初中数学九年级中考复习列方程解应用题错题集锦及解答
- 格式:ppt
- 大小:874.50 KB
- 文档页数:10
九年级数学易错题整理及解析九年级是中学阶段的关键时期,数学学科的学习尤为重要。
在这个阶段,同学们容易在一些特定题型上犯错。
本文将针对九年级数学中的易错题进行整理和解析,帮助同学们巩固知识点,提高解题能力。
一、易错题整理1.分式运算- 忽视分母为零的情况- 混淆乘除法则2.一元二次方程- 解题过程中符号错误- 忽视判别式的符号3.函数图像- 弄错函数图像的开口方向- 误判函数的增减性4.统计与概率- 概率计算不准确- 众数、平均数、中位数混淆5.解直角三角形- 错误使用三角函数- 忽视角度与边长的关系二、解析及注意事项1.分式运算- 解题前检查分母是否为零,避免无效计算。
- 掌握乘除法则,注意运算符号。
2.一元二次方程- 解题过程中注意符号的正确性,避免低级错误。
- 判别式大于零时,方程有两个实数根;等于零时,有一个实数根;小于零时,无实数根。
3.函数图像- 根据函数解析式,判断图像的开口方向和增减性。
- 注意掌握二次函数、一次函数、反比例函数的图像特点。
4.统计与概率- 概率问题要注意事件的总数和满足条件的事件数。
- 区分众数、平均数、中位数,注意定义和计算方法。
5.解直角三角形- 掌握正弦、余弦、正切函数的定义和性质。
- 注意直角三角形中角度与边长的关系,避免错误使用三角函数。
总结:九年级数学易错题主要集中在分式运算、一元二次方程、函数图像、统计与概率以及解直角三角形等方面。
同学们在解题过程中要细心、认真,注意检查,避免低级错误。
初三培优 易错 难题一元二次方程组辅导专题训练及答案一、一元二次方程1.解方程:(x+1)(x ﹣3)=﹣1.【答案】x 1x 2=1【解析】试题分析:根据方程的特点,先化为一般式,然后利用配方法求解即可.试题解析:整理得:x 2﹣2x=2,配方得:x 2﹣2x+1=3,即(x ﹣1)2=3,解得:x 1,x 2=12.已知关于x 的方程x 2﹣(2k +1)x +k 2+1=0.(1)若方程有两个不相等的实数根,求k 的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k =2,求该矩形的对角线L 的长.【答案】(1)k >34;(2 【解析】【分析】(1)根据关于x 的方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根,得出△>0,再解不等式即可;(2)当k=2时,原方程x 2-5x+5=0,设方程的两根是m 、n ,则矩形两邻边的长是m 、n ,利用根与系数的关系得出m+n=5,mn=5,利用完全平方公式进行变形即可求得答案.【详解】(1)∵方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根,∴Δ=[-(2k +1)]2-4×1×(k 2+1)=4k -3>0,∴k >34; (2)当k =2时,原方程为x 2-5x +5=0,设方程的两个根为m ,n ,∴m +n =5,mn =5,∴==.【点睛】本题考查了根的判别式、根与系数的关系、矩形的性质等,一元二次方程根的情况与判别式△的关系:(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.3.“父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答)(2)后来学生会了解到通过“大众点评”或“美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程中,“大众点评”网上的购买价格比原有价格上涨52m%,购买数量和原计划一样:“美团”网上的购买价格比原有价格下降了920m元,购买数量在原计划基础上增加15m%,最终,在两个网站的实际消费总额比原计划的预算总额增加了152m%,求出m的值.【答案】(1)120;(2)20.【解析】试题分析:(1)本题介绍两种解法:解法一:设标价为x元,列不等式为0.8x•80≤7680,解出即可;解法二:根据单价=总价÷数量先求出1个礼盒最多花费,再除以折扣可求出每个礼盒在花店的最高标价;(2)先假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,表示在“大众点评”网上的购买实际消费总额:120a(1﹣25%)(1+52m%),在“美团”网上的购买实际消费总额:a[120(1﹣25%)﹣920m](1+15m%);根据“在两个网站的实际消费总额比原计划的预算总额增加了152m%”列方程解出即可.试题解析:(1)解:解法一:设标价为x元,列不等式为0.8x•80≤7680,x≤120;解法二:7680÷80÷0.8=96÷0.8=120(元).答:每个礼盒在花店的最高标价是120元;(2)解:假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,由题意得:120×0.8a(1﹣25%)(1+52m%)+a[120×0.8(1﹣25%)﹣920m](1+15m%)=120×0.8a(1﹣25%)×2(1+ 152m%),即72a(1+52m%)+a(72﹣920m)(1+15m%)=144a(1+ 152m%),整理得:0.0675m2﹣1.35m=0,m2﹣20m=0,解得:m1=0(舍),m2=20.答:m的值是20.点睛:本题是一元二次方程的应用,第二问有难度,正确表示出“大众点评”或“美团”实际消费总额是解题关键.4.有一个人患了流感,经过两轮传染后共有36人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?【答案】(1)5;(2)180【解析】【分析】(1)设平均一人传染了x 人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.【详解】(1)设每轮传染中平均一个人传染了x 个人,根据题意得:x+1+(x+1)x =36,解得:x =5或x =﹣7(舍去).答:每轮传染中平均一个人传染了5个人;(2)根据题意得:5×36=180(个),答:第三轮将又有180人被传染.【点睛】本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.5.如图,在Rt ABC V 中,90B =o ∠,10AC cm =,6BC cm =,现有两点P 、Q 的分别从点A 和点B 同时出发,沿边AB ,BC 向终点C 移动.已知点P ,Q 的速度分别为2/cm s ,1/cm s ,且当其中一点到达终点时,另一点也随之停止移动,设P ,Q 两点移动时间为xs .问是否存在这样的x ,使得四边形APQC 的面积等于216cm ?若存在,请求出此时x 的值;若不存在,请说明理由.【答案】假设不成立,四边形APQC 面积的面积不能等于216cm ,理由见解析【解析】【分析】根据题意,列出BQ 、PB 的表达式,再列出方程,判断根的情况.【详解】解:∵90B ∠=o ,10AC =,6BC =,∴8AB =.∴BQ x =,82PB x =-;假设存在x 的值,使得四边形APQC 的面积等于216cm ,则()1168821622x x ⨯⨯--=, 整理得:2480x x -+=,∵1632160=-=-<V ,∴假设不成立,四边形APQC 面积的面积不能等于216cm .【点睛】本题考查了一元二次方程的应用,熟练掌握方程根的判别方法、理解方程的意义是本题的解题关键.6.已知关于x 的一元二次方程x 2﹣6x+(2m+1)=0有实数根.(1)求m 的取值范围;(2)如果方程的两个实数根为x 1,x 2,且2x 1x 2+x 1+x 2≥20,求m 的取值范围.【答案】(1)m≤4;(2)3≤m≤4.【解析】试题分析:(1)根据判别式的意义得到△=(-6)2-4(2m+1)≥0,然后解不等式即可; (2)根据根与系数的关系得到x 1+x 2=6,x 1x 2=2m+1,再利用2x 1x 2+x 1+x 2≥20得到2(2m+1)+6≥20,然后解不等式和利用(1)中的结论可确定满足条件的m 的取值范围. 试题解析:(1)根据题意得△=(-6)2-4(2m +1)≥0,解得m ≤4;(2)根据题意得x 1+x 2=6,x 1x 2=2m +1,而2x 1x 2+x 1+x 2≥20,所以2(2m +1)+6≥20, 解得m≥3,而m≤4,所以m 的范围为3≤m≤4.7.校园空地上有一面墙,长度为20m ,用长为32m 的篱笆和这面墙围成一个矩形花圃,如图所示.(1)能围成面积是126m 2的矩形花圃吗?若能,请举例说明;若不能,请说明理由. (2)若篱笆再增加4m ,围成的矩形花圃面积能达到170m 2吗?请说明理由.【答案】(1)长为18米、宽为7米或长为14米、宽为9米;(2)若篱笆再增加4m ,围成的矩形花圃面积不能达到170m 2.【解析】【分析】(1)假设能,设AB 的长度为x 米,则BC 的长度为(32﹣2x )米,再根据矩形面积公式列方程求解即可得到答案.(2)假设能,设AB 的长度为y 米,则BC 的长度为(36﹣2y )米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.【详解】(1)假设能,设AB 的长度为x 米,则BC 的长度为(32﹣2x )米,根据题意得:x(32﹣2x)=126,解得:x 1=7,x 2=9,∴32﹣2x=18或32﹣2x=14,∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.(2)假设能,设AB 的长度为y 米,则BC 的长度为(36﹣2y )米,根据题意得:y(36﹣2y)=170,整理得:y 2﹣18y+85=0.∵△=(﹣18)2﹣4×1×85=﹣16<0,∴该方程无解,∴假设不成立,即若篱笆再增加4m ,围成的矩形花圃面积不能达到170m 2.8.关于x 的一元二次方程ax 2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.【答案】(1)方程有两个不相等的实数根;(2)b=-2,a=1时,x 1=x 2=﹣1.【解析】【详解】分析:(1)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可.详解:(1)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=,解得:121x x ==.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-, 当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.9.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB ,BC 各为多少米?【答案】羊圈的边长AB,BC分别是20米、20米.【解析】试题分析:设AB的长度为x米,则BC的长度为(100﹣4x)米;然后根据矩形的面积公式列出方程.试题解析:设AB的长度为x米,则BC的长度为(100﹣4x)米.根据题意得(100﹣4x)x=400,解得 x1=20,x2=5.则100﹣4x=20或100﹣4x=80.∵80>25,∴x2=5舍去.即AB=20,BC=20考点:一元二次方程的应用.10.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大?【答案】裁掉的正方形的边长为2dm,底面积为12dm2.【解析】试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.试题解析:设裁掉的正方形的边长为xdm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2.11.已知关于x的方程x2-(m+2)x+(2m-1)=0。
中考分式方程组易错题50题含答案解析一、单选题1.甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x 个零件,下列方程正确的是( ) A .240280130x x=- B .240280130x x=-C .240280130x x += D .240280130x x-= 2.某市从今年1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月的水费是15元,今年7月的水费则是30元.已知小丽家今年7月的用水量比去年12月的用水量多35m .设该市去年居民用水的价格为x 元3/m ,根据题意下列方程正确的是( ) A .15305113x x -=⎛⎫+ ⎪⎝⎭B .30155113x x -=⎛⎫+ ⎪⎝⎭C .30155113x x -=⎛⎫+ ⎪⎝⎭D .15305113x x -=⎛⎫+ ⎪⎝⎭3.去分母解关于x 的方程322x mx x -=--产生增根,则m 的值为( ) A .2B .2-C .1D .1-4.把分式方程132x x=-转化成整式方程时,方程两边同乘( ) A .xB .2xC .()2x x -D .()32x x -5.下列方程中,无实数解的是( ) A .2+x =0B .2﹣x =0C .2x =0D .2x=06.一艘轮船在静水中的最大航速为40/km h ,它以最大航速沿河顺流航行100km 所用时间,和它以最大航速沿河逆流航行80km 所用时间相等,设河水的流速为/v km h ,则可列方程为( ) A .100804040v v =+- B .100804040v v =-+ C .100804040v v=+-D .100804040v v=-+ 7.如果关于x 的方程3111a x x=---无解,则a =( ) A 1B 3C 1D 138.某施工队挖掘一条长96米的隧道,开工后每天比原计划多挖2米,结果提前4天完成任务,若设原计划每天挖x 米,则依题意列出正确的方程为( ) A .B .C .D .9.相距S 千米的两个港口A 、B 分别位于河的上游和下游,货船在静水中的速度为a 千米/时,水流的速度为b 千米/时,一艘货船从A 港口出发,在两港之间不停顿地往返一次所需的时间是( ) A .2Sa b+小时 B .2Sa b -小时 C .S S a b ⎛⎫+ ⎪⎝⎭小时D .S S a b a b ⎛⎫+ ⎪+-⎝⎭小时10.下列分式方程有解的是( ). A .210x x+=B .123x -=0 C .2111x x x x +=-- D .11x -=1 11.若整数k 关于x 的一元一次不等式组422x x x k +<+⎧⎨>⎩的解集是2x >,且使关于y 的分式方程24111y k y y y---=--有非负整数解,则符合条件的所有整数k 的值之和为( ) A .4-B .2-C .1-D .012.若关于x 的方程211-=--x mxx x无解,则m =( ) A .1-B .1或1-C .1D .1-或53-13.若关于x 的方程233x m x x -=--有正数解,则( ). A .m >0且m ≠3 B .m <6且m ≠3 C .m <0 D .m >614.分式方程21x --31x +=0的解为( ) A .x =3B .x =-5C .x =5D .无解15.2017年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木万棵,由于志愿者的加入,实际每天植树比原计划多,结果提前天完成任务,设原计划每天植树万棵,可列方程是 ( ) A .B .C .D .16.下列说法中,正确的是( ) A .若24x =,则2x =±B .方程()2121x x x -=-的解为1x =C .若分式222x xx ++的值为0,则0x =或2-D .当12k =时,方程()222110k x k x +-+=的两个根互为相反数17.若关于aa 为整数,若关于x 的分式方程1122x a x x+-=---的解为正数,则满足条件的所有a 的值的和为( ) A .﹣7 B .﹣10 C .﹣12 D .﹣1518.如果关于x 的方程2430ax x +-=有两个实数根,且关于x 的分式方程233x a a x x-+=--有整数解,则 符合条件的整数a 有( )个. A .2B .3C .4D .519.若整数a 使得关于x 的分式方程()16244ax x x x +=--有正整数解,且使得关于y 的不等式组11123132y y y a +-⎧->⎪⎪⎨-⎪≥-⎪⎩有解,那么符合条件的所有整数a 的和为( )A .23B .20C .16D .1020.要使关于x 的一元二次方程2210ax x +-=有两个实数根,且使关于x 的分式方程2244x a x x++=--的解为非负数的所有整数a 的个数为( ) A .5个 B .6个 C .7个 D .8个二、填空题 21.若代数式62x +与4x的值相等,则x =_________. 22.分式方程1222x x x +=--的解是__________. 23.若51544x x x--=--有增根,则增根为______. 24.为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际每天施工多少平方米?设原计划平均每天施工x 平方米,则可列出方程为_______.25.用换元法解方程221321x xx x +-=+,若设21x y x+=,则原方程可化为关于y 的整式方程是_________.26.若分式方程231x x --1m x -=1有增根,则m 的值为_________27.分式方程233x x=-的解是______. 28.若关于x 的分式方程233a x x x +=--有增根,则a 的值_____. 29.关于x 的分式方程223111kx x x x +=--+会产生增根,则k =______. 30.分式方程123x x-=的解x 等于______ 31.分式方程321x -=1的解是______. 32.用换元法解分式方程225111x x x x++=+时,若设21x y x =+,则原方程可以化为整式方程_____. 33.分式方程321xx =+的解为x =______. 34.若关于x 的方程232x mx +=-的解是非负数,则m 的取值范围是________. 35.方程12022x x-=-的解是______. 36.清明节期间,初二某班同学租一辆面包车前去故宫游览,面包车的租金为600元,出发时又增加了5名同学,且租金不变,这样每个同学比原来少分摊了10元车费,若设实际参加游览的同学,一共有x 人则可列分式方程________.37.一个不透明的袋子中有除颜色外其余都相同的红蓝黄色球若干个,其中红色球有6个,黄色球有9个,已知从袋子中随机摸出一个蓝色球的概率为25,那么随机摸出一个为红球的概率为____.38.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是______元. 39.若关于x 的分式方程211x ax +=-的解为正数,则a 的取值范围为________.40.若2x =是方程113x a x -=+的解,则a =____.三、解答题41.甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同.已知甲平均每分钟比乙少打20个字,求甲平均每分钟打字的个数. 42.解方程 (1)1311x x x =+++ (2)22403191x x -=-- 43.一个盒子里有3个红球,2个绿球和4个黄球,球的大小、质地完全相同,搅均匀后从盒中随机地摸出1个球.(1)“摸到红球”是 事件, “摸到黑球”是 事件.(填“不可能”或“必然”或“随机”)(2)如果要使摸到盒子里黄球的概率为12,则需要往盒内再放入多少个黄球?(3)盒内球的数量不变,你怎样改变各色球的数目,使得每种颜色球被取出的可能性一样大?说明理由.44.台风“天鸽”登录珠海,距离珠海市180千米处的某武警部队立即派车前往救灾,按原计划速度匀速行驶60千米后,接上级通知,需紧急赶往目的地.于是以原速度的1.2倍匀速行驶,结果比原计划提前12分钟到达,求原计划的行驶速度. 45.解方程: (1)321x x =+ (2)11322xx x-=--- 46.甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?47.某幼儿园计划购进一批甲、乙两种玩具,已知一件甲种玩具的价格与一件乙种玩具的价格的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的价格分别是多少元?(2)该幼儿园计划用3500元购买甲、乙两种玩具,由于采购人员把甲、乙两种玩具的件数互换了,结果需4500元,求该幼儿园原计划购进甲、乙两种玩具各多少件? 48.解方程:21333x x x-+=-- 49.分式方程2212212x x x x--=-的解为多少?50.解方程和不等式组:⑴ 212112x x x =--- ⑴ 4111123x xx x +>-⎧⎪⎨≤+⎪⎩()参考答案:1.A【分析】设甲每天做x 个零件,根据甲做240个零件与乙做280个零件所用的时间相同,列出方程即可.【详解】解:设甲每天做x 个零件,根据题意得:240280130x x =-, 故选:A .【点睛】此题考查了由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率. 2.B【分析】利用总水费÷单价=用水量,结合小丽家今年7月的用水量比去年12月的用水量多5m 3,进而得出等式即可.【详解】设去年居民用水价格为x 元3/m ,根据题意列方程: 30155113x x -=⎛⎫+ ⎪⎝⎭,故选:B .【点睛】本题主要考查了由实际问题抽象出分式方程,正确表示出用水量是解题关键. 3.D【分析】先把分式方程化为整式方程,由于原分式方程有增根,则有x−2=0,得到x =2,即增根只能为2,然后把x =2代入整式方程即可得到m 的值. 【详解】解:方程两边乘(x−2)得,x−3=m , ⑴分式方程有增根, ⑴x−2=0,即x =2, ⑴2−3=m , ⑴m =−1. 故选:D .【点睛】本题考查了根据分式方程有增根,求方程中的参数,掌握增根的定义是解题关键. 4.C【分析】根据最简公分母的确定方法确定分式132x x-、的最简公分母即可解答.【详解】解:⑴分式132x x-、的最简公分母()2x x-,⑴把分式方程132x x=-转化成整式方程时,方程两边同乘()2x x-.故选C.【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.5.D【分析】根据解方程,可得答案.【详解】解:A、x+2=0,解得x=﹣2,故A正确;B、2﹣x=0,解得x=2,故B正确;C、2x=0,解得x=2,故C正确;D、2x,方程无解,故D错误;故选D.【点睛】本题考查了分式方程的解,熟练掌握解方程的方法是解题的关键.6.C【分析】分析题意,由江水的流速为vkm/h,可知顺水速度为(40+v)km/h,逆水速度为(40-v)km/h;根据题意可得等量关系:以以最大航速沿河顺流航行100km所用时间和它以最大航速沿河逆流航行80km所用时间相等,根据顺流时间=逆流时间,列出方程即可.【详解】设水的流速为vkm/h,根据题意得:10080 4040v v=+-【点睛】本题考查了分式方程的应用,分析题意,根据路程、速度、时间的关系,找出等量关系是解题的关键.7.B【分析】先去分母,化成整式方程,令x-1=0,确定x的值,回代x=4-a,得a值.【详解】⑴3111ax x=---,⑴去分母,得3=x-1+a,整理,得x=4-a,令x-1=0,得x=1,⑴4-a =1, ⑴a =3. 故选B .【点睛】本题考查了分式方程无解问题,正确理解分式方程无解的意义是解题的关键. 8.C【详解】设原计划每天挖x 米,原来所用时间为,开工后每天比原计划多挖2米,现在所用时间为, 可列出方程:﹣=4.故选C .9.D【分析】先分别算出顺水和逆水的速度,再根据时间=路程÷速度,算出往返时间. 【详解】依据顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度, 则顺水速度为a b +,时间为Sa b +,逆水速度为a b -,时间为S a b-, 所以往返时间为S S a b a b++-. 故选D【点睛】本题主要考查了列代数式,熟练掌握顺水逆水速度,以及时间、路程、速度三者直接的关系是解题的关键. 10.D【分析】分别按照解分式方程的步骤去分母,解整式方程可判断方程的解的情况. 【详解】A 、方程两边都乘以x 得:x 2+1=0,此整式方程无解,故原分式方程无解; B 、方程两边都乘以2x -3得:1=0,不成立,故方程无解;C 、方程两边都乘以x -1得:2x =x +1,解得x =1,而x =1时分母x -1=0,故原分式方程无解;D 、方程两边都乘以x -1得:x -1=1,解得x =2,当x =2时,分母x -1=1≠0,x =2是原分式方程的解; 故选:D .【点睛】本题主要考查解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 11.B【分析】根据不等式组的解集确定k 的取值范围,再根据分式方程有非负整数解得出k 的所有可能的值,再进行计算即可.【详解】解:解不等式422x x +<+得:2x >,⑴整数k 使关于x 的一元一次不等式组422x x x k +<+⎧⎨>⎩的解集是2x >,⑴2k ≤, 解分式方程24111y k y y y ---=--得: 32y k =+, 则32k +是非负整数, ⑴1k =或1k =-或3k =-,当1k =-时,1y =是方程的增根,舍去, ⑴1k =或3k =-,⑴符合条件的所有整数k 的值之和为132-=-, 故选:B .【点睛】本题考查分式方程的整数解,解一元一次不等式组,掌握分式方程的解法、一元一次不等式组的解法,理解分式方程的整数解的意义是正确解答的前提. 12.B【分析】方程无解,说明原方程分母为零或化为整式方程后,x 的系数为0,分别解出m 的值即可. 【详解】解:211-=--x mxx x去分母,方程两边同时乘以(x ﹣1),得 2﹣x =﹣mx ∵方程211-=--x mxx x无解, ∴原分式方程分母为零或整式方程无解, ①当x ﹣1=0时,则x =1是方程的增根, ∴2﹣1=﹣m , ∴m =﹣1;②当整式方程2﹣x =﹣mx 无解时, ﹣x +mx + 2=0,(m -1)x =-2,m -1=0,m =1,∴m 的值为1或1-.故选:B .【点睛】本题主要考查了分式方程的增根问题,计算时要小心,容易丢解,明确增根是令分母等于0的值.13.B【分析】首先根据解分式方程的方法求出x 的值,然后根据解为正数以及x ≠3求出m 的取值范围.【详解】解:将方程的两边同时乘以(x -3)可得:x -2(x -3)=m ,解得:x =6-m ,根据解为正数可得:0x >且3x ≠,则:60m ->且63m -≠,解得:6m <且3m ≠.故选B .【点睛】本题主要考查的就是解含有参数的分式方程以及分式的增根问题.在解决这个问题的时候很多同学容易忽视这个增根,从而导致答案错误.如果本题将正数解改为负数解,对于增根我们就没有必要再去考虑,所以同学们一定要注意增根是否在给出的解的范围之内,从而进行解答.14.C【分析】方程两边同时乘以()()11x x -+去掉分母,在解一元一次方程求出x 的值,最后检验即可得答案. 【详解】21x --31x +=0 方程两边同时乘以()()11x x -+得()()21310x x +--=,去括号得:22330x x +-+=,移项合并同类项可得:5x -=-,解得5x=,经检验可得5x=是原分式方程的根,故选:C.【点睛】本题考查解分式方程,解分式方程主要是“转化思想”,把分式方程转化为整式方程,最后要检验,避免有增根.15.A【详解】试题解析:设原计划每天植树x万棵,需要天完成,⑴实际每天植树(x+0.2x)万棵,需要天完成,⑴提前5天完成任务,⑴﹣=5,故选A.考点:由实际问题抽象出分式方程.16.A【分析】根据解一元二次方程、分式方程的方法进行判断,根据一元二次方程根与系数的关系和根的判别式判定方程根的关系.【详解】A、运用直接开平方法解,得x=±2.故此选项正确;B、运用因式分解法,得x=1或12.故此选项错误;C、当x=-2时,x+2=0,是分式方程的增根,则原方程的根是x=0.故此选项错误;D、当k=12时,有方程12x2+1=0,此方程没有实数根.故此选项错误.故选A.【点睛】此题综合考查了一元二次方程的解法、分式方程的解法以及运用一元二次方程的根与系数的关系的结论时,前提是方程必须有实数根.17.C50a-≤<,再根据分式的解12ax-=为正数,可得1a>,确定a的取值范围,当2x=时的情形除外,求得所有正数解a,再求其和即可【详解】⑴. 500a a +≥⎧∴⎨->⎩50a ∴-≤< ⑴1122x a x x+-=--- 12x a x ++=-+解得 12a x -= 102a -> 1a ∴<2x ≠122a -∴≠ 3a ≠-综合⑴⑴:50,3a a -≤<≠-50,3a a -≤<≠-,a 为整数5,4,2,1a ∴=----,其和为542112----=-故选:C .【点睛】本题考查了二次根式的性质,分式方程的解法,不等式的整数解,解题的关键是综合运用以上知识.18.B【分析】由一元二次方程根的判别式求得a 的取值范围,再解分式方程,利用解为整数分析得出答案.【详解】解:因为:关于x 的方程2430ax x +-=有两个实数根,所以:244(3)0a -⨯-≥,且0a ≠,解得:43a ≥-且0a ≠,因为:233x a a x x-+=--, 所以:23x a ax a -+=-,所以:(1)22a x a -=+,当1a =时,方程无解,当1a ≠时,方程的解为224211a x a a +==+--, 因为x 为整数且3x ≠,所以1a -是4的约数,所以11,12,14,a a a -=±-=±-=±所以a 的值为:3,1,0,2,3,5--, 又因为:43a ≥-且0a ≠,1,a ≠ 3x ≠,所以3,0,5a a a =-==不合题意舍掉,所以a 的值为:1,2,3,-.故选B .【点睛】本题考查的是一元二次方程根的判别式,分式方程的解的情况,掌握知识点并能注意到分式方程的增根是解题关键.19.C【分析】解不等式组和分式方程,得出关于y 的范围及x 的值,根据不等式组有解和分式方程的解为正整数解,得出a 的范围,进而可得整数a ,再把整数a 相加即可. 【详解】解:11123132y y y a +-⎧->⎪⎪⎨-⎪≥-⎪⎩①②, 解不等式①得:1y >,解不等式②得:25y a ≤-,⑴不等式组有解,⑴不等式组的解为:125y a <≤-,⑴125a <-,解得:3a >;()16244a x x x x +=-- 解得:82x a =-, ⑴分式方程有正整数解,⑴2a -是8的约数,且8 42a ≠-,802a ≠-,2a ≠,解得:3a =或6或10,又⑴3a >,⑴符合条件的所有整数a 为6、10,⑴符合条件的所有整数a 和为:61016+=.故选:C【点睛】本题考查了分式方程的解和一元一次不等式组的解,熟练掌握解分式方程和不等式组的能力,并根据题意得到关于a 的范围是解本题的关键.20.B【分析】根据一元二次方程根的情况得到0a ≠且()224?10a ∆=--≥解得:1a ≥-且0a ≠,再把分式方程化简求值得:6x a =-+,因为解为非负数,60a -+≥且64a -+≠即6a ≤且2a ≠,所以16a -≤≤且0,2a a ≠≠,即可得出满足题意的整数解.【详解】解:关于x 的一元二次方程2210ax x +-=有两个实数根则2024(1)0a a ≠⎧⎨∆=--⎩1a ∴≥-且0a ≠关于x 的分式方程2244x a x x++=-- 去分母得:(2)2(4)x a x -+=-解得:6x a =-+分式方程的解为非负数60a ∴-+≥且64a -+≠即6a ≤且2a ≠16a ∴-≤≤且0,2a a ≠≠∴满足题意的整数a 的值为1,1,3,4,5,6-故答案为:B .【点睛】本题考查一元二次方程根的情况、分式方程的解,注意二次项系数不为0及分式方程的解要有意义,这是此题的易错点.21.4 【分析】根据代数式62x +与4x的值相等,列出等式,解方程即可. 【详解】解:根据题意得:642x x=+,去分母得:64(2)x x =+,移项合并同类项得:28x =,解得:4x =.经检验,x =4是原方程的解,故答案为:4.【点睛】本题考查了解分式方程,解题的关键在于根据题意列出方程,解方程时注意按步骤进行,并且需要验根.22.x 53= 【分析】去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】两边同乘以2x -去分母得:﹣x +1=2x ﹣4,解得:x 53=, 经检验x 53=是分式方程的解. 故答案为:x 53=. 【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.4x =【分析】根据分式方程增根的定义:在分式方程化为整式方程的过程时,若整式方程的根使分式的分母为0,那么这个根叫做原分式方程的增根,即可求出.【详解】解:⑴51544x x x--=--有增根 ⑴40x -=解得:4x =故答案为:4x =.【点睛】此题考查的是分式方程的增根,掌握分式方程增根的定义是解决此题的关键. 24.3300033000111.2x x -= 【分析】设原计划平均每天施工x 平方米,则实际平均每天施工(120%)x +平方米,由题意列出分式方程即可【详解】设原计划平均每天施工x 平方米,则实际平均每天施工(120%)x +平方米,根据题意得:3300033000111.2x x -=. 故答案为:3300033000111.2x x-=. 【点睛】本题考查分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 25.2230y y --= 【分析】把21x y x+=代入原方程,去分母化简即可. 【详解】解:把21x y x+=,代入原方程得,32y y -=, 去分母,得2230y y --=.故答案为:2230y y --=.【点睛】本题考查了换元法解方程,解题关键是熟练运用代入法进行换元,准确化简方程.26.3 【详解】试题分析:先把分式方程231x x --1m x -=1去分母得,再根据增根的定义可得,最后把代入方程即可求得结果. 方程231x x --1m x -=1去分母得由分式方程231x x --1m x -=1有增根 所以,解得.考点:分式方程的增根点评:解题的关键是熟练掌握使分式方程的最简公分母等于0的根就是分式方程的增根. 27.9x =【分析】观察可得最简公分母是x (x -3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】解:方程的两边同乘x (x -3),得3x -9=2x ,解得x =9.检验:把x =9代入x (x -3)=54≠0.⑴原方程的解为:x =9.故答案为:x =9.【点睛】本题考查了解分式方程,掌握节分是方程的方法和步骤是解题的关键. 28.3【分析】首先把所给的分式方程化为整式方程,然后根据分式方程有增根,得到30x -=,据此求出x 的值,代入整式方程求出a 的值即可.【详解】解:去分母,得:2(3)a x x -+=-,由分式方程有增根,得到30x -=,即3x =,把3x =代入整式方程,可得:3a =.故答案为:3.【点睛】本题主要考查了分式方程的增根,解答此题的关键是要明确:(1)化分式方程为整式方程;(2)把增根代入整式方程即可求得相关字母的值.29.4-或6##6或-4【分析】根据增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,把增根代入化为整式方程的方程即可求出k 的值.【详解】解:方程两边同时乘以(1)(1)x x +-,得:2(1)+3(1)x kx x +=-,即(1)5k x -=-最简公分母为(1)(1)x x +-原方程的增根为1x =±将1x =代入整式方程得:4k =-,将=1x -代入整式方程得:6k =,故答案为:4-或6,【点睛】本题考查了分式方程的增根,增根确定后可按如下步骤进行:⑴化分式方程为整式方程;⑴把增根代入整式方程即可求得相关字母的值,掌握分式方程增根的含义是解题的关键.30.【详解】解方程:去分母得: 移项得: 系数化为1得:31.x=2.【分析】本题考查解分式方程的能力,观察可得方程最简公分母为(x+1)方程去分母后化为整式方程求解. 【详解】解:321x -=1 3=21x -x=2经检验x=2是原方程的解故答案为:x=2.【点睛】本题考查解分式方程,掌握解方程的步骤正确计算是解题关键,注意分式方程结果要检验.32.2510y y +-=【分析】本题考查用换元法化分式方程为整式方程的能力,注意观察方程中分式与y 的关系,代入换元. 【详解】解:设21x y x =+,则2551x y x =+,211x x y +=, 代入原方程得151y y+=, 整理得,2510y y +-=.故答案为:2510y y +-=.【点睛】本题考查了解分式方程,利用换元法是解题关键.33.2【分析】去分母,移项、合并同类项,再对所求的根进行检验即可求解. 【详解】解:321x x =+, 322=+x x ,2x =, 经检验2x =是方程的解.故答案为:2.【点睛】本题主要考查解分式方程,熟练掌握分式方程的解法,注意对所求的根进行检验是解题的关键.34.6m ≥-且4m ≠-【分析】分式方程去分母转化为整式方程,由分式方程的解是非负数,确定出m 的范围,但是必须保证分母不为零即可.【详解】解:分式方程去分母得:2x +m =3x -6,解得:x =m +6,由分式方程的解是非负数,得到m +6≥0,且m +6≠2,解得:6m ≥-且4m ≠-,故答案为:6m ≥-且4m ≠-.【点睛】本题考查分式方程的解,分式方程有意义的条件以及解一元一次不等式,熟练掌握运算法则是解本题的关键.35.25x = 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到的值,经检验即可得到分式方程的解.【详解】解:去分母得:240x x --=, 解得:25x =, 检验:把25x =代入得:220x x -≠(), ∴分式方程的解为25x =. 故答案为:25x =. 【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验. 36.600600105x x-=- 【分析】关键描述语是:“每个同学比原来少分摊了10元车费”;等量关系为:原有的同学每人分担的车费-实际每人分担的车费=20;据此列出分式方程即可.【详解】解:设实际参加游览的同学一共有x 人, 由题意得:600600105x x -=-, 故答案为:600600105x x-=-. 【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到相应的等量关系是解决问题的关键.37.625【详解】设蓝色球有x 个,由题意得2695x x =++ , 解之得10x =⑴随机摸出一个为红球的概率为66691025=++ . 38.4【分析】由去年这种水果批发销售总额为10000元,可得今年的批发销售总额为10000(1+20%)=12000元,设这种水果今年每千克的平均批发价是x 元,则去年的批发价为(x +1)元,可列出方程:12000100010001x x -=+,求得x 即可 【详解】解:设这种水果今年每千克的平均批发价是x 元,则去年的批发价为(x +1)元 今年的批发销售总额为10000(1+20%)=12000元 ⑴120001000010001x x -=+ 整理得x 2-x -12=0解得x =4或x =-3经检验x =4或-3都是分式方程的解(x =-3不合题意,舍去).故这种水果今年每千克的平均批发价是4元.故答案为:4.【点睛】本题主要考查了分式方程的应用,正确找出等量关系是解答本题的关键. 39.1a <-且2a ≠-##a ≠-2且a <-1【分析】分式方程去分母转化为整式方程,由分式方程的解为正数确定出a 的范围即可.【详解】解:去分母得:21x a x +=- ,解得:1x a =-- ,由分式方程的解为正数,得到10a --> ,且11a --≠ , 解得:a <-1且a ≠-2,故答案为:1a <-且2a ≠-.【点睛】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.40.1【分析】把2x =代入方程113x a x -=+,解一元一次方程可得. 【详解】把2x =代入方程113x a x -=+,得 21213a -=+, 去分母,得6-3a=3解得a=1故答案为1【点睛】考核知识点:分式方程的解.解一元一次方程是关键.41.甲平均每分钟打60个字.【详解】分析:设甲平均每分钟打x 个字,则乙平均每分钟打(x +20)个字,根据工作时间=工作总量÷工作效率结合甲打135个字所用时间与乙打180个字所用时间相同,即可得出关于x 的分式方程,解之经检验后即可得出结论.详解:设甲平均每分钟打x 个字,则乙平均每分钟打(x+20)个字, 根据题意得:135x =18020x +, 解得:x=60,经检验,x=60是原分式方程的解.答:甲平均每分钟打60个字.点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 42.(1)2x =-(2)无解【分析】(1)去分母化为整式方程即可解决问题,最后检验;(2)去分母化为整式方程即可解决问题,最后检验.【详解】(1)1311x x x =+++ 方程两边同乘()1x +,得:()131x x =++解得:2x =-检验:当2x =-时,()10x +≠所以,原分式方程的解为:2x =-.(2)22403191x x -=-- 方程两边同乘()()3131x x +-,得:()23140x +-=, 解得:13x =, 检验:当13x =时,()()31310x x +-=,因此13x =不是原分式方程的解, 所以,原分式方程无解.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根.43.(1)随机,不可能(2)需要往盒子里再放入1个黄球(3)将1个黄色球换成绿色球,理由见解析【分析】(1)根据随机事件和不可能事件的定义即可得出答案;(2)当黄球个数是总数的一半时,摸到盒子里黄球的概率为12,由此可解;(3)让每种颜色球的个数变成一样即可.(1)解:盒子里有红球、绿球和黄球,因此“摸到红球”是随机事件,“摸到黑球”是不可能事件,故答案为:随机,不可能;(2)解:设需要往盒内再放入x 个黄球,根据题意得:413242x x +=+++ 解得:x =1,经检验:x =1为原方程的解,答:需要往盒子里再放入1个黄球.(3)。
二元一次方程组实际应用共四套含解析答案2021年九年级数学中考复习——方程专题:二元一次方程组实际应用(一)1.某停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为8元/辆.现在停车场内停有30辆中、小型汽车,这些车共缴纳停车费324元,求中、小型汽车各有多少辆?2.甲,乙两人合作加工一批三条腿和四条腿两种型号的凳子(如图所示).加工完后,甲说:“我做了40条凳子腿”,乙说:“我做了12个凳子面”,求三条腿凳子和四条腿凳子各有多少个.3.某铁件加工厂用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等),加工成如图2的竖式与横式两种无盖的长方体铁容器(加工时接缝材料忽略不计).(1)现有长方形铁片2014张,正方形铁片1176张,如果将两种铁片刚好全部用完,则可加工的竖式和横式长方体铁容器各有多少个?(2)把长方体铁容器加盖可以加工成铁盒.现工厂准备将35块铁板裁剪成长方形铁片和正方形铁片,用来加工铁盒,已知1块铁板可裁成3张长方形铁片或4张正方形铁片,也可以裁成1张长方形铁片和2张正方形铁片.问:该工厂充分利用这35张铁板,最多可以加工成多少铁盒?4.《算法统宗》中有一首“以碗知僧”的趣味诗,原文如下:巍巍古寺在山中,不知寺内几多僧.三百六十四只碗,恰合用尽不差争.三人共食一碗饭,四人共尝一碗羹.请问先生明算者,算来寺内几多僧?译文为:寺内有三百六十四只碗,如果三个和尚共吃一碗饭,四个和尚共吃一碗羹,恰好把碗用完,请问寺内共有多少个和尚?请解答上述问题.5.王师傅为公司员工购买口罩,第一次用2200元购买医用外科口罩500个,KN95型口罩100个;第二次用3450元购买医用外科口罩800个,KN95型口罩150个.若两次购买的同类口罩单价相同,求这两种口罩的单价.6.疫情期间,为满足市场需求,某厂家每天定量生产医用口罩和N95口罩共80万个.当该厂家生产的两种口罩当日全部售出时,则可获得利润35万元.两种口罩的成本和售价如下表所示:成本(元/个)售价(元/个)医用口罩0.8 1.2N95口罩 2.53(1)求每天定量生产这两种口罩各多少万个.(2)该厂家将每天生产的口罩打包(每包1万个)并进行整包批发销售.为了支持防疫工作,现从生产的两种口罩中分别抽取若干包口罩免费捐赠给疫情严重的地区,且捐赠的N95口罩不超过医用口罩的三分之一.若该企业把捐赠后剩余的口罩全部售出后,每日仍可盈利2万元,则从医用口罩和N95口罩中各抽取多少包?7.某零食店有甲,乙两种糖果,它们的单价分别为a元/千克,b元/千克.(1)若购买甲5千克,乙2千克,共花费25元,购买甲3千克,乙4千克,共花费29元.①求a和b的值;②甲种糖果涨价m元/千克(0<m<2),乙种糖果单价不变,小明花了45元购买了两种糖果10千克,那么购买甲种糖果多少千克?(用含m的代数式表示);(2)小王购买了数量一样的甲、乙两种糖果,小李购买了总价一样的甲、乙两种糖果,请比较谁购买的平均价格更低.8.“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A,B两个小麦品种进行种植对比实验研究.去年A,B两个品种各种植了10亩.收获后A,B两个品种的售价均为2.4元/kg,且B的平均亩产量比A的平均亩产量高100kg,A,B两个品种全部售出后总收入为21600元.(1)请求出A,B两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A,B种植亩数不变的情况下,预计A,B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨a%,而A品种的售价不变.A,B两个品种全部售出后总收入将在去年的基础上增加a%.求a的值.9.自2020年5月1日新版《北京市生活垃圾管理条例》实施以来,延庆区城管委为全区从源头上规范垃圾投放,助力推进垃圾分类.恒安小区与新兴小区新配备户用分类垃圾桶共2000个,其中恒安小区配备户用分类垃圾桶比新兴小区的3倍少200个.恒安小区与新兴小区各配备了多少个户用分类垃圾桶?10.列方程组解应用题:2020年5月1日,新修订的《北京市生活垃圾管理条例》正式实施,生活垃圾分为厨余垃圾、可回收物、有害垃圾和其他垃圾四类.北京市现有生活垃圾处理设施中的焚烧设施和生化设施共34座,总处理能力达到约24550吨/日,其中每一座焚烧设施处理能力约为1500吨/日,每一座生化设施处理能力约为350吨/日.则北京市现有生活垃圾处理设施中的焚烧设施和生化设施各有多少座?参考答案1.解:设中型汽车有x辆,小型汽车有y辆,依题意,得:,解得:.答:中型汽车有12辆,小型汽车有18辆.2.解:设三条腿凳子有x个,四条腿凳子有y个,依题意,得:,解得:.答:三条腿凳子有8个,四条腿凳子有4个.3.解:(1)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,依题意,得:,解得:.答:可以加工竖式长方体铁容器100个,横式长方体铁容器538个.(2)设用m块铁板裁成长方形铁片,n块铁板裁成正方形铁片,则用(35﹣m﹣n)块铁板裁成长方形铁片和正方形铁片,依题意,得:=,∴n=m﹣21.∵m,n,(35﹣m﹣n)均为非负整数,∴,.当m=25,n=9时,==19;当m=20,n=3时,==18.∵19>18,∴最多可以加工成19个铁盒.4.解:设盛饭用了x只碗,盛羹用了y只碗,依题意,得:,解得:,∴3x=624.答:寺内共有624个和尚.5.解:设医用外科口罩的单价为x元,KN95型口罩的单价为y元,依题意,得:,解得:.答:医用外科口罩的单价为3元,KN95型口罩的单价为7元.6.解:(1)设每天生产医用口罩x万个,生产N95口罩y万个,依题意,得:,解得:.答:每天生产医用口罩50万个,生产N95口罩30万个.(2)设从医用口罩中抽取m包,N95口罩中抽取n包,依题意,得:1.2(50﹣m)+3(30﹣n)﹣0.8×50﹣2.5×30=2,∴n=11﹣m.∵m,n均为正整数,∴,,,,.又∵捐赠的N95口罩不超过医用口罩的三分之一,∴,,.答:从医用口罩中抽取15包、从N95口罩中抽取5包或从医用口罩中抽取20包、从N95口罩中抽取3包或从医用口罩中抽取25包、从N95口罩中抽取1包.7.解:(1)①依题意有,解得.故a的值为3,b的值为5;②设购买甲种糖果x千克,则购买乙种糖果(10﹣x)千克,依题意有(3+m)x+5(10﹣x)=45,解得x=.故购买甲种糖果千克;(2)小王购买的平均价格为元;小李购买的平均价格为=元;∵﹣==≥0,∴如果a=b则平均价格一样低若a不等于b则小李平均价格低.8.解:(1)设A、B两个品种去年平均亩产量分别是x千克和y千克;根据题意得,,解得:,答:A、B两个品种去年平均亩产量分别是400千克和500千克;(2)2.4×400×10(1+a%)+2.4(1+a%)×500×10(1+2a%)=21600(1+a%),解得:a1=0(不合题意,舍去),a2=10,答:a的值为10.9.解:设恒安小区配备了x个户用分类垃圾桶,新兴小区配备了y个户用分类垃圾桶,根据题意可得:,解得:,答:恒安小区配备了1450个户用分类垃圾桶,新兴小区配备了550个户用分类垃圾桶.10.解:设北京市现有生活垃圾处理设施中的焚烧设施有x座,生化设施有y座,依题意,得:,解得:.答:北京市现有生活垃圾处理设施中的焚烧设施有11座,生化设施有23座.2021年九年级数学中考复习——方程专题:二元一次方程组实际应用(二)1.现由A、B两种货车运输救助物资,已知3辆A车和1辆B车每次可运救助物资15吨,4辆A车和3辆B车每次可运救助物资25吨.(1)1辆A车和1辆B车一次分别可运多少吨?(2)若用A,B两种货车一次运完35吨救助物资(货车均装满),该如何安排A、B两种货车的数量?请写出所有的安排方案.2.某电器超市销售每台进价为80元、200元的A,B两种型号的电风扇,如表所示是六月份前2周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)销售时段销售数量销售收入A种型号B种型号第一周652100元第二周4103400元(1)求A、B两种型号的电风扇的销售单价.(2)若超市一共采购这两种型号的电风扇共120台,售完后该超市能否实现利润为8000元的目标?若能,请给出相应的采购方案;若不能,请说明理由.3.某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?请列方程组求解.4.武汉新冠肺炎疫情发生后,全国人民众志成城抗疫救灾.某公司筹集了抗疫物资120吨打算运往武汉疫区,现有甲、乙、丙三种车型供运输选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙运载量(吨/辆)5810运费(元辆)450600700(1)全部物资一次性运送可用甲型车8辆,乙型车5辆,丙型车辆;(2)若全部物资仅用甲、乙两种车型一次性运完,需运费9600元,求甲、乙两种车型各需多少辆?(3)若该公司打算用甲、乙、丙三种车型同时参与运送,已知车辆总数为14辆,且一次性运完所有物资,你能分别求出三种车型的辆数吗?此时的总运费为多少元?5.确保室内空气新鲜,一方面是提高生活质量的需要,另一方面也是有效防控新型冠状病毒传播的需要,因而越来越多的居民选购家用空气净化器以净化室内空气.阳光商场抓住商机,从厂家购进了A、B两种型号的净化器共160台,A型号净化器进价是1500元/台,B型号净化器进价是3500元/台,购进两种型号净化器共用去360000元(1)求商场各进了A、B两种型号的净化器多少台?(2)为使每台B型号净化器的毛利润是A型号的2倍,且保证售完这160台净化器的毛利润达到110000元,求每台A型号净化器的售价.求甲、乙两种免洗手消毒液的单价.(2)该校在校师生共1000人,平均每人每天都需使用10ml的免洗手消毒液,若校方采购甲、乙两种免洗手消毒液共花费5000元,则这批消毒液可使用多少天?(3)为节约成本,该校购买散装免洗手消毒液进行分装,现需将9.6L的免洗手消毒液全部装入最大容量分别为300ml和500ml的两种空瓶中(每瓶均装满),若分装时平均每瓶需损耗20ml,请问如何分装能使总损耗最小,求出此时需要的两种空瓶的数量.7.为创建省文明卫生城市,某街道将一公园进行绿化改造.计划种植甲、乙两种花木,甲种花木每棵进价800元,乙种花木每棵进价3000元,共需107万元;每种植一棵甲种花木需人工费30元,每种植一棵乙种花木需人工费80元,共需人工费32000元.(1)求计划种植甲、乙两种花木各多少棵?(2)如果承包植树的老板安排28人同时种植这两种花木,每人每天能种植甲种花木20棵或乙种花木5棵,应分别安排多少人种植甲种花木和乙种花木,才能确保同时完成各自的任务?8.在“五一”期间,某商场计划购进甲、乙两种商品.该商场共投入9500元资金购进这两种商品若干件,这两种商品的进价和售价如下表所示:甲乙进价(元/件)3070售价(元/件)50100若全部销售完后可获利5000元(利润=(售价﹣进价)×销量),则该商场购进甲、乙两种商品各多少件?9.班40名学生积极为其捐款购买口罩支援,全班共捐款1500元,捐款情况如下表:捐款金额(元)203050捐款人数20表格中20元和30元的人数被班长不小心刮破了看不到数据,请你根据相关信息帮助他求出捐款20元、30元的人数.10.历下区某中学积极响应国家号召,落实垃圾“分类回收,科学处理“的政策,准备购买A、B两种型号的垃圾分类回收箱共20只,放在校园各个合适位置,以方便师生进行垃圾分类投放.学校共支付费用4240元,A、B型号价格信息如表:型号价格A型200元/只B型240元/只(1)请问学校购买A型和B型垃圾回收箱各是多少只?(2)若学校都购买A型垃圾回收箱,能节省费用多少元?参考答案1.解:(1)设1辆A车一次可运x吨,1辆B车一次可运y吨,依题意,得:,解得:.答:1辆A车一次可运4吨,1辆B车一次可运3吨.(2)设应安排m辆A车,n辆B车,依题意,得:4m+3n=35,∴n=.又∵m,n均为正整数,∴,,.∴共有3种安排方案,方案1:安排2辆A车,9辆B车;方案2:安排5辆A车,5辆B车;方案3:安排8辆A车,1辆B车.2.解:(1)设A种型号的电风扇的销售单价为x元,B种型号的电风扇的销售单价为y元,依题意,得:,解得:.答:A种型号的电风扇的销售单价为100元,B种型号的电风扇的销售单价为300元.(2)设采购A种型号的电风扇m台,B种型号的电风扇n台,依题意,得:,解得:.答:能实现利润为8000元的目标,可采购A种型号的电风扇50台,B种型号的电风扇70台.3.解:设甲种票买了x张,乙种票买了y张,则,解得.答:甲种票买了20张,乙种票买了15张.4.解:(1)(120﹣5×8﹣5×8)÷10=4(辆).答:丙型车4辆.(2)设甲种车型需x辆,乙种车型需y辆,根据题意得:,解得.答:甲种车型需8辆,乙种车型需10辆.(3)设甲车有a辆,乙车有b辆,则丙车有(14﹣a﹣b)辆,由题意得5a+8b+10(14﹣a﹣b)=120,即a=4﹣b,∵a、b、14﹣a﹣b均为正整数,∴b只能等于5,∴a=2,14﹣a﹣b=7,∴甲车2辆,乙车5辆,丙车7辆,则需运费450×2+600×5+700×7=8800(元),答:甲车2辆,乙车5辆,丙车7辆,此时的总运费为8800元.故答案为:4.5.解:(1)设商场购进A型号净化器x台,B型号净水器y台,依题意,得:,解得:.答:商场购进A型号净化器100台,B型号净水器60台.(2)设销售每台A型号净化器的毛利润为m元,则销售每台B型号净化器的毛利润为2m元,依题意,得:100m+60×2m=110000,解得:m=500,∴1500+m=2000.答:每台A型号净化器的售价为2000元.6.解:(1)设甲种免洗手消毒液的单价为x元,乙种免洗手消毒液的单价为y元,依题意,得:,解得:.答:甲种免洗手消毒液的单价为15元,乙种免洗手消毒液的单价为25元.(2)设购进甲种免洗手消毒液a瓶,乙种免洗手消毒液b瓶,依题意,得:15a+25b=5000,∴===10.答:这批消毒液可使用10天.(3)设分装300ml的免洗手消毒液m瓶,500ml的免洗手消毒液n瓶,依题意,得:300m+500n+20(m+n)=9600,∴m=30﹣n.∵m,n均为正整数,∴和.∵要使分装时总损耗20(m+n)最小,∴,即分装时需300ml的空瓶4瓶,500ml的空瓶16瓶,才能使总损耗最小.7.解:(1)设甲种花木x棵、乙种花木y棵,依题意有,解得.故甲种花木400棵、乙种花木250棵;(2)设安排a人种植甲种花木,则安排(28﹣a)人种植乙种花木,依题意有=,解得a=8,经检验,a=8是原方程的解,则28﹣a=28﹣8=20.故安排8人种植甲种花木,则安排20人种植乙种花木,才能确保同时完成各自的任务.8.解:设该商场购进甲种商品x件,乙种商品y件,由题意可得:,解得:,答:该商场购进甲种商品130件,乙种商品80件.9.解:设捐款20元的为x人,捐款30元的为y人,依题意,得:,解得:.答:捐款20元的有10人,捐款30元的有10人.10.解:(1)设学校购买A型垃圾回收箱x只,购买B型垃圾回收箱y只,依题意,得:,解得:.答:学校购买A型垃圾回收箱14只,购买B型垃圾回收箱6只.(2)(240﹣200)×6=240(元).答:能节省费用240元.2021年九年级数学中考复习——方程专题:二元一次方程组实际应用(三)1.某道路规划为城市主干路,全长7.6千米.如果该任务由甲、乙两工程队先后接力完成.甲工程队每天修建道路0.02千米,乙工程队每天修建道路0.01千米,两工程队共需修建560天,求甲、乙两工程队分别修建道路多少千米?根据题意,小刚同学列出了一个尚不完整的方程组(1)根据小刚同学列的方程组,请你分别指出未知数x,y表示的意义:x表示,y表示.(2)小红同学“设甲工程队的工作时间为x天,乙工程队的工作时间为y天”,请你利用小红同学设的未知数求甲、乙两工程队分别修建道路的长度.2.某场篮球赛,门票共两种,价格为:成人票30元/张,儿童票10元/张;门票总收入:4700元.(1)若售出门票总数160张,求售出的成人票张数.(2)设售出门票总数a张,其中儿童票b张.①求a,b满足什么数量关系.②若售出的门票中成人票比儿童票的7倍还多10张,求b的值.3.小张是某工厂的一名工人,每天工作8小时,已知他生产6件甲产品和4件乙产品共需170分钟,生产10件甲产品和10件乙产品共需350分钟.(1)小张每生产一件甲产品和一件乙产品分别需要多少分钟?(2)工厂工人每日收入由底薪和计件工资组成,每日底薪为100元,按件计酬的方式为每生产一件甲产品得a元(2<a<3),每生产一件乙产品得2.5元.小张某日计划生产甲,乙两种产品共28件,请设计出日薪最高的生产方案.4.一种商品有大小盒两种包装,若4大盒、3小盒共装116瓶,2大盒、3小盒共装76瓶.求大盒与小盒每盒各装多少瓶.5.某公司有A、B两种型号的商品需运出,这两种商品的体积和质量如表所示:体积(m3/件)质量(吨/件)A两种型号0.80.5B两种型号21(1)已知一批商品有A、B两种型号,体积一共是20m3,质量一共是10.5吨,求A、B 两种型号商品各有几件?(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6m3,其收费方式有以下两种:按车收费:每辆车运输货物到目的地收费900元;按吨收费:每吨货物运输到目的地收费300元.要将(1)中的商品一次或分批运输到目的地,该公司应如何选择运送方式,使所付运费最少,并求出该方式下的运费是多少元?6.新冠肺炎疫情发生后,为支援疫情防控,某企业研发14条口罩生产线,生产普通防护口罩和普通N95口罩,现日总产量达170万只,已知每条生产线可日产普通防护口罩15万只或普通N95口罩5万只.(1)将170万用科学记数法表示为;(2)这14条生产线中,生产普通防护口罩和普通N95口罩的生产线分别有多少条?7.市扶贫办在精准扶贫中实施产业扶贫,重百超市积极响应号召,帮助贫困农户进行脐橙和柚子的销售.脐橙售价20元/千克,柚子售价15元/千克,第一周脐橙的销量比柚子的销量多100千克,两种水果的销售总额达到9000元.(1)第一周脐橙和柚子的销售量分别为多少千克?(2)第二周继续销售这两种水果,第二周脐橙售价降低了a a%,销量比第一周增加了2a%.柚子的售价保持不变,销量比第一周增加了a%,结果这两种水果第二周的总销售额比第一周增加了a%,求a的值.8.环城南路西延(薛家南路一环镇北路)工程东起薛家南路,北至高桥镇环镇北路,连结广元大道快速路项目,全长约7.38km.近期,欲实行绿化美化工程,需要三角梅和茶梅共700盆,计划投入8500元,其中三角梅5元一盆,茶梅15元一盆.(1)若计划投入的钱恰好全部用完,请问计划需要三角梅和茶梅分别多少盆?(2)由于资金受到控制,实际决定投入不大于7500元,请问三角梅至少可以购入多少盆?9.某小组去看电影,甲种票每张24元,乙种票每张20元.如果40人购票恰好用去920元,甲乙两种票各买了多少张?10.某教育部门分两批采购篮球和足球,已知篮球和足球的单价不变,购买清单如下表.求篮球和足球的单价.篮球数量/个足球数量/个购买总费用/元第一批采购60509800第二批采购30709400参考答案1.解:(1)由题意可知:x表示甲工程队修建道路的长度,y表示乙工程队修建道路的长度.故答案为:甲工程队修建道路的长度,乙工程队修建道路的长度.(2)根据题意,得,解得.∴200×0.02=4(千米),360×0.01=3.6(千米).答:甲工程队修建道路4千米,乙工程队修建道路3.6千米.2.解:(1)设售出的成人票x张,儿童票y张,由题意可得:,解得:,答:售出的成人票155张;(2)①由题意可得:30(a﹣b)+10b=4700,∴3a﹣2b=470;②由题意可得:,解得:,答:b的值为20.3.解:(1)设小张每生产一件甲产品用x分钟,生一件乙产品分别需要y分钟,由题意得:,解得:,答:小张每生产一件甲产品用15分钟,生一件乙产品分别需要20分钟.(2)设生产甲产品m件,则生产乙产品(28﹣m)件,日薪为w元,由题意得,15m+20(28﹣m)≤8×60,解得,m≥16,且m≤28,故,16≤m≤28.∴w=am+2.5(28﹣m)+100,∴w=(a﹣2.5)m+170,且16≤m≤28,①当2<a<2.5时,a﹣2.5<0,w随m增大而减小,所以当m=16时,w有最大值为(130+16a)元.②a=2.5时,a﹣2.5=0,此时w的最大值就为170元.③2.5<a<3时,a﹣2.5>0,w随m增大而增大,所以m=28时,w有最大值为(100+28a)元.4.解:设大盒每盒装x瓶,小盒每盒装y瓶,根据题意得:,解得:,答:大盒每盒装20瓶,小盒每盒装12瓶.5.解:(1)设A、B两种型号商品各有x件和y件,由题意得,,解得:,答:A、B两种型号商品各有5件、8件;(2)①按车收费:10.5÷3.5=3(辆),但车辆的容积为:6×3=18<20,所以3辆车不够,需要4辆车,此时运费为:4×900=3600元;②按吨收费:300×10.5=3150元,③先用3辆车运送A商品5件,B商品7件,共18m3,按车付费3×900=2700(元).剩余1件B型产品,再运送,按吨付费300×1=300(元).共需付2700+300=3000(元).∵3000<3150<3600,∴先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为3000元.答:先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为3000元.6.解:(1)将170 0000用科学记数法表示为:1.7×106.故答案为:1.7×106.(2)设这14条生产线中有普通防护口罩生产线x条,普通N95口罩的生产线y条,根据题意得:,解得:,答:这14条生产线中有普通防护口罩生产线10条,普通N95口罩的生产线4条.7.解:(1)设第一周柚子的销售量为x千克,则脐橙的销售量为(x+100)千克,依题意有20(x+100)+15x=9000,解得x=200,x+100=200+100=300.故第一周脐橙的销售量为300千克,柚子的销售量为200千克;(2)依题意得:20(1﹣a%)×300(1+2a%)+15×(300﹣100)(1+a%)=[20×300+15×(300﹣100)](1+a%),整理得:0.6a2﹣12a=0,解得:a1=20,a2=0(不符合题意,舍去).答:a的值为20.8.解:(1)设计划需要三角梅x盆,需要茶梅(700﹣x)盆,根据题意得,5x+15(700﹣x)=8500,解得,x=200,700﹣x=500,答:计划需要三角梅200盆,需要茶梅500盆;(2)设购入三角梅y盆,根据题意得,5y+15(700﹣y)≤7500,解得,y≥300,答:三角梅至少可以购入300盆.9.解:设甲种票买了x张,乙种票买了y张,依题意可得:,解得:,答:甲种票买了30张,乙种票买了10张.10.解:设篮球的单价为x元,足球的单价为y元,根据题意,得解得答:篮球的单价为80元,足球的单价为100元.2021年九年级数学中考复习——方程专题:二元一次方程组实际应用(四)1.在抗击新型冠状肺炎期间,我市某企业向湖北武汉捐赠了价值26万元的甲、乙两种仪器共30套.已知甲种仪器每套8000元,乙种仪器每套10000元,问甲、乙两种仪器各捐赠了多少套?2.《算法统宗》中有如下问题:“哑子来买肉,难言钱数目,一斤少三十,八两多十八,试问能算者,合与多少肉”,其大意是一个哑子来买肉,说不出钱的数目,买一斤(16两)还差30文钱,买八两多十八文钱,求肉数和肉价,则该问题中,肉价是每两多少文?3.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元.(1)求A、B两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案.4.文峰超市花10000元购进了甲、乙两种商品,其中甲商品件数比乙商品件数的2倍少10,甲、乙两种商品的进价和售价如表:甲乙进价(元/件)12080售价(元/件)160130(1)该超市购进甲、乙两种商品各多少件?(2)销售完该批商品的利润为多少元?5.小李在某商场购买A,B两种商品若干次(每次A,B都买),其中前两次按标价购买,第三次购买时,A,B两种商品同时打折,三次购买A,B商品和费用如表所示:购买A商品的数量购买B商品的数量购买总费用第一次65980第二次37940第三次98912(1)求A,B商品的标价各多少元?(2)若小李第三次购买时,A,B商品的折扣相同,则商场是打几折出售这两种商品?(3)在(2)的条件下打折,若小李第四次购买A,B商品共花去960元,则小李购买方案可能有哪几种?6.现有36卷相同的布料做工作服,每卷布料可制作成上衣25件,或者制作成裤子40件,一件上衣和两件裤子组成一套,问,用多少卷布料制作上衣,多少卷布料制作裤子可以使上衣和裤子正好配套?7.在校运动会中,篮球队和排球队共有24支,其中篮球队每队10名队员,排球队每队12名队员,共有260名队员.请问篮球队、排球队各有多少支?(利用二元一次方程组解决问题)。
中考一元一次方程易错题50题含答案解析一、单选题1.已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x 人,则 ( ) A .237230x x B .327230x xC .233072x xD .323072x x2.若x =1是关于x 的方程ax +2x +1=0的解,则a 的值是 A .-3B .3C .-1D .-23.根据等式的性质,下列变形中正确的是( ) A .若33m n +=-,则m n = B .若x ya a=,则x y = C .若22a x a y =,则x y =D .若382k -=,则12k =-4.一件夹克衫先按成本价提高60%标价,再将标价打7折出售,结果获利36元.设这件夹克衫的成本价是x 元,那么根据题意,所列方程正确的是( ) A .()0.7160%36x x +=-B .()0.7160%36x x +=+C .()07160%36x x +=-.D .()0.7160%36x x +=+5.若关于x 的方程3x+2m =2的解是正数,则m 的取值范围是( ) A .m >1B .m <1C .m ≥1D .m ≤16.某商人在一次买卖中均以120元卖出两件衣服,一件赚20%,一件赔20%,在这次交易中,该商人( ) A .赚10元B .赔10元C .不赚不赔D .无法确定7.已知等式a =b ,则下列变形错误的是( ) A .|a |=|b |B .a +b =0C .a 2=b 2D .2a ﹣2b =08.小淇在某月的日历中圈出相邻的三个数,算出它们的和是15,那么这三个数的位置可能是( ) A .B .C .D .9.下列说法正确的是( ) A .如果ax ay =,那么x y = B .如果a b =,那么55a b -=- c c10.假期张老师和王老师带学生乘车外出参加实践活动,甲车主说“每人8折”,乙车主说“学生9折,老师减半”,张老师计算了一下,不论坐谁的车,费用都一样,则张老师和王老师带的学生人数为( ) A .6名B .7名C .8名D .9名11.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.若设这个班有x 名学生,则依题意所列方程正确的是( ). A .320425x x +=- B .320425x x +=+ C .320425x x -=+D .320425x x -=-12.下列判断:①若0a b c ++=,则()22a c b +=.①若0a b c ++=,且0abc ≠,则122a cb +=-.①若0a bc ++=,则1x =一定是方程0ax b c ++=的解.①若0a b c ++=,且0abc ≠,则0abc >.其中正确的是( )A .①①①B .①①①C .①①①D .①①①①13.要使方程ax b =的解为1x =,必须满足( ) A .a b =B .0a ≠C .0b ≠D .0a b =≠.14.方程x ﹣3=2x ﹣4的解为( ) A .1B .﹣1C .7D .﹣715.关于x 的方程243x m +=和1x m -=有相同的解,则m 的值是( ) A .6 B .5C .5223-D .23-16.解方程()()41111433x x --=-+的最佳方法是( ) A .去括号B .去分母C .移项合并()1x -项D .以上方法都可以17.将方程x ﹣3(4﹣3x )=5去括号正确的是( ) A .x ﹣12﹣6x =5B .x ﹣12﹣2x =5C .x ﹣12+9x =5D .x ﹣3+6x =518.课本习题:“某超市的一种瓶装饮料每箱售价为36元,五一期间对该瓶装饮料进行促销活动,买一箱送两瓶,这相当于每瓶按原价九折销售,求这家超市销售这种饮料的原价每瓶是多少元及每箱多少瓶?”以下为四位同学列出的方程,正确的是( )A .甲、丁B .乙、丙C .甲、乙D .甲、乙、丙19.用如图(1)所示的长方形和正方形纸板做成如图(2)所示的A 、B 两种无盖长方体纸盒(拼接部分忽略不计).现有长方形纸板180张,正方形纸板60张,刚好全部用完.求做成的A 、B 两种纸盒的数量.下列结论正确的个数是( )①设A 种纸盒共有x 个,则可列方程:60431802xx -+⨯=;①设B 种纸盒共有y 个,则可列方程:18032604yy -+=;①B 种纸盒共有24个;①做A 种纸盒共用去长方形纸板144个. A .1B .2C .3D .420.α∠与∠β的度数分别是219m -和77m -,且α∠与∠β都是γ∠的补角,那么α∠与∠β的关系是( ).A .不互余且不相等B .不互余但相等C .互为余角但不相等D .互为余角且相等二、填空题21.若1x =是关于x 的方程31ax bx +=的解,则39a b +=___________. 22.如果x ﹣1=3,则x 的值是 _____.23.我国古代数学名著《孙子算经》中记载;“今有木,不知长短,引绳度之,余绳五尺;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x 尺,那么可列方程为 _____. 24.当x =___时,13x -的值是2 25.某品牌汽车为了打造更加精美的外观,特将汽车倒车镜设计为整个车身黄金分割点的位置(如图,即车尾到倒车镜的距离与车长之比为0.618),若车头与倒车镜的水平距离为1.9m ,则该车车身总长约为________m (保留整数).26.已知2230m x -+=是关于x 的一元一次方程,则m =________________. 27.若关于x 的方程()||235m m x--=是一元一次方程,则m =______.28.已知:数轴上一个点到-2的距离为5,则这个点表示的数是 ___________________29.如果一个正多边形每一个内角都等于144︒,那么这个正多边形的边数是______. 30.双层游轮的票价是上层票每张12元,下层票每张8元,现在游轮上共有游客150人,而且下层票的总票款比上层票的总票款多700元.那么这艘轮船上下两层游客的人数分别是多少设这艘邮轮上层的游客x 人,这艘油轮下层的游客y 人,可列方程组为__________.31.若关于x 的多项式()2x m -与()35+x 的乘积中,一次项系数为1,则m =____________.32.一个角的比它的余角多24°30′,则这个角的补角是_________.33.如图是一个正方体的展开图,如果正方体相对的两个面上标注的数值均互为相反数,则x 的值是_________.34.重庆双福育才中学农场的工人们要把两片草地的草除掉,大的一片是小的一片的3倍,前两天工人们都在大的一片草地上除草,第三天工人们对半分开除草,一半留在大的一片草地上,另一半人到小的一片草地去除草,第三天结束后,大的一片草地恰好除草完毕,小的一片草地还剩下一小块正好是2个人工人2天的工作量.如果工人们每天每人的除草量是相等的,且每天的工作时间相等,则农场有___________名工人.35.王芳和李丽同时采摘樱桃,王芳平均每小时采摘8kg ,李丽平均每小时采摘7kg .采摘结束后,王芳从她采摘的樱桃中取出0.25kg 给了李丽,这时两人的樱桃一样多.她们采摘用了多少时间?设她们采摘用了x 小时,则可列一元一次方程为_______.36.已知方程ax+12=0的解是x=3,则不等式(a+2)x<-6的解集为________. 37.已知关于x 的方程23kx a +=1+6x bk-中,a 、b 、k 为常数,若无论k 为何值,方程的解总是x =1,则a +18b 的值为 ___.38.已知点M 、N 在线段AB 上,AM MB =13,AN NB=23,且MN =2,则AB =______.39.已知方程2224m x m +-+=是关于x 的一元一次方程,则方程的解是________.三、解答题40.在ABC 中, ①A 的度数是①B 的度数的3倍,①C 比①B 大15°,求①A ,①B ,①C 的度数. 41.(1)计算:(2)计算(3)解方程:3(25)29x x --+= (4)解方程:42.据调查表明,山的高度每增加1km ,则气温大约升高-6①.(1)我省著名风景区庐山的五老峰的高度约为1500m ,当山下气温20①时,求山顶的气温;(2)若某地的地面气温为18①,高空某处的气温为-24①,求此处的高度.43.七年级学生在4名数学老师的带领下去公园游玩,公园的门票为每人20元,现有两种优惠方案,甲方案:师生都按7.5折收费.乙方案:带队老师免费,学生按8折收费.(1)如有a名学生,用代数式表示两种优惠方案各需多少元?(2)当a=50时,采用哪种方案优惠?(3)当a=120时,采用哪种方案优惠?44.汽车从甲地到乙地,用去油箱中汽油的14,由乙地到丙地用去剩下汽油的15,油箱中还剩下6升.(1)油箱中原有汽油多少升?(2)已知甲、乙两地相距22km,求乙、丙两地的距离.45.为了鼓励市民节约用水,我市居民使用自来水计费方式实施阶梯水价,具体标准见表1,表2分别是小明、小丽、小斌、小宇四家2017年的年用水量和缴纳水费情况.表1:大连市居民自来水实施阶梯水价标准情况:表2:四个家庭2017年的年用水量和缴纳水费情况:请你根据表1、表2提供的数据回答下列问题:(1)写出表1中的a,m的值;(2)小颖家2017年使用自来水共缴纳水费827元,则她家2017年的年用水量是多少立方米?46.(1)计算:﹣1×[﹣32×(﹣23)2﹣2]÷(﹣23) (2)解方程:3157146x x ---= 47.计算题(1)计算:2232113()(2)()32-⨯---÷-(2)解方程:12111263x x x --+-=- 48.已知线段12AB =个单位长度.(1)如图1,点P 沿线段AB 自点A 出发向点B 以1个单位长度每秒的速度运动,同时点Q 沿线段BA 自点B 出发向点A 以2个单位长度每秒的速度运动,几秒钟后,P 、Q 两点相遇?(2)如图1,几秒后,P 、Q 两点相距3个单位长度?(3)如图2,3AO =个单位长度,1PO =个单位长度,当点P 在AB 的上方,且60∠=︒POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿线段BA 自B 点向A 点运动,假若P 、Q 两点能相遇,求点Q 的运动速度. 49.新规定:点C 为线段AB 上一点,当3CA CB =或3CB CA =时,我们就规定C 为线段AB 的“三倍距点”.如图,在数轴上,点A 所表示的数为3-,点B 所表示的数为5. (1)确定点C 所表示的数为___________;(2)若动点P 从点B 出发,沿射线BA 方向以每秒2个单位长度的速度运动,设运动时间为t 秒.①求AP 的长度(用含t 的代数式表示);①当点A 为线段BP 的“三倍距点”时,求出t 的值.参考答案:1.D【分析】先设男生x 人,根据题意可得323072x x.【详解】设男生x 人,则女生有(30-x)人,由题意得:323072x x,故选D.【点睛】本题考查列一元一次方程,解题的关键是读懂题意,得出一元一次方程. 2.A【分析】把1x =代入方程得出关于a 的方程,解之可得答案. 【详解】将1x =代入ax +2x +1=0,得:210a ++=, 解得:3a =-, 故选:A .【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a 的方程是解此题的关键. 3.B【分析】根据等式的性质变形得到结果,作出判断即可得.【详解】解:A 、若33m n +=-,则m n ≠,选项说法错误,不符合题意; B 、若x ya a=,则x y =,选项说法正确,符合题意; C 、若22a x a y =,20a ≠,则x y =,选项说法错误,不符合题意; D 、若382k -=,则163k =-,选项说法错误,不符合题意;故选:B .【点睛】本题考查了等式的性质,解题的关键是掌握等式的性质. 4.B【分析】设这件夹克衫的成本价是x 元,根据题意列出一元一次方程即可求解. 【详解】解:设这件夹克衫的成本价是x 元,根据题意得,()0.7160%36x x +=+,故选:B .【点睛】本题考查了一元一次方程的应用,根据题意列出一元一次方程是解题的关键. 5.B【分析】先把x 的值用m 表示出来,再根据关于x 的方程3x+2m =2的解是正数列出不等式,求出m 的取值范围即可.【详解】解:方程3x+2m=2可化为x=223m-,①x>0,①223m->0,①m<1.故选:B.【点睛】此题考查了解一元一次不等式,以及一元一次方程的解,熟练掌握运算法则是解本题的关键.6.B【分析】设进价为x元,根据售价=(1+利润率)×进价列出一元一次方程,进而求解.【详解】设赚了20%的衣服的进价是x元,则(1+20%)x=120,解得,x=100,则实际赚了20元;设赔了20%的衣服进价是y元,则(1-20%)y=120,解得y=150,则实际赔了30元;①30>20,①在这次交易中,该商人是赔了30-20=10(元).故选B.【点睛】本题考查一元一次方程的应用,求出两件衣服的进价是解题的关键.7.B【分析】根据绝对值和等式的性质分别进行判定求解.【详解】解:A.根据绝对值的性质可知,若a=b,则|a|=|b|,原变形正确,故此选项不符合题意;B.根据等式性质,若a=b,则a﹣b=0,原变形错误,故此选项符合题意;C.根据等式性质,若a=b,则a2=b2,原变形正确,故此选项不符合题意;D.根据等式性质,若a=b,则2a﹣2b=0,原变形正确,故此选项不符合题意.故选:B.【点睛】本题主要考查了绝对值的性质,等式的性质,理解等式的性质是解答关键.8.C【分析】可设第一个数为x,根据日历的数的排列规律,将各数表示出来,利用方程的思想验证x是否为正整数,从而作出判断.【详解】解:设第一个数为x ,根据已知: A 、得x+x+7+x+8=15,则x=0,故本选项不可能.B 、得x+x+7+x+6=15,则x=23,不是整数,故本选项不可能. C 、得x+x+1+x+8=15,则x=2,是整数,故本选项可能. D 、得x+x+1+x+7=15,则x=73不是整数,故本选项不可能.故选C. 【点睛】此题考查的是一元一次方程的应用,关键是根据题意对每个选项列出方程求解论证,难度一般,要掌握日历中数的排列规律. 9.C【分析】根据等式基本性质分析即可.【详解】A. 如果ax ay =,且a≠0,那么x y =,故不能选; B. 如果a b =,那么55a b -=-,故不能选; C. 根据性质1,如果11a b +=+,那么a b = D. 如果a b =,且0a b =≠,那么c ca b=,故不能选; 故选C【点睛】考核知识点:等式基本性质.理解性质是关键. 10.A【详解】设张老师和王老师带了x 名学生, 根据题意得(x+2)×0.8=0.9x+2×12,解得x=6,故选A . 11.A【分析】设这个班有学生x 人,等量关系为图书的数量是定值,据此列方程即可.【详解】设这个班有学生x 人,由题意得,3x +20=4x−25. 故选:A .【点睛】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.12.A【分析】各项利用方程解的定义,以及绝对值的代数意义判断即可得到结果.【详解】解:①若0a b c ++=,则a c b +=-,①()22a c b +=,故①正确;①若0a b c ++=,则a c b +=-,且0abc ≠,则1222a cb b b +-==-,故①正确; ①若0a bc ++=,则1x =一定是方程0ax b c ++=的解,故①正确;①若0a b c ++=,且0abc ≠,当有2个负数时,0abc >;当有1个负数时<0abc ,故①不正确,故选:A .【点睛】本题考查了有理数的运算以及一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值,掌握以上知识是解题的关键.13.D【详解】试题分析:两边除以a 得:b x a=,要使方程ax b =的解为1x =,则必须满足0a b =≠.故选D .考点:一元一次方程的解.14.A【详解】移项,得x ﹣2x=﹣4+3,合并同类项,得﹣x=﹣1,系数化成1,得x=1.故选:A .15.A【分析】先解两个一元一次方程,再根据两个一元一次方程的解相同列出含m 的一元一次方程,解方程即可.【详解】解: 由243x m +=,342m x -=; 由1x m -=,解得+1x m =,因为两个方程的解相同, 所以34=12m m -+,解得: 6m =故选A.【点睛】本题主要考查一元一次方程的应用,解决本题的关键是要熟练掌握解含参数的一元一次方程的方法,并根据解相同列出方程.16.C【分析】由于x-1的系数分母相同,所以可以把(x-1)看作一个整体,先移项,再合并(x-1)项. 【详解】解:移项得,43(x-1)-13(x-1)=4+1, 合并同类项得,x-1=5,解得x=6.故选C .【点睛】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解答此题的关键.17.C【分析】方程去括号得到结果,即可作出判断.【详解】方程x ﹣3(4﹣3x )=5,去括号得:x ﹣12+9x =5,故选:C .【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.18.B【分析】根据题意可设这种饮料的原价每瓶是x 元,则根据等量关系“九折购买的饮料数量比36元购买的一箱饮料的数量多2瓶”,或“一箱加2瓶的饮料九折后的价格是36元”;若设每箱有x 瓶,则根据“购买一箱加2瓶时,每瓶的价格和每瓶九折后的价格相等”分别列出方程即可【详解】设这种饮料的原价每瓶是x 元,则363620.9x x-=; 设这种饮料的原价每瓶是x 元,则()0.936236x ⋅+=;设每箱有x 瓶,则36360.92x x ⨯=+ 故选B【点睛】本题考查了分式方程的应用,一元一次方程的应用,根据题意找出等量关系是解题的关键.19.C【分析】若设A 种纸盒共有x 个,则有制作A 种纸盒所需长方形的个数为4x 个,正方形的个数为x 个,则B 中正方形的个数为(60-x )个,然后可判定①;若设B 种纸盒共有y 个,则有制作B 种纸盒所需正方形的个数为2y 个,长方形的个数为3y 个,则A 中长方形的个数为(180-3y )个,然后可判定①;进而求解即可判定①①.【详解】解:若设A 种纸盒共有x 个,则可列方程为60431802x x -+⨯=,解得:36x =,故①正确;若设B 种纸盒共有y 个,则可列方程:18032604y y -+=,解得:12y =,故①正确,①错误;①做A 种纸盒共用去长方形纸板为36×4=144(个),故①正确;综上所述:正确的个数有3个;故选C .【点睛】本题主要考查一元一次方程的应用,解题的关键是分析得到已知与未知之间的关系.20.D【分析】由α∠与∠β都是γ∠的补角可得αβ∠=∠,进而可得关于m 的方程,解方程即可求出m ,进一步即可进行判断.【详解】解:由α∠与∠β都是γ∠的补角,得αβ∠=∠,即21977m m -=-,解得:32m =,所以2197745m m -=-=.所以α∠与∠β互为余角且相等.故选:D .【点睛】本题考查了余角和补角以及简单的一元一次方程的解法,属于基本题型,熟练掌握上述基础知识是解题的关键.21.3【分析】将方程的解代入方程后,对等式进行变形即可求解.【详解】解:将1x =代入方程可得:31a b +=,①393a b +=,故答案为:3.【点睛】本题考查了方程的解,解题关键是理解方程的解的含义,并能利用等式的性质对等式进行变形.22.4【分析】移项、合并同类项,据此求出方程的解即可.【详解】解:移项,可得:x =3+1,合并同类项,可得:x =4.故答案为:4.【点睛】本题主要考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解答本题的关键.23.x +5=2(x ﹣1)【分析】根据绳子的长度不变,得出关于x 的一元一次方程,即为答案.【详解】解:依题意,得:x +5=2(x ﹣1).故答案为:x +5=2(x ﹣1).【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.24.7【分析】首先根据题意,可得:13x -=2,然后去分母、移项、合并同类项,求出方程的解是多少即可.【详解】解:根据题意,可得:13x -=2, 去分母,可得:x ﹣1=6,移项,可得:x =6+1,合并同类项,可得:x =7.故答案为:7.【点评】此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.25.5【分析】设该车车身总长为x m ,利用黄金分割点的定义得到汽车倒车镜到车尾的水平距离为0.618x ,则根据题意列方程x -0.618x =1.9,然后解方程即可.【详解】解:设该车车身总长为x m ,①汽车倒车镜设计为整个车身黄金分割点的位置,①汽车倒车镜到车尾的水平距离为0.618x ,①x -0.618x =1.9,解得x ≈5,即该车车身总长约为5米.故答案为:5.【点睛】本题考查了黄金分割:把线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项(即AB :AC =AC :BC ),叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点.26.3【分析】根据一元一次方程的定义,可列方程,即可求m 的值.【详解】解:①2230m x -+=是关于x 的一元一次方程,①21m -=解得:3m =故答案为:3.【点睛】本题考查了一元一次方程的定义,,利用一元一次方程的定义解决问题是本题的关键.27.3-【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是0ax b +=(a ,b 是常数且0a ≠).据此可得出关于m 的方程,继而可求出m 的值.【详解】①关于x 的方程()||235m m x--=是一元一次方程,①30m -≠,21m -=,解得:3m =-,故答案为3-.【点睛】本题主要考查了一元一次方程的一般形式,未知数的指数是1,一次项系数不为0,特别容易忽视的一点就是系数不为0的条件.这是这类题目考查的重点.28.-7或3【详解】试题分析:两数差的绝对值表示两点之间的距离.设这个点表示的数为=5,解得:x=3或x=-7.考点:绝对值29.10【分析】设正多边形的边数为n ,然后根据多边形的内角和公式列方程求解即可.【详解】解:设正多边形的边数为n ,由题意得,()2180144n n -⋅=,解得10n =.故答案为:10.【点睛】本题考查了多边形的内角与外角,熟记公式并准确列出方程是解题的关键.30.812700150y x x y -=⎧⎨+=⎩【分析】设这艘游轮上层的游客人数为x 人,下层的游客人数为y 人,根据“游轮上共有游客150人,而且下层票的总票款是上层票的总票款多700元”列方程组求解可得.【详解】这艘邮轮上层的游客x 人,这艘油轮下层的游客y 人,由题意得812700150y x x y -=⎧⎨+=⎩. 故答案为812700150y x x y -=⎧⎨+=⎩. 【点睛】本题主要考查二元一次方程组的应用,理解题意找出题目中所蕴含的等量关系是列出方程组求解的关键.31.3【分析】先求出两个多项式的积,再根据一次项系数为1,得到关于m 的一次方程,求解即可.【详解】解:()()235x m x -+263105x mx x m =-+-()261035x m x m =--+①积的一次项系数为1,①1031m -=,解得:3m =.故答案为:3.【点睛】本题主要考查了多项式乘以多项式和解一元一次方程,掌握多项式乘多项式法则,是解决本题的关键.32.122°45′【分析】和为90度的两个角互为余角,依此根据一个角比它的余角大24°30′可求这个角的度数,再根据和为180度的两个角互为补角,即可求解.【详解】解:设这个角为x ,则x -(90°-x )=24°30′,解得x =57°15′,这个角的补角的度数为180°-57°15′=122°45′.故答案为:122°45′.【点睛】此题考查余角与补角,主要记住互为余角的两个角的和为90°;两个角互为补和为180°.利用方程思想较为简单.33.1-【分析】利用正方体及其表面展开图的特点,列出方程()()2360x x -++=解答即可.【详解】解:由题意得:()()2360x x -++=解得:=1x -故答案为:1-.【点睛】本题考查了正方体相对两个面上的文字和一元一次方程的应用.注意正方体的空间图形,从相对面入手,分析及解答问题.34.12【分析】由题可知每人每天除草量是一定的,设农场有x 名工人,每人每天除草量为y ,根据大的一片是小的一片的3倍,列出方程解答即可.【详解】解:设农场有x 名工人,每名工人每天除草量为y ,依题意有2xy +0.5xy =3(0.5xy +2×2y ),2.5xy =1.5xy +12y ,xy =12y ,x =12.故农场有12名工人.故答案为:12.【点睛】此题考查了一元一次方程的应用,主要是先明白每人每天除草量是一定的,设农场有x 名工人,每人每天除草量为y ,根据题意找到关系即可解答.35.80.2570.25x x -=+.【分析】利用采摘结束后王芳从她采摘的樱桃中取出0.25kg 给了李丽,这时两人樱桃一样多得出等式求出答案.【详解】解:设她们采摘用了x 小时,根据题意可得:8x-0.25=7x+0.25,故答案为:8x-0.25=7x+0.25【点睛】此题主要考查了一元一次方程的应用,根据采摘的质量得出等式是解题关键. 36.3x >【分析】先将3x =代入方程120ax +=,求得a 的值;再将a 的值代入不等式,然后系数化1即可.【详解】先将3x =代入120ax +=,得3120a +=,解得4a =-;把4a =-代入不等式26a x +<-,得426x -+<-,解得:3x >;故答案为:3x >.【点睛】本题考查了解一元一次方程及解一元一次不等式,注意不等式两边除以负数,不等式要变号.37.3【分析】将1x =代入方程,然后令k 的系数为0,得到关于a b 、的二元一次方程组,求解即可.【详解】解:将1x =代入方程23kx a +=1+6x bk -得(4)270b k a ++-=由题意可得:40270b a +=⎧⎨-=⎩,解得724a b ⎧=⎪⎨⎪=-⎩ 则17171(4)382822a b +=+⨯-=-= 故答案为:3【点睛】此题考查了一元一次方程解的含义以及二元一次方程组的求解,解题的关键是理解题意,掌握二元一次方程组的求解.38.403【分析】设AM =x ,则MB =3x ,则AB =4x ,利用23AN MB =可得到85AN x =,则利用MN =35x 列方程35x =2,然后解方程求出x 即可得到AB 的长. 【详解】解:设AM =x ,则MB =3x ,①AB =AM +MB =4x , ①23AN NB =,AB =AN +NB ①AN =2855AB x =, ①MN =AN ﹣AM =8355x x -=x , ①35x =2,解得x =103, ①AB =4×103=403. 故答案为403. 【点睛】本题主要考查了比例线段,根据比例的性质用代数式表示线段的长是解答本题的关键.39.3x =-【分析】先求出m 的值,再代入求出x 的值即可.【详解】因为原方程是关于x 的一元一次方程,所以21+=m ,移项,得12m =-.合并同类项,得1m =-.把1m =-代入原方程,得224x --=.移项,得242x -=+.合并同类项,得26x -=.系数化为1,得3x =-.故答案为:3x =-.【点睛】本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键. 40.①A=99°,①B=33°,①C=48°【分析】设①B=x ,则①A=3x ,①C=x+15,再由三角形内角和定理求出x 的值即可.【详解】解:设①B=x ,则①A=3x ,①C=x+15,①①A+①B+①C=180°,①x+3x+x+15=180,解得:x=33,①①A=99°,①B=33°,①C=48°.【点睛】本题考查三角形的内角和定义,难度不大,关键是运用方程思想进行解题. 41.(1)19;(2)10;(3);(4)14.5x =.【详解】试题分析:(1)先算乘除,再算加减即可;(2)利用分配律计算简单方便;(3)先去括号,再移项合并同类项,最后系数化为1即可;(4)先去分母,再去括号,然后移项合并同类项,最后系数化为1即可试题解析:(1)=18-6×(14-)×23 2分 =19 4分(2)= 2分=–1+8+3=10 4分(3)3(25)29x x --+=2分4分(4)3(23)4(2)12,x x --+=694812,x x ---= 2分 229,x =14.5x = 4分考点:1.有理数的混合运算;2.解一元一次方程.42.(1)11①;(2)7km【分析】(1)根据题意可直接进行列式求解;(2)设此处的高度为xkm ,然后根据题意列出方程求解即可.【详解】解:()1根据题意列得:150020(6)111000C ,答:山顶的温度为11C . ()2设此处的高度为xkm ,根据题意列得:18624x -=-解得:7x =.答:此处的高度为7km .【点睛】本题主要考查列算式计算与一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.43.(1)甲方案为:15a+60;乙方案为:16a ;(2)乙方案优惠;(3)甲方案优惠;【分析】(1)根据题意分别表示出两种方案的钱数即可;(2)把a=50代入,比较大小即可;(3)把a=120代入,比较大小即可.【详解】(1)若有a 名学生,甲方案为:(15a+60)元;乙方案为:16a 元;(2)当a=50时,甲方案需810元,乙方案需800元,此时乙方案优惠;(3)当a=120时,甲方案需1860元,乙方案需1920元,此时甲方案优惠.【点睛】此题考查了代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键. 44.(1)油箱中原有汽油10升;(2)乙、丙两地的距离为13.2千米.【分析】(1)若设油箱中原有汽油x 升,分别表示出每次的耗油量,根据题意即可列出方程解答即可;(2)利用耗油量的比与行驶路程的比相等列出方程解答即可.【详解】解:(1)设油箱中原有汽油x 升,由题意得111()6445x x x x ---⨯= 解得:x =10答:油箱中原有汽油10升.(2)设乙、丙两地的距离为a 千米,由题意得11122::(1)445a =-⨯ 解得:a =13.2答:乙、丙两地的距离为13.2千米.【点睛】本题主要考查一元一次方程的应用,根据题意列出方程是解题的关键. 45.(1)a =3.25,m =180;(2)她家2017年的年用水量是235立方米.【分析】(1)根据小明、小丽、小斌家的年用水量和缴纳水费情况可知100<m <200,从而求出a 及m 的值;(2)由年用水量为240立方米时,共缴纳水费849元,而673<827<849,可得她家2017年的年用水量在第二阶梯.设她家2017年的年用水量是x 立方米,根据共缴纳水费827元列出方程,求解即可.【详解】(1)由题意,可得a =325100=3.25, 根据小斌家用水200立方米(在第二阶梯),缴纳水费673元,列出方程:3.25m +4.4(200﹣m )=673,解得m =180.(2)由年用水量为240立方米时,共缴纳水费:3.25×180+4.4(240﹣180)=849(元), ①673<827<849,①她家2017年的年用水量在第二阶梯.设她家2017年的年用水量是x 立方米,根据题意,得3.25×180+4.4(x ﹣180)=827,解得x =235.答:她家2017年的年用水量是235立方米.【点睛】本题考查一元一次方程的应用,解答本题的关键是明确题意,理解阶梯水价收费标准,正确求出a 及m 的值.46.(1)-9;(2)x =﹣1.【分析】(1)根据实数的混合计算解答即可;(2)根据一元一次方程的解法解答即可.【详解】(1)原式=﹣1×[﹣9×49﹣2]×(﹣32) =﹣1×[﹣4﹣2]×(﹣32) =﹣1×(﹣6)×(﹣32) =﹣9;(2)3(3x ﹣1)﹣12=2(5x ﹣7)9x ﹣3﹣12=10x ﹣149x ﹣10x =﹣14+3+12﹣x =1x =﹣1.【点睛】本题主要考查有理数的混合运算及解一元一次方程,解题的关键是熟练掌握有理数的混合运算的顺序和运算法则.47.(1)31;(2)2x =【分析】(1)按照先算乘方、再算乘除、后算加减的顺序计算即可;(2)按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【详解】(1)()2232113232⎛⎫⎛⎫-⨯---÷- ⎪ ⎪⎝⎭⎝⎭ =-9×19-(-8)÷14=-1+32=31;(2)12111263x x x --+-=-, 3(x-1)-(2x-1)=6-2(1+x),3x-3-2x+1=6-2-2x ,3x-2x+2x=6-2+3-1,。
中考分式方程组易错题50题含答案解析一、单选题1.在某核酸检测任务中,甲医疗队比乙医疗队每小时多检测15人,甲队检测600人所用的时间比乙队检测500人所用的时间少10%.设甲队每小时检测x 人,根据题意,可列方程为( ) A .()600500110%15x x =⨯-- B .()600500110%15x x ⨯-=- C .()600500110%1515x x =⨯--- D .()600500110%15x x⨯-=- 2.如果分式方程555x mx x =--无解,那么m 的值为( ) A .0B .-1C .5D .13.若3x =是分式方程2522x m x x-=--的解,则m 的值为( )A.B .C .2 D .04.已知方程3233x x x=---有增根,则这个增根一定是( ) A .2B .3C .4D .55.若关于x 的方程2-3-x x m x+=2的解为x=4,则m= ( ) A .3 B .4 C .5D .66.某企业车间生产一种零件,3位工人同时生产,1位工人恰好能完成组装,若车间共有工人60人,如何分配工人才能使生产的零件及时组装好.设分配x 名工人生产,由题意列方程,下列选项错误的是( ) A .x +3x =60B .1603x x -=C .6013x x -= D .x =3(60-x )7.学校用24000元和15000元分别购买了相同本数的科普类图书和文学类图书.已知科普类图书平均每本价格比文学类图书的平均每本价格多9元.设文学类图书的平均每本价格为x 元,则下列列出的方程中正确的是() A .24000150009x x =- B .24000150009x x =- C .24000150009x x=+ D .24000150009x x=+ 8.已知关于x 的分式方程433x kx x-=--的解为非负数,则k 的取值范围是( )A .12k ≤-且3k ≠-B .12k ≥-且3k ≠-C .12k >-且3k ≠-D .12k <-9.若关于x 的分式方程3233x a a x x+=--无解,则a 的值为( ) A .1a =B .12a = C .1或12D .1-或12-10.关于x 的分式方程4111ax x x =+--有增根,则a 的值是( ) A .1B .2C .4D .1或411.对于非零实数a 、b ,规定a *b =11b -﹣11a +,若(2x ﹣1)*2=2( ) A .﹣2B .12C .﹣12D .不存在12.把分式方程211xxx -=+化为整式方程正确的是( ) A .22(1)1+-=x x B .22(1)1++=x x C .22(1)(1)+-=+x x x xD .22(1)(1)-+=+x x x x13.炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( ) A .B .C .D .14.两个工程队共同参与一项筑路工程,甲队单独施工3个月,这时增加了乙队,两队又共同工作了2个月,总工程全部完成,已知甲队单独完成全部工程比乙队单独完成全部工程多用2个月,设甲队单独完成全部需x 个月,则根据题意可列方程中错误的是( )A .311212x x x ⎛⎫++= ⎪-⎝⎭B .32212x x x ++=- C .32212x x ++=- D .3212x x +=- 15.已知关于x 的分式方程311x xm +--=1的解是非负数,则m 的取值范围是( ) A .m <4B .m <4,且m ≠3C .m ≤4D .m ≤4,且m ≠316.若关于x 的方程x a cb x d-=-有解,则必须满足条件( ) A .c≠d B .c≠-dC .bc≠-ad C .a≠b17.方程130x 2x-=-的解为A .x=2B .x=-2C .x=3D .x=-318.若关于x 的分式方程11222k x x-+=--的解为非负整数,且关于y 的不等式组13(42)122523y y k y y -≤+-<+⎧⎪⎨⎪⎩至少有五个整数解,则所有满足条件的整数k 的个数为( ) A .2个 B .3个 C .4个 D .5个19.分式方程﹣2=的解是( ) A .x=±1B .x=﹣1+C .x=2D .x=﹣120.已知关于x 的方程22x mx +-=3的解是正数,则m 的取值范围为( ) A .m >-6 B .m <-6且m≠-4 C .m <-6D .m >-6且m≠-4二、填空题21.一个不透明的袋子中装有6个白球和若干个红球,这些球除颜色外都相同.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出白球的频率稳定在0.33附近,则估计袋子中的红球有________个. 22.关于x 的方程244x ax x -=++有增根,则a 的值为______. 23.分式方程:31122x x x +=++的解为_______. 24.分式方程5302x x-=-的根为_____ 25.若关于x 的分式方程1x x --1m x-=3有增根,则这个增根是_____. 26.方程1544xx x --=--的解是________. 27.已知分式方程2213712x x x x -+=-,设21x y x-=,那么原方程可以变形为__________28.若关于x 的分式方程322133x nxx x--+=---无解. 则常数n 的值是______. 29.方程2111xx x+=-+的解是______. 30.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时.设原来的平均速度为x 千米/时,根据题意,可列方程为______________.31.若分式方程1x x a++=2的一个解是x =1,则a =____. 32.有两块面积相同的蔬菜试验田,第一块使用原品种,第二块使用新品种,分别收获蔬菜1500千克和2100千克.已知第二块试验田每亩的产量比第一块多200千克.若设第一块试验田每亩的产量为x 千克,则根据题意列出的方程是______________________33.端午将至,吃粽子是中华民族的传统.粽子馅料有很多品种,比如素馅,肉馅,甜味馅.去年某商人抓住商机,购进素馅,肉馅,甜味馅三种粽子.已知销售每袋素馅粽子的利润率为10%,每袋肉馅粽子的利润率为20%,每袋甜味馅粽子的利润率为30%,当售出的三种馅料粽子的袋数之比为1:3:1时,商人得到的总利润率为22%;当售出的三种馅料粽子的袋数之比为3:2:1时,商人得到的总利润率为20%,那么当售出的三种馅料粽子的袋数之比为2:3:4时,这个商人得到的总利润率为__.34.有四张正面分别标有数学﹣3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数学记为a ,则使关于x 的分式方程11222ax x x-+=--有正整数解得概率为___________ 35.若121x -与1(4)3x +互为倒数,则x=_______. 36.若关于x 的分式方程222x m x x=---的解为正数,则满足条件的正整数m 的值为____________.37.已知12322kx x x x --=--为分式方程,有增根,则k =_____. 38.若关于x 的分式方程22x -2ax +=1的解为负数,则a 的取值范围是____________. 39.要使关于x 的方程121(2)(1)x x ax x x x +-=+-+-的解是正数,a 的取值范围是___.. 40.若关于x 的分式方程21x mx -+=3的解是负数,则字母m 的取值范围是 ___________ .三、解答题41.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,不混合卖出的总钱数与混合后卖出的总钱数也相同,求杂拌糖的单价.42.某超市计划购进甲、乙两种商品,两种商品的进价、售价如下表:若用1800元购进甲种商品的件数与用900元购进乙种商品的件数相同.(1)求甲、乙两种商品的进价是多少元?(2)若超市销售甲、乙两种商品共100件,其中销售甲种商品为a件(a≥40),设销售完100件甲、乙两种商品的总利润为w元,求w与a之间的函数关系式,并求出w 的最小值.43.在疫情期间,某药店用4000元购进若干包医用口罩,很快售完,该店又用7500元钱购进第二批这种口罩,购进的包数是第一批的1.5倍,但每包的进价比第一批进价多1元,请解答下列问题:(1)求购进第一批医用口罩有多少包?(2)若两批医用口罩按相同的价格售出,且售完后总利润不高于3500元,那么每包口罩的最高售价是多少元?44.某市在道路改造过程中,需要甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.问甲、乙两个工程队每天各能铺设多少米?45.计算:(1)解不等式组:()3125212132x xx x⎧-<-+⎪⎨-+->⎪⎩①②(2)化简:22 11112aa a a-⎛⎫-⋅⎪-+⎝⎭(3)分解因式:3224129a ab ab-+(4)解分式方程:311 44xx x-+= --46.某化工厂用A,B两种型号的机器人搬运化工原料,已知每个A型机器人比每个B型机器人每小时多搬运30kg,每个A型机器人搬运900kg所用的时间与每个B型机器人搬运600kg所用的时间相等.(1)求A,B两种机器人每个每小时分别搬运多少化工原料?(2)某化工厂有4500kg化工原料需要搬运,要求搬运所有化工原料的时间不超过5小时,现计划先由8个A 型机器人搬运2小时,再增加若干个B 型机器人一起搬运,问至少增加多少个B 型机器人才能按要求完成任务? 47.解下列分式方程: (1)2236 111x x x +=+-- (2)12222x x x+=--. 48.解分式方程: (1)5x =72x - (2)13x -=2+3xx- 49.解分式方程 (1)21233x x x -=--- (2)26124x x x -=-- 50.为支援灾区,某校爱心活动小组准备用筹集的资金购买A 、B 两种型号的学习用品共1000件.已知B 型学习用品的单价比A 型学习用品的单价多10元,用180元购买B 型学习用品的件数与用120元购买A 型学习用品的件数相同. (1)求A 、B 两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B 型学习用品多少件?参考答案:1.A【分析】设甲队每小时检测x 人,则乙队每小时检测()15x -人,甲队检测600人的时间为600x 小时,乙队检测500人的时间为50015x -小时,再根据甲队检测600人所用的时间比乙队检测500人所用的时间少10%列出方程即可.【详解】解:设甲队每小时检测x 人,则乙队每小时检测()15x -人, 由题意得()600500110%15x x =⨯--, 故选A .【点睛】本题主要考查了分式方程的实际应用,正确理解题意找到等量关系是解题的关键. 2.D【分析】先解出分式方程的解,然后根据分式方程无解得出5x = ,代入分式方程的解中即可求出m 的值.【详解】解分式方程为5x m = ∵分式方程555x mx x =--无解 ∵5x = ∵55m = 解得1m = 故选:D .【点睛】本题主要考查分式方程无解问题,掌握分式方程无解问题的解法是解题的关键. 3.A【分析】去分母,得到整式方程,再把x=3代入即可求解. 【详解】去分母得,25x m =-, ∵分式方程的解为3x =,∵235m =-,解得m = 故选A.【点睛】此题主要考查分式方程的解,解题的关键是熟知分式方程去分母的方法. 4.B【分析】根据增根是使最简公分母为0的x的值,找到最简公分母即可求出相应的增根.【详解】分式方程的最简公分母为3x-,∵分式方程有增根,30x∴-=,解得3x=,故选:B.【点睛】本题主要考查分式方程的增根,掌握分式方程的增根是如何产生的是解题的关键.5.A【分析】把x=4代入原方程,再解出m即可.【详解】把x=4代入原方程得,4+24m-=2,解得m=3,故选A.【点睛】此题主要考查分式方程的解.6.A【分析】设分配x名工人生产,由题意可知,完成组装的工人有(60-x)人,根据生产工人数和组装工人数的倍数关系,可列方程.【详解】解:设分配x名工人生产,由题意可知,完成组装的工人有(60-x)人,由3位工人生产,1位工人恰好能完成组装,可得:x=3(60-x)∵故D正确;将∵两边同时除以3得:60-x=13x,则B正确;将∵两边同时除以3x得:60xx-=13,则C正确;A选项中,x为生产工人数,而生产工人数是组装工人数的3倍,而不是相反,故A错误.综上,只有A不正确.故选:A.【点睛】本题考查了由实际问题抽象出一元一次方程,明确题中的数量关系,是解题的关键.7.D【分析】根据购买了相同本数的科普类图书和文学类图书列分式方程即可解答. 【详解】解:由科普类图书平均每本价格比文学类图书的平均每本价格多9元,可知科普类图书平均每本(x+9)元,依题意得, 24000150009x x=+ 故选:D .【点睛】本题考查由实际问题抽象出分式方程,是重要考点,找准等量关系,列出方程是解题关键. 8.B【分析】先把分式方程化为整式方程,然后得出分式方程的解,进而问题可求解. 【详解】解:由分式方程433x k x x -=--可得:123kx +=, ∵该分式方程的解为非负数, ∵1203k +≥,且1233k+≠, 解得:12k ≥-且3k ≠-; 故选B .【点睛】本题主要考查分式方程及一元一次不等式的解法,熟练掌握分式方程及一元一次不等式的解法是解题的关键. 9.C【分析】根据分式方程“无解”,考虑两种情况:第一种是分式方程化为整式方程时,整式方程有解,但是整式方程的解会使最简公分母为0,产生了增根.第二种情况是化为整式方程时,整式方程无解,则原分式方程也无解.综合两种情况求解即可. 【详解】解:3233x aa x x+=-- 分式方程两边同乘以(3-x )得:32(3)x a a x -+=-(21)3a x a -=要使原分式方程无解,则有以下两种情况: 当210a -=时,即12a =,整式方程无解,原分式方程无解.当210a -≠时,则321ax a =-,即3321a a =-,原分式方程无解产生增根. 解得1a =综上所述可得:1a =或12时,原分式方程无解. 故选:C .【点睛】本题主要考查了分式方程无解求参数的值,熟知分式方程无解的两种情况:第一种是分式方程化为整式方程时,整式方程有解,但是整式方程的解会使最简公分母为0,产生了增根.第二种情况是化为整式方程时,整式方程无解,则原分式方程也无解是解决本题的关键. 10.C【分析】增根是指代入分式方程后分母的值为0的根,因此可将原方程去分母,然后将增根代入求a 的值.【详解】解:去分母,得 ax =4+x -1∵, ∵方程有增根, 所以x -1=0, ∵x =1是方程的增根, 将x =1代入∵得, a =4+1-1, ∵a =4, 故选C .【点睛】本题考查了分式方程的增根,正确理解分式方程增根的含义是解题的关键. 11.C【分析】根据新定义将所求式子化为普通方程,求出方程的解即可得到x 的值. 【详解】解:∵a *b =11b -﹣11a +, ∵(2x ﹣1)*2=2, ∵1﹣12x=2, 去分母得:2x ﹣1=4x , 解得:x =﹣12,经检验x =﹣12是分式方程的解.故选:C.【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键.12.C【详解】方程两边同乘最简公分母x(x+1),得:2(x+1)-x2=x(x+1),故选C.13.D【详解】试题分析:关键描述语为:“两队同时开工且恰好同时完工”,那么等量关系为:甲队所用时间=乙队所用时间.解:乙队用的天数为:,甲队用的天数为:.则所列方程为:.故选D.考点:由实际问题抽象出分式方程.14.D【分析】设甲队单独完成全部工程需x个月,则乙队单独完成全部工程需要(x-2)个月,根据甲队施工5个月的工程量+乙队施工2个月的工程量=总工程量1列出方程,然后依次对各方程的左边进行变形即可判断.【详解】解:设甲队单独完成全部工程需x个月,则乙队单独完成全部工程需要(x-2)个月,根据题意,得:5212x x+=-;A.3112()12x x x++=-的左边化简得5212x x+=-,所以本选项不符合题意;B.32212x x x++=-可变形为5212x x+=-,所以本选项不符合题意;C.3+2212x x+=-可变形为5212x x+=-,所以本选项不符合题意;D.3212x x+=-,与上述方程不符,所以本选项符合题意.故选:D.【点睛】本题考查了分式方程的应用,正确理解题意,找准相等关系“工作效率⨯工作时间=工作量”列方程,是解题的关键.15.D【分析】首先去分母,计算出x=4﹣m,再根据解是非负数可得4﹣m≥0,x﹣1≠0,进而可得4﹣m≠1,再解即可.【详解】解:311x xm+--=1,31 x-﹣1mx-=1,3﹣m=x﹣1,x=4﹣m,∵解是非负数,∵x≥0,∵4﹣m≥0,∵m≤4,∵x﹣1≠0,∵x≠1,∵4﹣m≠1,∵m≠3,∵m≤4,且m≠3,故选:D.【点睛】此题主要考查了分式方程的解,关键是注意分式方程有解时,最简公分母不为零.16.A【详解】方程变形为(c+d)x=ad+bc,所以当c+d≠0,即c≠d时,原方程有解,故选A. 17.C【详解】分析:首先去掉分母,观察可得最简公分母是x(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:去分母,得:x-3(x-2)=0,即x-3x+6=0,解得:x=3,经检验x=3是原方程的解.故选C.18.A【分析】求出方程的解,由方程的解为非负整数,得到k的取值范围;解不等式组,由不等式组至少有五个整数解,得到不等式,求出k的取值范围,由此得到答案.【详解】解:方程11222kx x-+=--两边都乘以x-2,得1+2(x-2)=k-1,解得22kx+ =,∵方程11222kx x-+=--的解为非负整数,∵202k +≥,且222k +≠, 解得2k ≥-,且2k ≠; 解不等式13(42)122y y -≤+,得4y ≤, 解不等式523k y y -<+,得37k y ->, ∵不等式组13(42)122523y y k y y -≤+-<+⎧⎪⎨⎪⎩至少有五个整数解, ∵347k y -<≤,且最少的五个整数解分别为0、1、2、3、4、, ∵307k -<, 解得k <3,∵23k -≤<,且2k ≠,∵方程11222k x x-+=--的解22k x +=为非负整数, ∵所有满足条件的整数k 为-2,0,共2个,故选:A .【点睛】此题考查了由分式方程的解求参数,由不等式组解集的情况求参数,正确掌握解分式方程及解不等式组的法则是解题的关键.19.D【详解】试题分析:﹣2=,(2)2(1)(2)3,x x x x +--+=21x =,1,x =± 当x=1是,分母为0,所以是增根,所以x=-1,故选D .考点:分式方程的解.20.D【详解】解关于x 的方程232x m x +=-得:6x m =+, ∵原方程的解为正数, ∵62060m m +-≠⎧⎨+>⎩,解得:6m >-且4m ≠-. 故选D.点睛:关于x 的方程232x m x +=-的解为正数,则字母“m”的取值需同时满足两个条件:(1)60x m =+>;(2)6x m =+不能是增根,即620m +-≠.21.12【分析】根据口袋中有6个白球和若干个红球,利用白球在总数中所占比例得出与试验比例应该相等求出即可.【详解】解:∵通过多次重复试验发现摸出白球的频率稳定在0.33附近,∵从袋子中任意摸出1个球,是白球的概率约为0.33,设袋子中红球有x 个, 根据题意,得:61=+63x , 解得x =12,经检验:x =12是分式方程的解,∵估计袋子中的红球有12个,故答案为:12.【点睛】此题主要考查了利用频率估计随机事件的概率,根据已知得出小球在总数中所占比例得出与试验比例应该相等是解决问题的关键.22.6-【分析】先根据方程有增根求出x 的值,再将原分式方程去分母,最后将4x =-代入求值即可.【详解】解:关于x 的方程244x a x x -=++有增根,则4x =-是增根, 将原分式方程去分母得, 2x a -=,而4x =-是方程2x a -=的解,所以6a =-,故答案为:6-.【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:∵让最简公分母为0确定增根;∵化分式方程为整式方程;∵把增根代入整式方程即可求得相关字母的值.分式方程去分母转化为整式方程,根据分式方程有增根得到x =-4,将x =-4代入整式方程计算即可求出a 的值.23.14x =##0.25x = 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:去分母得:2223x x ++=, 解得:14x =, 检验:把14x =代入得:2(1)0x +≠, ∴分式方程的解为14x =. 【点睛】此题考查了解分式方程,利用了转化的思想,解题的关键是掌握解分式方程注意要检验.24.x =-3 【详解】解:5302x x-=-, 去分母得:5x -3(x -2)=0,解得:x =-3,检验:当x =-3时,x (x -3)≠0,所以,原分式方程的解为x =-3,故答案是:x =-3.25.x =1.【分析】增根是化为整式方程后产生的不适合分式方程的根所以应先让最简公分母x-1=0,得到x=1【详解】∵原方程有增根∵最简公分母x-1=0解得x=1故答案为:x=1.【点睛】此题考查分式方程的增根,难度不大26.6x =【分析】观察可得最简公分母是(x −4),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,注意不要忘记检验.44x x---1=5-x解得x=6.检验:把x=6代入(x−4)≠0.∵x=6是原方程的根,故答案为:x=6.【点睛】本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.27.372 yy+=【分析】把原分式方程中的21xx-整体换成y即可得到答案.【详解】解:设21xyx-=,则分式方程21xx-+231xx-=72,可以变形为3yy+=72故答案为:372yy+=.【点睛】本题主要考查了分式方程,利用整体代入的方法求解是解题的关键.28.1或5 3【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解,使原方程的分母等于0.【详解】解:两边都乘(x−3),得3−2x+nx−2=−x+3,解得x=21n-,n=1时,整式方程无解,分式方程无解;∵当x=3时分母为0,方程无解,即21n-=3,∵n=53时,方程无解;故答案为:1或53.【点睛】本题考查了分式方程无解的条件,掌握知识点是解题关键.29.3x=-【分析】先去分母,去括号,然后移项合并,再进行检验,即可求出方程的解.11x x-+去分母,得2(1)(1)(1)(1)x x x x x ++-+=-,去括号,得22221x x x x ++-=-,移项合并,得3x =-;检验:把3x =-代入(1)(1)x x -+,则(1)(1)0x x -+≠;∵3x =-是原方程的解;故答案为:3x =-.【点睛】本题考查了解分式方程,解题的关键是熟练掌握解分式方程的步骤和方法. 30.14801480370x x =++ 【详解】试题解析:设原来的平均速度为x 千米/时,列车大提速后平均速度为x+70千米/时,根据走过相同的距离时间缩短了3小时,列方程:1480x =148070x ++3, 故答案为1480x =148070x ++3. 31.0【详解】把1x =代入方程12,x x a +=+ 得112,1a +=+ 解得:0.a =经检验,a=0是方程的解,故答案为:0.32.150********x x =+. 【分析】设第一块试验田每亩的产量为x 千克,则第二块试验田每亩的产量为(x+200)千克,根据两块地的面积相同,列出分式方程.【详解】设第一块试验田每亩的产量为x 千克,则第二块试验田每亩的产量为(x+200)千克, 由题意得,150********x x =+. 33.25%【分析】设每袋素馅粽子的成本是a 元,售价是A 元;每袋肉馅粽子的成本是b 元,售价是B 元;每袋甜味馅粽子的成本是c 元,售价是C 元;根据题意得:A =1.1a ,B =1.2b ,C=1.3c,设最后一种情况的利润率是x,根据条件建立方程组,解方程组即可.【详解】解:设每袋素馅粽子的成本是a元,售价是A元;每袋肉馅粽子的成本是b元,售价是B元;每袋甜味馅粽子的成本是c元,售价是C元;根据题意得:A=1.1a,B=1.2b,C=1.3c,∵设最后一种情况的利润率是x,得到()()()()33 1.223232 1.2 2342341A B C a b cA B C a b cA B C a b c x⎧++=++⨯⎪++=++⨯⎨⎪++=++⨯+⎩∵,将条件∵代入方程组∵可以解得23b ac a=⎧⎨=⎩,∵2341 1.25234A B Cxa b c+++==++,解得:x=0.25=25%;故答案为:25%.【点睛】本题主要考查分式方程的应用及三元一次方程组的应用,熟练掌握分式方程的应用及三元一次方程组的应用是解题的关键.34.【详解】解分式方程得:x=,能使该分式方程有正整数解的只有0(a=1时得到的方程的根为增根),∵使关于x的分式方程有正整数解的概率为.故答案为.35.7 5【分析】根据互为倒数的两数之积为1可列出方程,然后求解即可.【详解】根据题意得:121x-×()143x+=1去分母、去括号得:x+4=6x−3移项合并同类项得:5x=7系数化为1得:x=75.故答案为75【点睛】此题考查了分式方程的应用与倒数的定义,解题的关键在于根据题意列出等式,有一定的难度,要注意读准题意.36.1或3【分析】先根据分式方程的解法求出x 的表达式,然后根据题意求出m 的范围即可求出答案.【详解】解:x=2(x-2)+m ,x=2x-4+m ,x=4-m ,将x=4-m 代入x-2≠0,∵m≠2,∵x >0,∵m <4,∵m 是正整数,∵0<m <4且m≠2,∵m=1或3.故答案为1或3.【点睛】本题考查分式方程的解法,解题的关键是求出m 的范围.37.1【分析】去分母得(2)2k x -=-,根据有增根即可求出k 的值.【详解】去分母得,123kx x -=-(2)2k x -=-,当20k -≠时,22x k =--为增根, 222k ∴-=- 21k -=-1k =故答案为:1.【点睛】本题考查了分式方程的问题,掌握解分式方程的方法是解题的关键.38.a >0且a ≠2【详解】试题分析:首先左右两边同乘以(x+2),求出x 的值.然后根据解为负数且x≠-2求出a 的取值范围.解分式方程得:x=-a ,根据题意得:-a <0且-a≠-2 解得:a >0且a≠2.考点:解分式方程.39.1a <-且a≠-3.【详解】分析:解分式方程,用含a 的式子表示x ,由x >0,求出a 的范围,排除使分母为0的a 的值. 详解:()()12121x x a x x x x ---+=++, 去分母得,(x +1)(x -1)-x (x +2)=a ,去括号得,x 2-1-x 2-2x =a ,移项合并同类项得,-2x =a +1,系数化为1得,x =12a --. 根据题意得,12a -->0,解得a <-1. 当x =1时,-2×1=a +1,解得a =-3;当x =-2时,-2×(-2)=a +1,解得a =3.所以a 的取值范围是a <-1且a ≠-3.故答案为a <-1且a ≠-3.点睛:本题考查了由分式方程的解的情况求字母系数的取值范围,这种问题的一般解法是:∵根据未知数的范围求出字母的范围;∵把使分母为0的未知数的值代入到去分母后的整式方程中,求出对应的字母系数的值;∵综合∵∵,求出字母系数的范围.40.m>-3且m≠-2【分析】先解关于x 的分式方程,求得x 的值,然后再依据“解是负数”建立不等式求m 的取值范围.【详解】原方程整理得:2x-m=3(m+1),解得:x=-(m+3),∵x<0,∵-(m+3)<0,即m>-3,∵原方程是分式方程,∵x≠-1,即-(m+3)≠-1,解得:m≠-2,综上所述:m 的取值范围是m>-3,且m≠-2,故答案为m>-3,且m≠-2【点睛】此题考查了分式方程的解,解答本题时,易漏掉分母不等于0这个隐含的条件,熟练掌握解分式方程的方法及分式有意义的条件是解题关键.41.36元【分析】设杂拌糖的单价为x 元, 则奶糖的单价为(x+4) 元, 水果糖的单价为(x-6) 元,根据这两种糖混合前后质量相同列出方程,解方程即可.【详解】解:设杂拌糖的单价为x 元, 则奶糖的单价为(x+4)元,水果糖的单价为(x-6)元,根据题意得:180********+=x+4x-6x, 解得:x=36.经检验,x=36是原方程的解.答:杂拌糖的单价为36元.【点睛】本题主要考查分式方程的应用,根据已知条件列出方程是解题的关键. 42.(1)甲120元,乙60元;(2)W =404000(40)a a +≥;W 最小值=5600元【分析】(1)根据题意列出分式方程,求解并检验即可;(2)利用总利润=甲的利润 +乙的利润即可得出答案,然后利用一次函数的性质求最小值即可.【详解】(1)根据题意有180090060x x=+, 解得60x =,经检验,60x =是原分式方程的解,∵60120x +=,∵甲商品的进价是120元,乙商品的进价是60元;(2)根据题意有,(200120)(10060)(100)404000w a a a =-+--=+, 400>∵w 随着a 的增大而增大,40a ≥ ,∵当40a =时,w 最小,此时404040005600w =⨯+=(元) .【点睛】本题主要考查分式方程和一次函数的应用,掌握分式方程的解法和一次函数的性质是解题的关键.43.(1)第一批医用口罩有1000包(2)每包医用口罩的售价为6元【分析】(1)设第一批口罩有x 包,则第二批有1.5x 包,根据题意列出分式方程,解方程即可求解;(2)设每包口罩的售价为a 元,根据题意列出一元一次不等式,解不等式即可求解. (1)设第一批口罩有x 包,则第二批有1.5x 包, 根据题意有:400075001 1.5x x+=, 解得x =1000,经检验,x =1000是原方程的解,即第一批口罩有1000包,答:第一批医用口罩有1000包;(2)设每包口罩的售价为a 元,在(1)中已求得第一批医用口罩有1000包,则第二包口罩有:1.5x =1500(包),根据题意,有:()()15001000750040003500x +-+≤,解得:6x ≤,即每包口罩的最高售价为6元,答:每包医用口罩的售价为6元.【点睛】本题主要考查了分式方程以及一元一次不等式的应用,明确题意,找准等量关系列出分式方程是解答本题的关键.44.甲工程队每天能铺设70米,乙工程队每天能铺设50米.【详解】试题分析:设乙工程队每天能铺设x 米.根据甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同,列方程求解.解:设乙工程队每天能铺设x 米;则甲工程队每天能铺设(x+20)米,依题意,得=,解得x=50, 经检验,x=50是原方程的解,且符合题意.答:甲工程队每天能铺设70米,乙工程队每天能铺设50米.考点:分式方程的应用.45.(1)227x -<<(2)1a a+- (3)()223a a b -(4)3x =【分析】(1)根据一元一次不等式组的解法可进行求解;(2)先算括号内,然后再利用分式的乘法法则进行求解即可;(3)先提公因式,然后再用完全平方公式因式分解即可;(4)先去分母,然后再进行求解整式方程即可.(1)解:()3125212132x x x x ⎧-<-+⎪⎨-+->⎪⎩①② 由∵可得:2x >-,由∵可得:27x <, ∵原不等式组的解集为227x -<<; (2)解:原式=()()()21111a a a a a +--⋅- =1a a+-; (3)解:原式=()224129a a ab b -+ =()223a a b -;。
2021中考数学专题复习分式方程及其应用〔含答案〕一、选择题〔本大题共5道小题〕小明用15元买售价同样的软面笔录本,小丽用24元买售价同样的硬面笔录本(两人的钱恰巧用完),每本硬面笔录本比软面笔录本贵3元,且小明和小丽买到同样数目的笔录本.设软面笔录本每本售价为x元,依据题意可列出的方程为( )A. =B. =C. =D. =2.分式方程=1的解是( )A.x=1B.x=-1C.x=2D.x=-23.解分式方程+ =3时,去分母化为一元一次方程,正确的选项是( )A.x+2=3B.x-2=3C.x-2=3(2x-1)D.x+2=3(2x-1)甲、乙二人做某种机械部件,每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个部件,以下方程正确的选项是()A. =B. =C. =D. =5.对于x的分式方程=1的解是负数,那么m的取值范围是( )≤3≤3且m≠2 C.m<3 D.m<3且m≠2二、填空题〔本大题共5道小题〕方程1=2的解是________.2xx-37.方程+ =1的解是.8.一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺水航行120km所用时间,与以最大航速逆流航行60km所用时间同样,那么江水的流速为km/h.9.假定对于x的分式方程+ =2m有增根,那么m的值为.10.假定对于x的分式方程+ =2a无解,那么a的值为.三、解答题〔本大题共5道小题〕解方程:=1.解分式方程:(1)=;(2)-1=.(1)解方程:x2-2x-1=0.(2)解方程组:(3)解分式方程:-1=.(4)解不等式组:并把解集在数轴上表示出来.14.如图是学习分式方程的应用时,老师板书的问题和两名同学所列的方程.依据以上信息,解答以下问题.(1)冰冰同学所列方程中的x表示,庆庆同学所列方程中的y表示;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回复老师提出的问题.为了对学生进行革命传统教育,红旗中学展开了“清明节祭扫〞活动.全校学生从学校同时出发,步行4000米抵达烈士纪念馆.学校要求九(1)班提早抵达目的地,做好活动的准备工作.行走过程中,九(1)班步行的均匀速度是其余班的倍,结果比其余班提早10分钟抵达.分别求九(1)班、其余班步行的均匀速度.2021中考数学专题复习分式方程及其应用-答案一、选择题〔本大题共5道小题〕【答案】A[分析]本题考察了由实质问题抽象出分式方程,正确找出等量关系是解题重点.直接利用“小明和小丽买到同样数目的笔录本〞,得=,应选A.【答案】B[分析]去分母得,1=x+2,移项,归并同类项,得:x=-1,经查验,x=-1是原分式方程的解,∴x=-1,应选B.2.【答案】C[分析]两边同时乘以(2x-1),得x-2=3(2x-1).应选C.【答案】D5.【答案】D[分析]解分式方程得x=m-3,1∵方程的解是负数,m-3<0,m<3,∵当x+1=0,即x=-1时方程有增根,m-3≠-1,即m≠2.m<3且m≠2.应选D.二、填空题〔本大题共5道小题〕2【答案】x=-1【分析】化简2x=x-3得x-3=4x,那么-3x=3,因此x=-1,经查验x=-1是原方程的根.7.【答案】x=-2[分析]原方程可化为=1,去分母,得(2x-1)(x+1)-2=(x+1)(x-1),解得x1=1,x2=-2,经查验x1=1是增根,x2=-2是原方程的解,∴原方程的解为x=-2.故答案为x=-2.[分析]设江水的流速为xkm/h,依据题意可得:=,解得:x=10,8.【答案】10经查验,10km/h.x=10是原方程的根,且切合题意,因此江水的流速为【答案】1[分析]分式方程去分母,得:x-2m=2m·(x-2),假定原分式方程有增根,那么x=2,得2-2m=2m(2-2),解得m=1.10.【答案】或1[分析]去分母得:x-3a=2a(x-3),整理得:(1-2a)x=-3a,当1-2a=0时,方程无解,得a=;当1-2a≠0,x==3时,分式方程无解,得a=1,故对于x的分式方程=2a无解,那a的值为:1或.么三、解答题〔本大题共 5道小题〕 【答案】 解:方程两边同时乘x(x-1)得, x 2-2(x-1)=x(x-1),解得x=2. 查验:当x=2时,x(x-1)≠0, x=2是原分式方程的解. 原分式方程的解为x=2.【答案】 解:(1)去分母,得x+1=4(x-2),解得x=3,经查验x=3是原分式方程的解.因此方程的解为x=3. (2)方程两边同时乘(x-2)2得:x(x-2)-(x-2)2=4,解得x=4,查验:当x=4时,(x-2)2≠0. 因此原方程的解为 x=4. 【答案】 解:(1)配方法:移项,得x 2-2x=1, 配方,得x 2-2x+1=1+1,即(x-1)2=2, 开方,得x-1=±,即x 1 ,2=1+ x=1-.公式法:a=1,b=-2,c=-1, 2, =b-4ac=4+4=8>0 故方程有两个不相等的实数根,∴x= ==1±,即x 1=1+ ,x 2=1-.(2)-①,得:3x=9, 解得:x=3.把x=3代入①,得:3+y=1,解得:y=-2.∴原方程组的解为(3)方程左右两边同乘以3(x-1),得3x-3(x-1)=2x,3x-3x+3=2x,2x=3,x=1.5.查验:当时,3(x-1)≠0,∴原分式方程的解为x=1.5.(4)解不等式①,得:x>-4;解不等式②,得:x≤0,∴不等式组的解集为-4<x≤0.将这个不等式组的解集表示在数轴上如图:【答案】解:(1)∵冰冰是依据时间相等列出的分式方程,∴x表示甲队每日修路的长度;∵庆庆是依据乙队每日比甲队多修20米列出的分式方程,∴y表示甲队修路400米(乙队修路600米)所需的时间.故答案为:甲队每日修路的长度甲队修路400米(乙队修路600米)所需的时间(2)冰冰用的等量关系是:甲队修路400米所用时间=乙队修路600米所用时间;庆庆用的等量关系是:乙队每日修路的长度-甲队每日修路的长度=20米.(选择一个即可)(3)选冰冰所列的方程: =,去分母,得:400x+8000=600x,移项,x的系数化为1,得:x=40,查验:当x=40时,x,x+20均不为零,∴x=40是分式方程的根.答:甲队每日修路的长度为40米.选庆庆所列的方程:=20,去分母,得:600-400=20y,将y的系数化为1,得:y=10,查验:当y=10时,分母y不为0,∴y=10是分式方程的根,∴=40.答:甲队每日修路的长度为40米.【答案】解:设其余班的均匀速度为x米/分,那么九(1)班的均匀速度为米/分,依题意得:10,解得:x=80.经查验:x=80是所列方程的解.此时,×80=100.答:九(1)班的均匀速度为100米/分,其余班的均匀速度为80米/分.。
人教版九年级数学中考一元一次方程及其应用专项练习专题知识回顾知识点1:一元一次方程的概念1.一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。
要点诠释:一元一次方程须满足下列三个条件:(1)只含有一个未知数;(2)未知数的次数是1次;(3)整式方程.注意:方程要化为最简形式,且一次项系数不能为零。
2.方程的解:判断一个数是否是某方程的解,将其代入方程两边,看两边是否相等.知识点2:一元一次方程的解法1.方程的同解原理(也叫等式的基本性质)性质1:等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。
性质2:等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。
要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
2.解一元一次方程的一般步骤:(1)去分母在方程两边都乘以各分母的最小公倍数,依据等式基本性质2,注意防止漏乘(尤其整数项),注意添括号。
(2)去括号一般先去小括号,再去中括号,最后去大括号,依据去括号法则、分配律,注意变号,防止漏乘。
(3)移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项要变号),依据等式基本性质1,移项要变号,不移不变号。
(4)合并同类项把方程化成ax =b(a≠0)的形式,依据合并同类项法则,计算要仔细,不要出差错。
(5)系数化为1在方程两边都除以未知数的系数a ,得到方程的解x =b/a ,依据等式基本性质2,计算要仔细,分子分母勿颠倒。
要点诠释:理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用: ①a≠0时,方程有唯一解x =b/a ; ②a=0,b=0时,方程有无数个解; ③a=0,b≠0时,方程无解。
知识点3:列一元一次方程解应用题 1.列一元一次方程解应用题的一般步骤:(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系。
九年级解方程练习题带答案解方程是数学学科中的基础内容之一,对于九年级的学生来说,掌握解方程的方法和技巧是非常重要的。
下面将给出几道九年级解方程的练习题,并附上详细的解析,希望能够帮助同学们更好地理解和应用解方程的知识。
练习题一:1. 解方程:2x + 5 = 172. 解方程:3(x + 4) = 273. 解方程:4x - 7 = 9x + 24. 解方程:2(x - 3) + 5 = 3(x + 1)练习题二:1. 解方程:5x - 3 = 2(x + 1) + 72. 解方程:3(2x - 1) = 4(x + 3) - 53. 解方程:2(x + 5) - 3x = 4(3x - 1) + 54. 解方程:6(x + 2) + 4x = 5(2x - 3) + 2(x + 4)练习题三:1. 解方程:4(x - 2) - 5(2x + 1) = 102. 解方程:3(2x + 1) - 2(3 - x) = 7x - 3(2x + 1)3. 解方程:2(x - 5) + 3(2x - 1) = 3(2x + 3) + 2(x - 4)4. 解方程:5(x + 2) + 7(2 - x) = 4(3x + 1) - 6(x + 2)答案及解析:练习题一:1. 解方程:2x + 5 = 17答案:x = 6解析:将方程两边都减去5,得到2x = 12;再将方程两边都除以2,得到x = 6。
2. 解方程:3(x + 4) = 27答案:x = 5解析:将方程中的括号内的式子乘以3,得到3x + 12 = 27;再将方程两边都减去12,得到3x = 15;最后将方程两边都除以3,得到x = 5。
3. 解方程:4x - 7 = 9x + 2答案:x = -3解析:将方程中的4x和9x合并,得到-5x - 7 = 2;再将方程两边都加上7,得到-5x = 9;最后将方程两边都除以-5,得到x = -3。