空间向量与垂直关系
- 格式:ppt
- 大小:281.50 KB
- 文档页数:17
空间向量垂直公式在三维空间中,我们经常会计算向量之间的关系和属性。
其中一种常见的计算是判断两个向量是否相互垂直。
在二维平面中,我们可以通过计算两个向量的点积得出它们是否垂直。
然而,在三维空间中,我们需要使用空间向量垂直公式来判断两个向量是否相互垂直。
空间向量垂直公式可以根据向量的坐标来计算其是否相互垂直。
假设有两个三维向量A和B,它们的坐标分别为(Ax, Ay, Az)和(Bx, By, Bz)。
根据空间向量垂直公式,我们可以得到以下判断两个向量是否垂直的条件:Ax * Bx + Ay * By + Az * Bz = 0如果满足上述条件,则向量A和向量B相互垂直。
否则,它们不垂直。
这个公式的推导可以通过向量的点积和几何性质来完成。
两个向量A和B在三维空间中的点积可以表示为:A ·B = |A| * |B| * cosθ其中,|A|表示向量A的模,|B|表示向量B的模,θ表示两个向量之间的夹角。
对于垂直的向量来说,它们的夹角θ为90度,cosθ的值为0。
因此,我们可以推导出空间向量垂直公式:A ·B = Ax * Bx + Ay * By + Az * Bz = |A|* |B| * cosθ = 0根据这个公式,指定两个向量的坐标,我们可以轻松地判断它们是否相互垂直。
除了判断两个向量是否垂直之外,空间向量垂直公式还可以用于解决一些相关的问题。
例如,如果我们已知一个向量A和另一个垂直于它的向量B,我们可以使用空间向量垂直公式计算出向量B的坐标。
此外,空间向量垂直公式还可以应用于三维平面的垂直性判断。
在三维空间中,如果一个平面垂直于一个向量A,那么平面上的任意向量都与A相互垂直。
因此,我们可以使用空间向量垂直公式来判断一个平面是否与一个指定向量垂直。
总结起来,空间向量垂直公式是用于判断两个向量是否相互垂直的工具。
通过计算两个向量的坐标并应用公式,我们可以得出准确的判断结果。
该公式的推导基于向量的点积性质和几何性质,具有广泛的应用价值,在解决三维空间中向量和平面的垂直性问题时具有重要作用。
空间向量垂直推导公式好的,以下是为您生成的文章:咱们来聊聊空间向量垂直推导公式这事儿哈。
还记得我当年上学那会,一碰到数学公式推导就头疼。
但后来发现,只要你真正搞懂了其中的道理,那可真是妙趣横生。
就像这空间向量垂直推导公式,看似复杂,其实很有门道。
先来说说啥是空间向量。
想象一下,在一个三维的空间里,每个点都能用一组数字来表示它的位置,这组数字就是向量。
而当两个向量垂直的时候,它们之间就有着特殊的关系。
咱们来看这个推导公式:设两个空间向量分别为 a = (x1, y1, z1),b= (x2, y2, z2),如果 a 和 b 垂直,那么它们的数量积为 0 ,即 a·b =x1x2 + y1y2 + z1z2 = 0 。
那这是咋来的呢?咱们从平面向量说起。
在平面里,两个向量垂直,它们的数量积也是 0 。
这很好理解吧?比如说在一个直角坐标系里,向量 (1, 0) 和向量 (0, 1) 就是垂直的,它们的数量积 1×0 + 0×1 = 0 。
那到了空间里呢,其实道理是一样的。
只不过多了一个维度 z 。
我给您举个例子啊。
有一次我去一个建筑工地,看到工人们在搭建一个架子。
那架子的横竖杆就像是空间中的向量。
有的杆子相互垂直,支撑着整个架子的稳定。
我就在想,这不就是空间向量垂直的现实体现嘛。
咱再回到公式推导。
为啥数量积为 0 就能说明垂直呢?咱们可以用几何的方法来理解。
想象一下,两个向量的起点在同一点,它们构成了一个三角形。
根据余弦定理,如果夹角是90 度,也就是垂直的时候,余弦值为 0 ,而数量积等于模长乘以夹角的余弦值,所以数量积就为 0 啦。
在解题的时候,这个公式可好用啦。
比如说,给您两个向量,让您判断是不是垂直,您就直接算数量积就行。
而且啊,这个公式还能和其他知识结合起来。
比如求一个平面的法向量,就得用到空间向量垂直的知识。
总之,空间向量垂直推导公式虽然看起来有点复杂,但只要您多琢磨琢磨,多联系实际,就会发现它其实挺有趣,也挺有用的。
空间向量的垂直与平行解析几何的几何关系空间向量在解析几何中具有广泛的应用,它们可以描述物体在空间中的位置、方向和运动等属性。
在学习空间向量时,了解其垂直与平行的几何关系是非常重要的。
本文将通过几何解析的方式,深入探讨空间向量垂直与平行的性质及其应用。
一、垂直向量在空间中,当两个向量的数量积为零时,我们称这两个向量是垂直的。
数学上可以表达为:两个向量的数量积等于零,则它们垂直。
设有两个向量a和b,它们的坐标分别表示为(a1, a2, a3)和(b1, b2, b3),则向量a与向量b垂直的条件可以表示为:a1 * b1 + a2 * b2 + a3 * b3 = 0这个条件求解出的结果就是两个向量垂直的充要条件。
垂直向量在几何上有许多重要的应用。
例如在平面几何中,两条直线互相垂直,则它们的方向向量必然垂直;在立体几何中,两个平面互相垂直,其法向量也必然垂直。
因此,熟练掌握垂直向量的性质对于解析几何的应用非常重要。
二、平行向量在空间中,当两个向量之间存在倍数关系时,我们称这两个向量是平行的。
数学上可以表达为:两个向量之间存在倍数关系,则它们平行。
设有两个向量a和b,它们的坐标表示为(a1, a2, a3)和(b1, b2, b3),则向量a与向量b平行的条件可以表示为:a1/b1 = a2/b2 = a3/b3 = k (k为常数)其中k为两个向量平行的倍数关系。
平行向量的性质可以应用于线段、直线和平面的平行关系的判断。
例如,在平面几何中,两个直线互相平行,则它们的方向向量之间必然存在倍数关系;在立体几何中,平面与直线平行,则平面的法向量与直线的方向向量必然平行。
三、垂直与平行向量的应用举例1. 垂直向量的应用考虑一个示例问题:已知一条直线L的向量方程为(r - r1) · n = 0,其中r1为已知点,n为已知向量。
求直线L上与已知点A垂直的点B 的坐标。
解析:根据向量方程可以得知,L上的任意点P满足向量n与r - r1垂直的关系。
§3.2立体几何中的向量方法(二)——空间向量与垂直关系课时目标 1.能利用平面法向量证明两个平面垂直.2.能利用直线的方向向量和平面的法向量判定并证明空间中的垂直关系.1.空间垂直关系的向量表示空间中的垂直关系线线垂直线面垂直面面垂直设直线l的方向向量为a =(a1,a2,a3),直线m 的方向向量为b=(b1,b2,b3),则l⊥m⇔______设直线l的方向向量是a=(a1,b1,c1),平面α的法向量u=(a2,b2,c2),则l⊥α⇔________若平面α的法向量u=(a1,b1,c1),平面β的法向量为v=(a2,b2,c2),则α⊥β⇔________线线垂直线面垂直面面垂直①证明两直线的方向向量的数量积为______.①证明直线的方向向量与平面的法向量是______.①证明两个平面的法向量____________.②证明两直线所成角为______.②证明直线与平面内的相交直线________.②证明二面角的平面角为________.________.一、选择题1.设直线l1,l2的方向向量分别为a=(1,2,-2),b=(-2,3,m),若l1⊥l2,则m等于()A.1B.2C.3D.42.已知A(3,0,-1),B(0,-2,-6),C(2,4,-2),则△ABC是()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形3.若直线l的方向向量为a=(1,0,2),平面α的法向量为n=(-2,0,-4),则() A.l∥αB.l⊥αC.l⊂αD.l与α斜交4.平面α的一个法向量为(1,2,0),平面β的一个法向量为(2,-1,0),则平面α与平面β的位置关系是( )A .平行B .相交但不垂直C .垂直D .不能确定5.设直线l 1的方向向量为a =(1,-2,2),l 2的方向向量为b =(2,3,2),则l 1与l 2的关系是( )A .平行B .垂直C .相交不垂直D .不确定 6.如图所示,在正方体ABCD —A 1B 1C 1D 1中,E 是上底面中心,则AC 1与CE 的位置关系是( )A .平行B .相交C .相交且垂直D .以上都不是 二、填空题7.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z =______.8.已知a =(0,1,1),b =(1,1,0),c =(1,0,1)分别是平面α,β,γ的法向量,则α,β,γ三个平面中互相垂直的有______对. 9.下列命题中:①若u ,v 分别是平面α,β的法向量,则α⊥β⇔u·v =0; ②若u 是平面α的法向量且向量a 与α共面,则u·a =0; ③若两个平面的法向量不垂直,则这两个平面一定不垂直. 正确的命题序号是________.(填写所有正确的序号) 三、解答题10.已知正三棱柱ABC —A 1B 1C 1的各棱长都为1,M 是底面上BC 边的中点,N 是侧棱CC 1上的点,且CN =14CC 1.求证:AB 1⊥MN .11.已知ABC —A 1B 1C 1是各条棱长均为a 的正三棱柱,D 是侧棱CC 1的中点,求证:平面AB 1D ⊥平面ABB 1A 1.能力提升12.如图,在四面体ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC =1.设P为AC的中点,Q在AB上且AB=3AQ,证明:PQ⊥OA.13.如图,四棱锥P-ABCD中,底面ABCD为矩形,P A⊥底面ABCD,P A=AB=2,点E是棱PB的中点.证明:AE⊥平面PBC.垂直关系的常用证法(1)要证线线垂直,可以转化为对应的向量垂直.(2)要证线面垂直,可以转化为证明这条直线与平面内两条相交直线垂直. (3)要证面面垂直,可以转化为证明两个平面的法向量垂直.§3.2 立体几何中的向量方法(二)——空间向量与垂直关系知识梳理1.a ⊥b a ∥u u ⊥v1.B [∵l 1⊥l 2,∴a ⊥b ,∴a·b =(1,2,-2)·(-2,3,m )=-2+6-2m =0,∴m =2.]2.C [∵AB →=(-3,-2,-5),AC →=(-1,4,-1),BC →=(2,6,4),∴AB →·AC →=0,∴AB ⊥AC ,且|AB →|≠|AC →|≠|BC →|,∴△ABC 为直角三角形.] 3.B [∵n =-2a ,∴n ∥a ,∴l ⊥α.] 4.C [∵(1,2,0)·(2,-1,0)=0,∴两法向量垂直,从而两平面也垂直.] 5.B [∵a·b =2×1-2×3+2×2=0,∴a ⊥b , ∴l 1⊥l 2.]6.C [可以建立空间直角坐标系,通过AC 1→与CE →的关系判断.] 7.-9解析 ∵l ⊥α,∴u ⊥v , ∴(1,-3,z )·(3,-2,1)=0, 即3+6+z =0,∴z =-9. 8.0解析 ∵a·b =(0,1,1)·(1,1,0)=1≠0, a·c =(0,1,1)·(1,0,1)=1≠0, b·c =(1,1,0)·(1,0,1)=1≠0.∴a ,b ,c 中任意两个都不垂直,即α、β、γ中任意两个都不垂直.9.①②③ 10.证明如图,以平面ABC 内垂直于AC 的直线为x 轴,AC →、AA 1→所在直线为y 轴、z 轴,则A (0,0,0),B 1⎝⎛⎭⎫32,12,1, M ⎝⎛⎭⎫34,34,0,N ⎝⎛⎭⎫0,1,14. ∴AB 1→=⎝⎛⎭⎫32,12,1,MN →=⎝⎛⎭⎫-34,14,14.∴AB 1→·MN →=-38+18+14=0, ∴AB 1→⊥MN →,即AB 1⊥MN . 11.证明如图,取AB 1的中点M , 则D M →=D C →+CA →+AM →. 又D M →=DC 1→+C 1B 1→+B 1M →,两式相加得2D M →=CA →+C 1B 1→=CA →+CB →.由于2D M →·AA 1→=(CA →+CB →)·AA 1→=0, 2D M →·AB →=(CA →+CB →)·(CB →-CA →) =|CB →|2-|CA →|2=0.∴DM ⊥AA 1,DM ⊥AB ,AA 1∩AB =A , ∴DM ⊥平面ABB 1A 1,而DM ⊂平面AB 1D . ∴平面AB 1D ⊥平面ABB 1A 1. 12.证明取O 为坐标原点,以OA ,OC 所在的直线为x 轴,z 轴,建立空间直角坐标系Oxyz (如图所示).设A (1,0,0),C (0,0,1),B ⎝⎛⎭⎫-12,32,0. ∵P 为AC 中点,∴P ⎝⎛⎭⎫12,0,12. ∵AB →=⎝⎛⎭⎫-32,32,0,又由已知,可得AQ →=13AB →=⎝⎛⎭⎫-12,36,0,又OQ →=O A →+AQ →=⎝⎛⎭⎫12,36,0,∴PQ →=OQ →-OP →=⎝⎛⎭⎫0,36,-12.∴PQ →·O A →=⎝⎛⎭⎫0,36,-12·(1,0,0)=0,故PQ →⊥O A →,即PQ ⊥OA . 13.证明 如图所示,以A 为坐标原点,射线AB 、AD 、AP 分别为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系Axyz . 设D (0,a,0),则B (2,0,0),C (2,a,0),P (0,0,2),E (22,0,22).于是AE →=(22,0,22), BC →=(0,a,0),PC →=(2,a ,-2), 则AE →·BC →=0,AE →·PC →=0. 所以AE ⊥BC ,AE ⊥PC .又因为BC ∩PC =C ,所以AE ⊥平面PBC .。
2020秋高中数学人教A版选修2-1学案:3.2.2空间向量与垂直关系含解析3。
2。
2空间向量与垂直关系自主预习·探新知情景引入1.两向量垂直时,它们所在的直线垂直吗?2.两平面的法向量垂直时,两平面垂直吗?3.怎样用直线的方向向量和平面的法向量来描述线面垂直关系?新知导学空间垂直关系的向量表示设直线l,m的方向向量分别为a=(a1,a2,a3),b=(b1,b2,b3),平面α,β的法向量分别为u=(u1,u2,u3),v=(v1,v2,v3),则位置关系向量关系向量运算关系坐标关系l⊥m__a⊥b____a·b=0__a1b1+a2b2+a3b3=0l⊥α__a∥u____a=λu,λ∈R__a1=λu1,a2=λu2,a3=λu3α⊥β__u⊥v__u·v=0u1v1+u2v2+u3v3=0预习自测1.设直线l1,l2的方向量分别为a=(-2,2,1),b=(3,-2,m),若l1⊥l2,则m等于(D)A.-2B.2C.6D.10[解析]l1⊥l2,则a⊥b,所以-6-4+m=0,∴m=10,故选D.2.若平面α,β垂直,则下面可以作为这两个平面的法向量的是(A)A.n1=(1,2,1),n2=(-3,1,1)B.n1=(1,1,2),n2=(-2,1,1)C.n1=(1,1,1),n2=(-1,2,1)D.n1=(1,2,1),n2=(0,-2,-2)3.(2019-2020学年北京市房山区期末检测)已知直线l的方向向量a=(-1,2,1),平面α的法向量b=(-2,4,2),则直线l 与平面α的位置关系是(B)A.l∥αB.l⊥αC.l⊂αD.l∈α[解析]∵直线l的方向向量a=(-1,2,1),平面α的法向量b=(-2,4,2),∴b=2a,∴则b与a共线,可得:l⊥a。
故选B.4.已知平面α和平面β的法向量分别为a=(1,1,2),b=(x,-2,3),且α⊥β,则x=__-4__.[解析]α⊥β,则a⊥b,∴x-2+6=0,∴x=-4。
立体几何中不易建系的用空间向量证明垂直问题。
1. 引言1.1 概述立体几何是数学中的一个重要分支,研究空间中的图形和特定关系。
建系问题是立体几何中一个常见的难题,它涉及到如何确定或构建一个合适的坐标系来描述和表示空间中的元素和关系。
在解决建系问题时,传统的方法存在一定局限性和困难,例如难以应对复杂的几何结构、缺乏普适性等。
1.2 文章结构本文将通过引入空间向量理论来探讨解决立体几何中不易建系的问题。
文章分为以下几个部分:- 引言:介绍本文的背景和论文结构。
- 立体几何中的建系问题:阐述建系定义与重要性、传统方法的局限性与困难,以及空间向量在解决建系问题中的优势。
- 空间向量证明垂直问题的基本原理与方法:讨论垂直关系的定义与特征、空间向量表示垂直关系的有效途径,以及应用空间向量证明垂直性质时需要考虑的因素。
- 实例分析:通过一个具体案例来说明使用空间向量证明垂直问题的步骤和推理过程,并对结果进行分析和讨论。
- 结论与展望:总结研究成果并得出结论,同时提出未来研究方向和进一步工作的展望。
1.3 目的本文的目的是介绍空间向量在解决立体几何中不易建系的问题中所起到的作用和优势,并通过实例分析来验证其有效性。
通过本文的研究,读者将能够理解空间向量在解决建系问题中的重要性,并了解使用空间向量证明垂直问题的基本原理与方法。
最终,本文希望为立体几何领域中建系问题的解决提供一种新思路和有价值的参考。
2. 立体几何中的建系问题:2.1 建系的定义与重要性:在立体几何中,建系是指通过选取适当的点或向量作为参照,构建坐标系或基底来描述和表示空间中的几何事物或运动。
建系是解决立体几何问题和进行进一步分析的基础,它可以帮助我们确定方向、测量距离和角度,从而推导出更多关于空间图形、运动和变换的性质。
2.2 建系方法的局限性与困难:传统的建系方法主要包括平行四边形法、角平分线法、垂直线法等。
然而,这些方法在实际应用中存在一定的局限性和困难。
高中数学空间向量巧解平行、垂直关系编稿教师X咏霞一校黄楠二校杨雪审核X建彬一、考点突破知识点课标要求题型说明空间向量巧解平行、垂直关系1. 能够运用向量的坐标判断两个向量的平行或垂直。
2. 理解直线的方向向量与平面的法向量。
3. 能用向量方法解决线面、面面的垂直与平行问题,体会向量方法在立体几何中的作用。
选择题填空题解答题注意用向量方法解决平行和垂直问题中坐标系的建立以及法向量的求法。
二、重难点提示重点:用向量方法判断有关直线和平面的平行和垂直关系问题。
难点:用向量语言证明立体几何中有关平行和垂直关系的问题。
考点一:直线的方向向量与平面的法向量1. 直线l上的向量a或与a共线的向量叫作直线l的方向向量。
2. 如果表示向量a的有向线段所在直线垂直于平面α,那么称这个向量垂直于平面α,记作a⊥α,此时向量a叫作平面α的法向量。
【核心归纳】①一条直线的方向向量有无数多个,一个平面的法向量也有无数多个,且它们是共线的。
②在空间中,给定一个点A和一个向量a,那么以向量a为法向量且经过点A的平面是唯一确定的。
【随堂练习】A〔1,1,0〕,B〔1,0,1〕,C〔0,1,1〕,那么平面ABC的一个法向量的单位向量是〔〕A. 〔1,1,1〕B. (,,)333C.111(,,)333D. (,333-思路分析:设出法向量坐标,列方程组求解。
答案:设平面ABC的一个法向量为n=〔x,y,z〕,AB=〔0,-1,1〕,BC=〔-1,1,0〕,AC=〔-1,0,1〕,那么·0·0·0AB y zBC x yAC x z⎧=-+=⎪⎪=-+=⎨⎪=-+=⎪⎩nnn,∴x=y=z,又∵单位向量的模为1,故只有B正确。
技巧点拨:一般情况下,使用待定系数法求平面的法向量,步骤如下:〔1〕设出平面的法向量为n=〔x,y,z〕。
〔2〕找出〔求出〕平面内的两个不共线的向量a=〔a1,b1,c1〕,b=〔a2,b2,c2〕。