动节点的家乡链路。
标准的IP路由机制会把发给移动节点家乡地址的分组发送到其家乡链路。
当移动节点在家乡链路上有多个家乡子网前缀时,其可以有多个家乡地址。
转交地址:指移动节点访问外地链路时获得的IP地址。
这个IP地址的子网前缀是外地子网前缀。
移动节点同时可得到多个转交地址,其中注册到家乡代理的转交地址称为主转交地址。
家乡链路:指对应于移动节点家乡子网前缀的链路。
外地链路:指除了其家乡链路之外的任何链路。
绑定:指移动节点家乡地址和转交地址之间的关联。
二、移动IPv6的关键技术——QoS现有的Internet所提供的是“尽力而为”(Best—effort)的服务已经不能满足许多新的应用需求。
因此,需要在Internet中支持QoS保证技术。
为了解决IPQoS 的问题,IETF提出了几种服务模型和机制,主要有:集成服务(IntServ,Integrated Service),区分服务(DiffServ Differentiated Service),多协议标记交换(MPLS,MuItiProtocol Lable Switch)等。
移动通信中的移动Ipv6技术移动通信中的移动 IPv6 技术在当今数字化的时代,移动通信已经成为人们生活中不可或缺的一部分。
随着智能手机、平板电脑等移动设备的普及,以及各种移动应用的不断涌现,人们对于移动通信的需求越来越高。
在这个背景下,移动 IPv6 技术应运而生,为移动通信带来了新的机遇和挑战。
一、什么是移动 IPv6 技术IPv6(Internet Protocol Version 6)是互联网协议的第六版,它是为了解决 IPv4 地址资源不足而提出的。
IPv6 拥有巨大的地址空间,可以为地球上的每一粒沙子都分配一个独立的 IP 地址。
移动 IPv6 技术则是在 IPv6 的基础上,为移动设备在不同网络之间的无缝切换提供支持。
简单来说,当你的手机或者其他移动设备从一个 WiFi 网络切换到另一个 WiFi 网络,或者从 WiFi 切换到移动数据网络时,移动 IPv6 技术能够确保你的网络连接不中断,并且让你的应用能够持续正常运行,而不会出现掉线或者需要重新登录的情况。
二、移动 IPv6 技术的工作原理移动 IPv6 技术的核心概念包括家乡地址、转交地址和绑定更新。
家乡地址是移动设备在其归属网络中所拥有的固定 IP 地址。
无论设备移动到何处,这个地址都保持不变,就像你的家庭住址一样,是一个固定的标识。
转交地址则是移动设备在当前所连接的外地网络中获得的临时 IP 地址。
当设备移动到新的网络时,会获取新的转交地址。
绑定更新则是移动设备向家乡代理和通信对端发送的消息,用于告知它们自己当前的转交地址。
通过这种方式,家乡代理和通信对端就能够将数据正确地路由到移动设备的当前位置。
当移动设备在外地网络中发送数据包时,数据包的源地址是家乡地址,目的地址是通信对端的地址。
外地网络的路由器会根据移动设备的绑定更新,将数据包正确地转发到通信对端。
而当通信对端向移动设备发送数据包时,数据包的目的地址是移动设备的家乡地址。
论移动IPv6的安全性摘要: IPv6 是新一代的IP 协议, 它对现有协议IPv4 进行改进, 针对数据包的路由、安全性的改进提出一些新的方案, 使得移动通信网络接入, 数据包的路由实现起来更方便。
文章介绍了移动IPv6 的协议原理, 讨论了移动IPv6 的实现策略、机制及特点, 对IPv6 安全做了分析, 并对IP sec 安全机制进行了进一步探讨。
关键词:移动IPv6,安全,IPSecAbstract: In IPv6,which is a new version of IP, some improvements in the route security of data packages have been made over the current IPv4 so that the mobile IP protocol can provide transparent and seam less service to mobile node on Internet. In this paper, the principle and realization strategy of mobile IPv6 are introduced, and the implication of IPSec is also discussed.Key words:mo bile IPv6,security,IPSec目录1 移动IP 的基本原理 (3)1.1 移动IP 的设计要求 (3)1.2 移动IPV6及其特点 (3)1.2.1 移动IPv6介绍 (3)1.2.2 移动IPv6 术语 (3)1.2.3 移动IPv6技术的特点 (4)2 移动IPv6 的安全问题 (4)2.1 针对移动主机与本地代理或通信节点之间的绑定更新的威胁 (4)2.2 移动IPv6的一些安全对策 (5)2.2.1 IPSEC安全协议简介 (5)2.2.2 对绑定更新的安全策略 (5)2.2.3 IPSec 安全机制的实现 (6)2.2.4 IPSec 安全机制的不足 (6)3 结束语 (7)附录:参考文献 (7)目前, 由于受到网络路由策略和协议的制约, 计算机只能限制在本地局域网内使用。
ipv6论文-浅谈IPV6发展前景及特色应用摘要:文章探讨了IPv6业务及应用的发展现状,IPv6协议在支持新业务方面的优势,IPv6与下一代网络业务系统/平台之间的关系,以及在业务系统中部署IPv6的总体策略。
关键词:IPv6协议;RFID;家庭网络;F一代互联网IPv6协议是下一代互联网(NGI)中的重要协议。
经过多年的发展,IPv6基本标准日益成熟,各种不同类型的支持IPv6的网络设备相继问世,并逐渐进入商业应用。
在运营领域,国外部分电信运营商已经建立IPv6网络,并开始提供接入服务以及一些基于IPv6的增值业务。
我国也在2003年底启动了中国的下一代互联网(CNGI)工程,以促进NGI在中国的普及与发展。
在网络已经基本成熟的条件下,如何在其上为用户提供新的业务,并为运营商创造新的价值,这是下一代互联网成功的关键。
本文主要讨论了IPv6业务及应用的发展现状、IPv6协议在支持新业务方面的优势、IPv6与下一代网络业务系统/平台之间的关系、在业务系统中部署IPv6的总体策略等。
1IPv6支持业务的优势IPv6协议要在电信网络上获得广泛应用,必须具有支持新型业务的能力,或者至少能使已有的IPv4业务得到改善和增强,否则,运营商就缺乏使用IPv6协议的动力。
目前看来,IPv6在支持业务方面主要有以下技术优势:1.1巨大的IP地址空间方便了多样化业务的部署和开展在IPv4网络中,公有IP地址的不足导致了用户广泛采用私有IP地址。
为了实现用户私网中发出的IP包在公网上可路由,在用户网络与公网交界处需要NAT设备实现IP报头公有地址和私有地址等信息的翻译。
当终端进行音视频通信时,仅仅进行IP报头中的地址转换是不够的,还需要对于IP包净负荷中的信令数据进行转换,这些都需要复杂的NAT穿越解决方案。
总之,私有IP地址及NA T的采用限制了多媒体业务的开展,特别是当通信双方位于不同的私网中时,即使媒体流穿越了NAT设备,还需要经过中间服务器的中转,降低了媒体流传送的效率,也增加了系统的复杂度。
基于IPv6的移动终端通信无线应用成杀手级应用近年来基于IP传输协议的移动通信发展迅速,但IPv4地址短缺的事实成了限制其发展的“瓶颈”。
IPv6与移动通信的结合将为目前的Internet开拓一个全新的领域。
无线应用将成为IPv6的“杀手级”应用,同时也是展示IPv6巨大地址空间的舞台。
移动互联网上有许多新型而精彩的服务,移动 IPv6将是实现这些服务的关键。
当越来越多的移动终端需要配有IP地址时,IPv6将为所有的移动终端提供唯一的IPv6地址,并使得移动终端更易于配置和管理,实现IPv6移动终端之间随时随地的端到端通信。
在进行移动终端的通信中,必须保证移动对用户的透明性。
“透明性”包括两方面:一是使用移动IPv6协议的移动终端,无论是在移动前还是移动后,它总能被寻址,并且运行在移动终端上的应用程序不用修改或重新配置仍然可用;二是移动终端的通信性能不能因为移动而下降。
本文将分析讨论基于IPv6协议的移动终端间的通信。
我们首先分析了IPv6对移动终端的支持和实现机制,然后研究了移动终端在IPv6环境下的通信实现,最后讨论了移动IPv6越区切换技术和安全性问题。
一、移动IPv6技术分析根据现有的IP网络的寻路机制,同一个IP子网的结点具有相同的网络前缀,当设备终端从一个子网移动到另一子网时,由于原来的IP地址的网络前缀与当前接入子网的网络前缀不同,因此发送到该终端的分组就不能到达目的终端。
移动IPv6为设备终端在移动的同时能够连续访问Internet提供了网络层支持。
它为移动的设备终端分配了两类IP地址:一类是在本地网络上的长期有效的IP地址,称为归属地址;一类是移动终端访问外地链路时获得的一个转交地址。
当移动终端在本地链路时,可直接通过归属地址进行寻址;当移动终端连接在外地链路时,可以通过转交地址或归属地址来寻址。
而移动终端的归属地址和转交地址的关联称为移动终端的一个“绑定”。
移动终端在本地链路时,可以使用正常的路由、机制对发往移动终端的数据报进行路由。
浅谈IPv6在网络中的运用论文IPv6是Internet Protocol Version 6的缩写,其中Internet Protocol译为“互联网协议”。
IPv6是IETF(互联网工程任务组,Internet Engineering Task Force)设计的用于替代现行版本IP协议(IPv4)的下一代IP协议。
目前IP协议的版本号是4(简称为IPv4),它的下一个版本就是IPv6。
以下是店铺为大家精心准备的:浅谈IPv6在网络中的运用相关论文。
内容仅供参考,欢迎阅读!浅谈IPv6在网络中的运用全文如下:由于当前互联网系统中所使用的IPv4 协议已经在地址空间,安全性,服务质量保证等方面出现了一定的问题与缺陷,因此以IPv6 替代IPv4 是互联网行业发展的必然趋势之一。
提高对IPv6 的认识,加深应用,对于促进互联网通信能力的进一步提高意义重大。
一、IPv6 的简介1.1 概念IPv6 全称为Internet Protocol Version 6,即由互联网工程任务组负责设计的面向互联网的工作协议,其中,“6”为互联网工作协议的版本号,用于替代当前的IPv4 协议,可通过128 位二进制数码方式表示,在移动互联网系统建设、扩展方面有非常重要的价值。
1.2 特点首先,IPv6 协议下的地址长度可达到128 位,相较于IPv4 协议而言,地址空间增长趋势非常明显;其次,IPv6 协议下所对应的IP 报文头部格式非常灵活。
与IPv4 相比,其中长度可变的选项字段被具有格式固定特点的扩展头部所取代,从而使IPv6 协议在实际使用中更加的灵活,适应性更好。
除此以外,在IPv6 协议下,路由器直接路过选项,可不做任何多余处理,报文处理速度较IPv4 而言明显较高;再次,由于IPv6 协议下对报文头部格式进行了简化处理,简化后的报文头部字段仅为8 个,故而报文转发的速度更加理想,系统吞吐量也有明显的提升趋势;最后,IPv6 下支持对用户的身份认证与隐私权保护功能,提高了系统运行的安全性水平。
移动IP及IPv6的移动性支持随着科技的飞速发展,互联网已成为我们生活中不可或缺的一部分。
在这个信息爆炸的时代,移动IP和IPv6作为网络通信的关键技术,正日益受到人们的关注。
它们如同一对翩翩起舞的舞者,为我们的生活带来了无尽的便利与惊喜。
首先,让我们来谈谈移动IP。
它就像是一辆行驶在高速公路上的汽车,无论身处何地,都能轻松实现与其他车辆的交流与互动。
这种无缝切换的能力,使得我们在使用移动设备时,不再受地理位置的限制,可以随时随地畅享网络的乐趣。
而IPv6则更像是一片广阔的海洋,它拥有近乎无限的地址空间,为未来的网络发展提供了强大的支持。
然而,正如一枚硬币有正反两面,移动IP和IPv6在带来便利的同时,也面临着诸多挑战。
比如,安全问题就是其中之一。
在移动IP环境下,由于设备的不断移动和切换,网络安全面临着更大的风险。
而IPv6虽然拥有庞大的地址空间,但如何有效管理这些地址,确保网络的安全与稳定,也是一个亟待解决的问题。
此外,兼容性问题也不容忽视。
移动IP需要在不同的网络环境下工作,这就要求它必须具备良好的兼容性。
而IPv6作为一种新型的网络协议,也需要与现有的IPv4网络进行平滑过渡,以实现无缝对接。
那么,面对这些挑战,我们应该如何应对呢?我认为,首要的就是加强技术研发和创新。
通过不断的技术突破,我们可以提高移动IP的安全性能,优化IPv6的地址管理机制,从而为网络通信提供更加稳定、安全的环境。
同时,我们还需要加强国际合作与交流,共同推动移动IP和IPv6的发展与完善。
在这个过程中,政府、企业和科研机构等各方力量都应该发挥积极作用。
政府可以出台相关政策和法规,为技术创新提供有力的支持;企业可以通过加大研发投入、推动产业升级等方式,不断提升自身的竞争力;科研机构则可以加强基础研究和应用研究,为技术创新提供源源不断的动力。
最后,我想用一句话来概括我对移动IP和IPv6的看法:它们是网络通信领域的两颗璀璨明珠,虽然面临着诸多挑战,但只要我们齐心协力、共同应对,就一定能够充分发挥它们的潜力,为我们的生活带来更多的便利与惊喜。
Performance Analysis of Fast Handover for Hierarchical MIPv6 in Cellular NetworksLi Jun ZHANG and Samuel PIERREMobile Computing and Networking Research Laboratory (LARIM)Department of Computer Engineering, Ecole Polytechnique de MontrealP.O. Box 6079, Station Centre-ville, Montreal, Quebec, Canada, H3C 3A7E-mail: {lijun.zhang, samuel.pierre}@polymtl.caAbstract—Next-generation wireless networks present an all-IP-based architecture integrating the existing cellular networks with Wireless Local Area Networks (WLANs), Wireless Metropolitan Area Networks (WMANs), wireless ad hoc networks, Wireless Personal Area Networks (WPANs), etc. This makes mobility management an important issue for users roaming among these networks/systems. On one hand, intelligent schemes needs to be devised to benefit the IP-based technology, on the other hand, new solutions are required to take into account global roaming among various radio access technology and support of real-time multimedia applications. This paper presents a comprehensive performance analysis of Fast handover for Hierarchical Mobile IPv6 (F-HMIPv6) using a proposed analytical model. Location update cost function, packet delivery cost function and total cost function are formulated respectively based on the fluid-flow mobility model. We investigate the impact of several wireless system factors, such as user velocity, user density, mobility domain size, session-to-mobility ratio on these costs, and present some numerical results.Keywords-next-generation wireless networks; mobility management; fast handoff; performance analysis.I.I NTRODUCTIONIn the new era of Internet, mobile users freely change their point of attachment to the Internet. Under this circumstance, mobility management is a crucial issue to keep track of users’ current location and correctly deliver packets to them. So far, several schemes have been proposed to address this issue within the Internet Engineering Task Force (IETF), and many works are still in progress. The baseline mobility management protocol is called Mobility support in IPv6 (MIPv6) [1] which handles the routing of IPv6 packets to Mobile Nodes (MNs) that are away from their home network. To do so, a Home Address (HoA) is assigned to each MN as a permanent identity. While located in a visiting network, the MN has to acquire a Care-of-Address (CoA) on the new attached link. This address can be configured either stateless [2] or stateful [3] and used to identify the MN’s current location within the Internet topology.After formulating a new CoA in the visiting network, the MN needs to perform Duplicate Address Detection (DAD) procedure [4] to verify the uniqueness of its new IP address. Moreover, in order to correctly deliver packets to a roaming MN, a binding between the MN’s HoA and its CoA is created and managed by a mobility agent called Home Agent (HA). Consequently, each time the MN changes its location, it has to update this binding at its designated HA. And packets destined to a roaming MN are intercepted by the HA and tunneled to the MN’s new location, this operational mode is called tunnel mode in MIPv6. As the tunnel mode introduces a triangular problem, MIPv6 defines a Route Optimization (RO) mode to enable any Correspondent Node (CN) to bind MNs’ HoAs with their CoAs, thus packets can be sent to an MN’s new location via a direct path. However, for security concerns, a Return Routability (RR) procedure is required between the MN and the CN before updating the binding cache at the CN. The RR procedure consists of HoA-test and CoA-test, aims to verify whether the specific MN possesses the proclaimed HoA and CoA or not, and ensuring authorization of subsequent binding updates (BUs) to the CN.An almost universally recognized fact is that the mobility management procedure in MIPv6 involves long handover latency, higher signaling overhead which needs to be improved to meet the requirement of future wireless networks. In this context, Hierarchical Mobile IPv6 (HMIPv6) [5, 6] and Fast handovers for Mobile IPv6 (FMIPv6) [7, 8] are proposed separately by the working groups of IETF.HMIPv6 is designed to reduce the signaling cost and location update delay outside a local mobility domain which is controlled by a Mobility Anchor Point (MAP). While entering a MAP domain, an MN receives router advertisements containing information about local MAPs from the new Access Router (AR). Then the MN formulates two CoA: an on-link CoA (LCoA) and a regional CoA (RCoA) within the selected MAP domain. Afterwards, a Local Binding Update (LBU) is sent to the MAP to bind the MN’s LCoA with its RCoA. Upon receipt of a successful Binding Acknowledgment (BA), the MN sends a BU to the HA to create or update the binding of its RCoA with the HoA at the HA, the HA then replies with a BA to the MN. IN case of RO, the RR procedure is performed to create a Binding Management Key (KBM). Subsequently, the MN sends a BU to each CN using the KBM, and the CN binds the MN’s HoA with its RCoA. As a result, packets destined to the MN are intercepted by the MAP, encapsulated and forwarded to the MN’s on-link address. And movement within the MAP domain merely incurs LBU at the MAP without further propagation of location update to the HA and every CN, thus significantly minimizes the signaling loads and micro-mobility related handoff delays.This work was supported in part by the NSERC/Ericsson Industrial Research Chair under Grant IRC252720-01.Due to the lengthy, handicapped handoff procedure, MIPv6 is regarded unanimously as inappropriate for fast handover support in IPv6-based mobile networks. In this case, FMIPv6 is designed to enable an MN to rapidly detect its movement and to formulate a prospective IP address when still connected to its current AR. This protocol also offers the MN the opportunity to utilize available link layer event notification (triggers) to accelerate network layer handoff [9]. Hence, delays due to network prefix discovery and new CoA generation are completely eliminated during handoff. Moreover, a bidirectional tunnel is setup between the previous AR (PAR) and the new AR (NAR) to avoid packet drops. And the PAR binds an MN’s previous CoA with its new CoA. Therefore, packets addressed to the MN are intercepted by the PAR, tunneled to the NAR, and no BUs are necessary to the HA and each CN during handoff. However, due to the utilization of pre-handover triggers, the performance of FMIPv6 is dramatically depends on the trigger time, thus becomes unreliable when the pre-handoff trigger is delivered too closely to the actual link switch [9].Both FMIPv6 and HMIPv6 are designed in their own ways to improve MIPv6 performance in terms of signaling overhead and handover aspects, thus makes it necessary to combine these two schemes together. However, simple superimposition of FMIPv6 over HMIPv6 induces unnecessary processing overhead for re-tunneling at the PAR and inefficient usage of network bandwidth [10-12], thus an effective integration called Fast handover for Hierarchical MIPv6 (F-HMIPv6) is designed to enable an MN to exchange handoff signaling message with a local MAP and to establish bidirectional tunnel between the MAP and the NAR, instead of between the PAR and the NAR. Fig. 1 shows the location update procedure of F-HMIPv6 incase of intra-domain movement.Fig. 1 Intra-domain Location Update in F-HMIPv6Fig. 2 IPv6-Based Wireless Cellular Networks Even though F-HMIPv6 is an efficient scheme, its performance in wireless networks is largely dependent on various system parameters such as user mobility model, user density, session-to-mobility ratio, thus it is crucial to analyze the performance of F-HMIPv6 while it is deployed in IPv6-based cellular networks. The rest of this article is organized as follows. Section II presents an analytic model based on fluid-flow mobility model. Section III formulates the location update cost function, packet delivery cost function and total cost function using the analytic model. Section IV presents numerical results to show the impact of different system parameters and concludes the article in Section V.II.F LUID-F LOW M OBILITY M ODELTo evaluate the performance, we assume an IPv6-based wireless cellular network shown in Fig. 2. The innermost cell 0 is called the center cell; cells labeled 1 formed the first ring around cell 0, and so on. To simplify the analysis, we assume that each MAP domain has the same number of rings and each AR only controls one cell. Using the fluid-flow mobility model, the movement direction of an MN in a MAP domain is distributed uniformly in the range of (0,2π). Let v be the average speed of an MN, c R and d R be cell crossing rate and domain crossing rate, respectively. c L and d L denote the perimeters of a cell and a MAP domain with R rings. Therefore, their expressions are given as follows:πρccLvR**= (1)πρπρcddLRvLvR*)12(****+== (2)III.C OST F UNCTIONSTo analyze the performance of F-HMIPv6, we focus on location management procedure which is further split into location update procedure and packet delivery procedure. We also assume that F-HMIPv6 supports route optimization.A.Location Update CostGenerally, an MN performs two types of movements: intra-and inter-domain movements. Accordingly, two locationupdate procedures are performed: intra-domain case and inter-domain case which includes intra-domain and legacy MIPv6 location update. Let τκ,denote the unit transmission costs in a wireless, wired link respectively, y x d −the hop distance between x and y, z P the processing cost at network entity z, the corresponding signaling load functions are expressed as follows:AR MAP MAP AR s domainra P P d C +++=−−3*97int τκ (3)s MIPv s domain ra s domain er C C C 6int int +=−−(4)Based on the signaling load functions, the location update cost per MN is expressed as follows:)(**)*(*int int R A C R R N C R C sdomainra d c AR s domain er d l−−−+= (5)Where AR N is the number of ARs in a MAP domain, )(R A is the area of the MAP domain of R rings, ρ the user density in a cell, c R and d R be cell crossing rate and domain crossing rate, respectively. B. Packet Delivery CostLet z P be the processing cost at network entity z, T C the packet transmission cost from a CN to the MN, the packet delivery cost is expressed as follows:T HA MAP p C P P C ++=(6)In F-HMIPv6, a MAP maintains a binding cache table for translation between MNs’ RCoAs and their LCoAs, same as at an HA for manages the binding between MNs’ HoAs and their CoAs. All packets addressed to an MN will be intercepted by the MAP and tunneled to the MN’s new LCoA. Hence the processing cost at the MAP can be further divided into lookup cost and the routing cost. The lookup cost is proportional to the size of the binding cache table, thus proportional to the number of MNs in a MAP domain. In addition, the routing cost is proportional to the logarithm of the number of ARs in a MAP domain [13]. Therefore, the processing cost at the MAP can be further expressed as:)](log ****[*2AR c AR s MAP N A N P βραλ+= (7) Where s λdenotes the session arrival rate in packets per second, βα,are weighting factors, c A the area of a cell, ρthe user density in a cell, AR N the number of ARs in a MAP domain.Assuming that route optimization is supported by F-HMIPv6 to resolve triangular routing problem, thus only the first packet of a session is transmitted to the HA to detect whether the MN moves away from home network or not, all successive packets of the session are directly routed to the MN’s new location. Let p λdenote the first packet arrival rate of a session which assumes to be equal to the average packetarrival rate, HA θ is a unit packet processing cost at the HA, theprocessing cost at the HA is given by:HA p HA P θλ*=(8)Let τκ,denote the unit transmission cost in a wireless, wired link respectively, p s λλ, the session arrival rate and the packet arrival rate, y x d −is the distance between x and y, the packet transmission cost is calculated as follows:++−+=−−)(*)(**AR MAP MAP CN p s s T d d C λλτλκ)(**AR MAP MAP HA HA CN p d d d −−−++λτ (9) C. Total CostTotal cost is defined as the sum of location update cost and packet delivery cost, and it is expressed as follows: p l t C C C +=(10)IV. N UMERICAL R ESULTSIn this section, we analyze the impact of various wireless system parameters on the above-mentioned costs. The parameters values are taken from [13-15], shown in Table 1. Table 1. System Parameters for Performance Analysisαβs λ p λ HA θ τκ0.1 0.2 1 0.1 20 1 2HA P MAP PAR PCN N c L24 12 6 2 120 mHA CN d − MAP HA d − MAP CN d − AR MAP d −6 6 4 2A. The Impact of the User Velocity on Location Update Cost Fig. 3 and Fig.4 demonstrate location update cost versus user’s average velocity with a MAP domain of one ring and six rings respectively. In this analysis, the user density is set as 0.0002. As lower velocity leads to a lower cell/domain crossing rate, results in less location update cost. In addition, F-HMIPv6 requires more signaling overhead than HMIPv6 (34.55% more for R=1 and 57.66% more for R=6); compared to MIPv6 without RO, F-HMIPv6 presents 71.85% more location update cost for R=1 and 53.02% more for R=6. However, it also requires less location update cost than MIPv6 with RO (18.60% lower for R 1 and 51.22% lower for R 6). Comparing of the two figures, we find that the increasing of MAP size leads to significant reduction of location update cost in case of HMIPv6 and F-HMIPv6. This is because an MN served by a MAP with smaller domain size is more likely to perform inter-domain movements, results in higher update costs. Furthermore, Fig. 4 also shows that HMIPv6 delivers better performance than MIPv6; this means increasing domain size can significantly reduce location update cost.Fig.3 Location Update Cost vs. User’s Velocity (R=1)Fig.4 Location Update Cost vs. User’s Velocity (R=6) B. The Impact of the User Density on Packet Delivery Cost Fig. 5 and Fig. 6 show the variation of packet delivery cost as the average user density changes for a MAP domain with one ring and six rings respectively. Packet delivery cost increases linearly as the user density augments for HMIPv6 and F-HMIPv6; this is because the processing cost at the MAP, especially the lookup cost to check the binding cache table, is proportionally to the number of MNs in a MAP domain. The two figures also show that increasing MAP domain size leads to a rapid augmentation of packet delivery cost for F-HMIPv6 and HMIPv6, but has no influence on MIPv6; this is because the processing cost at the MAP, especially the routing cost, is proportional to the logarithm of the number of ARs in a MAP domain. Moreover, Fig. 6 shows that when the user density is larger than 0.002, both F-HMIPv6 and HMIPv6 require more packet delivery cost than MIPv6 protocol. However, F-HMIPv6 always delivers the same performance as HMIPv6 interms of packet delivery cost.Fig. 5 Packet Delivery Cost vs. User Density (R=1)Fig. 6 Packet Delivery Cost vs. User Density (R=6)C. The Impact of the Session-to-Mobility ratio on Total Cost Fig. 7 and Fig. 8 illustrate the variation of total cost as the average session-to-mobility ratio changes for a MAP domain with one ring. The session to mobility ratio (SMR) is defined as the ratio of the session arrival rate to the user mobility ratio, it is analogous to the call-to-mobility (CMR) used in cellular networks for performance analysis. Under the fluid-flow model, the SMR is defined as c s R /λ , i.e. the session arrival rate divided by the cell crossing rate. As the value for ρandv is fixed, and πρcc L v R **=, this leads to a fixed value of cell crossing rate, as a result, the augmentation of the SMR implies the increasing of session arrival rate, so the total cost increases. In case of SMR ≤ 1, i.e.c s R ≤λ, location update cost is more dominant than packet delivery cost over the total cost, shown in Fig. 8. Under this circumstance, MIPv6 with RO requires the most total cost amongst all schemes. And the total cost in descent order is MIPv6 with RO, F-HMIPv6, MIPv6 without RO, HMIPv6. Moreover, as the value of SMR increases to be larger than 1, the impact of location update cost on the total cost reduces whereas packet delivery cost over the total cost becomes more important, shown in Fig. 7 by the curves’ tendency. The more SMR, the more important packet delivery cost over the total cost is. Consequently, HMIPv6 and F-HMIPv6 merge to one curve. Because these two schemes employ the same packet delivery cost function. However, MIPv6 with RO yields the best performance among all, due to no additional processing cost at the MAP.Fig. 7 Total Cost vs. SMR (R=1)Fig. 8 Total Cost vs. SMR (R = 1& SMR ≤1)Fig. 9 Total Cost vs. SMR (R=6)Fig. 10 Total Cost vs. SMR (R = 6 & SMR ≤ 1) Fig. 9 and Fig. 10 also show the relationship between the total cost and the average session-to-mobility ratio for a MAP domain with six rings. The total cost increases as the SMR augments, the same observation as Fig. 7 and Fig. 8, except that increasing the MAP domain size leads to the augmentation of total cost for HMIPv6 and F-HMIPv6, yet no impact on MIPv6. No matter the value of SMR, F-HMIPv6 requires the most total cost than other solutions. In case of SMR ≤ 1, the total cost in descent order is F-HMIPv6, HMIPv6, MIPv6 with RO, and MIPv6 without RO. In general, the total cost in descent order is F-HMIPv6, HMIPv6, MIPv6 without RO, and MIPv6 with RO. We explain this as SMR > 1, the impact of packet delivery cost over total cost is dramatically increasing,and for MIPv6 without RO, all packets are forwarded to the MN’s HA, and then tunneled to its new location, leads to the augmentation of packet delivery cost, compared to MIPv6 with RO.V.C ONCLUSIONThis article presents a comprehensive performance analysis of fast handover for hierarchical MIPv6 using an analytic model which is based on fluid-flow model. The impact of various wireless system parameters on the cost functions is evaluated. We find that F-HMIPv6 requires more signaling cost for location update, however delivers the same performance as HMIPv6 in terms of packet delivery cost. Further study will be carried out to evaluate the performance in terms of handoff blocking probability, handoff latency and packet loss rate.R EFERENCES[1] D. Johnson, C. Perkins, and J. Arkko, “Mobility support in IPv6”, IETFRFC 3775, June 2004.[2] S. Thomson, T. Narten, and T. Jinmei, “IPv6 stateless addressautoconfiguration”, IETF RFC 4862, September 2007.[3] R. Droms, J. Bound, B. Volz, T. Lemon, C. Perkins, and M. Carney,“Dynamic host configuration protocol for IPv6 (DHCPv6)”, IETF RFC 3315, July 2003.[4] T. Narten, E. Nordmark, W. Simpson, and H. Soliman, “Neighbordiscovery for IP version 6 (IPv6)”, IETF RFC 4861, September 2007. [5] H. Soliman, C. Castelluccia, K. El Malki, and L. Bellier, “Hierarchicalmobile IPv6 mobility management (HMIPv6)”, IETF RFC 4140, August 2005.[6] H. Soliman, C. Castelluccia, K. El Malki, and L. Bellier, “Hierarchicalmobile IPv6 mobility management (HMIPv6)”, IETF draft , draft-soliman-mipshop-4140bis-01.txt, October 2006.[7] R. Koodli, “Fast handovers for mobile IPv6”, IETF RFC 4068, July2005.[8] R. Koodli, “Fast handovers for mobile IPv6”, IETF draft , draft-ietf-mipshop-fmipv6-rfc4068bis-02.txt July 2007.[9] J. Kempf, J. Wood, and G. Fu, “Fast mobile IPv6 handover packet lossperformance: measurements for emulated real time traffic”, in Proc. IEEE WCNC 2003, New Orleans, USA, Mar. 2003, pp. 1230-1235.[10] H. Y. Jung, H. Soliman, S.J. Koh, and N. Takamiya, “Fast handover forhierarchical MIPv6 (F-HMIPv6)”, IETF draft , draft-jung-mipshopfhmipv6-00.txt, October 2005.[11] H.Y. Jung and S.J. Koh, “Fast handover support in hierarchical mobileIPv6”, in Proc. IEEE ICACT2004, Phoenix Park, Korea, February 2004, pp. 551-554.[12] H.Y. Jung, E.A. Kim, J.W. Yi, and H.H. Lee, “A scheme for supportingfast handover in hierarchical mobile IPv6 networks”, ETRI Journal , vol. 27, no. 6, pp. 798-801, December 2005.[13] S. Pack and Y. Choi, “Performance analysis of hierarchical mobile IPv6in IP-based cellular networks”, in Proc. IEEE PIMRC 2003, Beijing China, Sep. 2003, pp. 2818-2822.[14] M. Woo, “Performance analysis of mobile IP regional registration”,IEICE Transactions on Communications , vol. E86-B, no. 2, pp. 472-478, February 2003.[15] X. Zhang, J.G. Castellanos, and A.T. Campbell, “P-MIP: pagingextensions for mobile IP”, Mobile Networks and Applications , vol. 7, no. 2, pp. 127-141, April 2002.。