MATLAB数值积分求值实验报告
- 格式:doc
- 大小:41.00 KB
- 文档页数:3
软件学院 MATLAB 程序设计 课程实验报告 201 ~201 学年 第 学期 级 专业班级: 学号: 姓名:实验六 数值微分积分实验一、实验目的1.掌握基本的插值与拟合方法2.掌握使用数学工具Matlab 进行实际问题的插值和拟合建模二、实验内容1.解微分方程2. 求解积分三、实验环境1.工具软件:MATLAB2012b四、实验步骤1. 解微分方程(1)微分方程的解析解dsolve(‘方程1’, ’方程2’,…‘方程n ’, ‘初始条件…’, ‘自变量’)求微分方程的特解⎪⎩⎪⎨⎧===++15)0(',0)0(029422y y y dx dy dx y d(2)求微分方程组的通解⎪⎪⎪⎩⎪⎪⎪⎨⎧+-=+-=+-=z y x dtdz z y x dt dy zy x dt dx 244354332(3)常微分方程的数值解[t ,x]=solver (’f ’, ts, x0, options )解微分方程组⎪⎪⎩⎪⎪⎨⎧===-=-==1)0(,1)0(,0)0(51.0'''321213312321y y y y y y y y y y y y(4)实例-微分方程设位于坐标原点的甲舰向位于x 轴上点A(1, 0)处的乙舰发射导弹,导弹头始终对准乙舰.如果乙舰以最大的速度v 0(是常数)沿平行于y 轴的直线行驶,导弹的速度是5v 0,求导弹运行的曲线方程,并绘图表示。
2. 求解积分(1) quad 函数、quadl 函数quad8函数来求定积分例:被积函数f(x)=x*sin(x)/(1+cos(x)*cos(x)),x 的范围自定义(2) 梯形积分函数trapzX = sort(rand(1,101)*pi);Y = sin(X);Z = trapz(X,Y);(3)dblquad 函数用于求二重积分的数值解自变量范围:pi <= x <= 2*pi, 0 <= y <= pi ;被积函数z = y*sin(x)+x 2*cos(y)(4)triplequad 函数用于求三重积分的数值解五、分析与思考1、什么是解析解?什么是数值解?六、实验总结。
《数学实验》报告学号10120 姓名成绩实验内容:Matlab中的各种积分运算一实验目的熟悉Matlab中关于积分运算的各种命令,掌握利用MATLAB 软件进行求不定积分,定积分等积分运算方法。
二预备知识(1)熟悉不定积分及定积分的运算原理。
(2)熟悉用Matlab软件提供的命令函数int()可以完成积分运算,如int(fun),int(fun,x),int(fun,x,a,b).三实验内容与要求(1)求函数的积分∫(x^5+x^3-(√x)/4)dx ∫(sinax sinbx sincx) dx (x*)/(1+x)^2 dxMatlab命令结果(1)cleary = sym('x^5 +x^3 -sqrt(x)/4')int(y)(2)clearsyms x a b cy =sym(sin(a*x)*sin(b*x)*sin(c *x)) y = x^5 +x^3 - sqrt(x)/4ans = 1/6*x^6+1/4*x^4-1/6*x^(3/2)y = sin(a*x)*sin(b*x)*sin(c*x)ans =(2)求二重积分(3)求三重积分。
(4)σdxyxD⎰⎰-+)(22,其中D是由直线xyy==,2及xy2=所围成的区域。
(5)计算⎰⎰⎰Ωxyzdxdydz ,其中Ω为球面1222=++z y x 及三个坐标面所围成的(6)计算⎰⎰⎰Ωzdxdydz 其中Ω为由曲面222y x z +=及22x z -=所围成的闭。
数值积分算法实验报告实验目的:验证数值分析理论实验工具:matlab摘要:本实验通过对比龙贝格积分算法和三点,五点勒让德高斯求积公式,对数值分析理论进行验证。
文章中提供了用matlab写的小程序即运行结果。
我们可以看到,龙贝格积分算法方便快捷且效率较高。
三点积分算法不足以满足精度要求,五点法基本可以满足,但是如果追求更高精度,则五点法改进困难,而龙贝格则可适用于任何精度的计算。
高斯求积的效率是比较高的,只需五点就可以达到非常高的精度。
一matlab源程序1.%龙贝格积分算法,jd表示相对精度function z=lbgjf(a,b,jd)h=(b-a);TT(1,1)=h.*(f(b)+f(a))/2;k=2;TT(1,2)=TT(1,1)./2+h/2.*f(a+h/2);TT(2,1)=TT(1,2).*4/3-TT(1,1)./3;z=TT(2,1);while abs((TT(k,1)-TT(k-1,1))./TT(k,1))>=jdk=k+1;h=h./2;for j=1:2.^(k-2)ff(1,j)=f(a+h*(j-1/2));endfff=sum(ff).*h/2;TT(1,k)=TT(1,k-1)./2+fff;for j=2:kTT(j,k-j+1)=4^(j-1).*TT(j-1,k-j+2)./(4^(j-1)-1)-TT(j-1,k-j+1)/(4^(j-1 )-1);z=TT(j,k-j+1);endend2 %五点法·¨function z=fivedlrd(a,b)Ak=[0.2369269 0.4786287 0.5688889 0.4786287 0.2369269];xk=[-0.9061798 -0.5384693 0 0.5384693 0.9061798];for i=1:5ff(i)=Ak(i).*f((b-a).*xk(i)./2+(b+a)./2);endz=(b-a)./2.*sum(ff)3%三点法¨function z=threedlrd(a,b)Ak=[0.5555556 0.8888889 0.5555556];xk=[-0.7745967 0 0.7745967];for i=1:3ff(i)=Ak(i).*f((b-a).*xk(i)./2+(b+a)./2); endz=(b-a)./2.*sum(ff)4%另用一matlab文件来表示函数function y=f(x)y=sin(x).^10;end二实验过程1 f(x)=x.^2,2 f(x)=x.^3可以看到,对于这种简单函数三种方法基本没有区别3 f(x)=sin(x).^10.lbgjf(2,3,10e-6)ans =0.0608>> fivedlrd(2,3)z =0.0608ans =0.0608>> threedlrd(2,3)z =0.0618ans =0.06184f(x)= exp(exp(sin(x).^10))threedlrd(2,3)z =2.9278ans =2.9278>> fivedlrd(2,3)z =2.9304ans =2.9304>> lbgjf(2,3,10e-6)ans =2.9304>>可见三点法已经不再满足要求。
实验报告系(部):信息工程班级:XX:学号:课程:MATLAB 实验名称:Matlab数值运算目录一. 实验目的2二. 实验容2三. 实验步骤2四. 实验具体过程及数据分析4五. 实验原始记录12六. 实验心得、体会及思考14一. 实验目的掌握MATLAB的数值运算及其运算中所用到的函数,掌握构造数组和细胞数组的操作。
二. 实验容1.多项式运算。
2.多项式插值和拟合。
3.数值微积分。
4.构造数组和细胞数组。
三. 实验步骤1.多项式运算(1)多项式表示。
在MATLAB中,多项式表示成向量形式。
如:s^4+3s*s^3-5*s^2+9>>S=[1 3 -5 0 9](2)多项式的加减法相当于向量的加减法,但须注意阶次要一样。
如不同,低阶要补0。
如多项式2*s^2+3*s+9与多项式s^4+3*s^3-5*s^2+4s+7相加。
(3)多项式的乘、除法分别用函数conv和deconv实现。
(4)多项式求根用函数roots(5)多项式求值用函数polyval练习1:求(s^2+1)(s+3)(s+1)/(s^3+2*s+1)的“商〞及“余〞多项式2.多项式插值和拟合有一组实验数据如表所示请分别用拟合〔二阶至三阶〕和插值〔线性和三次样条〕的方法来估测X=9.5时Y的值。
3.数值微积分(1)差分使用diff函数的实现(2)可以用因变量和自变量差分的结果相除得到数值微分(3)Cumsum函数求累计积分,trapz函数用梯形法求定积分,即曲线的面积练习:如图瑞士地图,为了算出其国土面积,首先对地图作如下测量:以由西向向为X轴,由南到北方为Y轴,选择方便的原点,并将从最西边点到最东边界点在X轴的区间适当划分假设干级,在每个分点的Y方向测出南边界点和北边界点的Y坐标Y1和Y2,这样就得到了下表,根据地图比例知道18mm相当于40km,试有测量数据计算瑞士国土近似面积,与其准确值41228km^2比拟。
4.构造数组与细胞数组(1)构造数组的创立(2)构造数组的操作练习:创立一构造数组stusorce,其域为:No,Name,English,Math,Chinese,Total,Average。
实验五 MATLAB 数值计算一、实验目的1.掌握求数值导数和数值积分的方法。
2.掌握代数方程数值求解的方法。
3.掌握常微分方程数值求解的方法。
二、实验的设备及条件计算机一台(带有MATLAB7.0以上的软件环境)。
设计提示1.参考本节主要内容,学习并理解相关函数的含义及调用方法。
三、实验内容1.线性系统方程:分别使用左除(\)和求逆(inv )求解下面系统方程的解:⎪⎩⎪⎨⎧=+=+=++377251463c b b a c b a2. 数值积分:使用quad 和trapz 求解⎰-503/dx xe x 的数值积分,并与其解析解9243/5+--e 相比较;3. 请完成教材P154页中实验指导环节的实验内容第2题4. 请完成教材P155页中思考练习的第3题(1),并绘制解在该求解区间(即[0,5])上的图像;。
5、请完成教材P164页实验指导环节的实验内容第5题。
(提示:该函数的符号导数,可以通过函数diff 求得。
首先定义符号变表达式,如求sin(x)的一阶符号导数,可以先定义f=’sin(x)’;df=diff(f);可求得df=cos(x)。
其中df 即为函数f 的一阶符号导数)。
四、实验报告要求(包含预习报告要求和最终报告要求)1.实验名称2.实验目的3.实验设备及条件4.实验内容及要求5.实验程序设计指程序代码。
6.实验结果及结果分析实验结果要求必须客观,现象。
结果分析是对实验结果的理论评判。
7.实验中出现的问题及解决方法8. 思考题的回答五、实验报告的提交方式Word文档,命名方式:实验号_你的学号_姓名例如本次实验:实验一_000000001_张三.doc(信息101提交报告邮箱):E_mail: *******************(网络工程101提交作业邮箱):E_mail: *******************(注意网络班的M是大写的)下一次课前提交,过期不收!六、参考文献参考教材和Matlab帮助文件。
数值分析matlab实验报告《数值分析MATLAB实验报告》摘要:本实验报告基于MATLAB软件进行了数值分析实验,通过对不同数学问题的数值计算和分析,验证了数值分析方法的有效性和准确性。
实验结果表明,MATLAB在数值分析领域具有较高的应用价值和实用性。
一、引言数值分析是一门研究利用计算机进行数值计算和分析的学科,其应用范围涵盖了数学、物理、工程等多个领域。
MATLAB是一种常用的数值计算软件,具有强大的数值分析功能,能够进行高效、准确的数值计算和分析,因此在科学研究和工程实践中得到了广泛的应用。
二、实验目的本实验旨在通过MATLAB软件对数值分析方法进行实验验证,探究其在不同数学问题上的应用效果和准确性,为数值分析方法的实际应用提供参考和指导。
三、实验内容1. 利用MATLAB进行方程求解实验在该实验中,利用MATLAB对给定的方程进行求解,比较数值解和解析解的差异,验证数值解的准确性和可靠性。
2. 利用MATLAB进行数值积分实验通过MATLAB对给定函数进行数值积分,比较数值积分结果和解析积分结果,验证数值积分的精度和稳定性。
3. 利用MATLAB进行常微分方程数值解实验通过MATLAB对给定的常微分方程进行数值解,比较数值解和解析解的差异,验证数值解的准确性和可靠性。
四、实验结果与分析通过对以上实验内容的实际操作和分析,得出以下结论:1. 在方程求解实验中,MATLAB给出的数值解与解析解基本吻合,验证了MATLAB在方程求解方面的高准确性和可靠性。
2. 在数值积分实验中,MATLAB给出的数值积分结果与解析积分结果基本吻合,验证了MATLAB在数值积分方面的高精度和稳定性。
3. 在常微分方程数值解实验中,MATLAB给出的数值解与解析解基本吻合,验证了MATLAB在常微分方程数值解方面的高准确性和可靠性。
五、结论与展望本实验通过MATLAB软件对数值分析方法进行了实验验证,得出了数值分析方法在不同数学问题上的高准确性和可靠性。
MATLAB实验报告⼀.试验时间:2013/10/15 ⼆.实验地点:⼤楼五楼8号机房三.实验名称:MATLAB 数值计算四.实验⽬的:1.掌握MATLAB 数据对象的特点以及数值的运算规则。
2.掌握MATLAB 中建⽴矩阵的⽅法以及矩阵处理和分析的⽅法。
3.掌握MATLAB 中常量与变量的使⽤及各种表达式的书写规则。
4.熟悉MATLAB 常⽤函数的使⽤以及多项式的运⽤。
⼆.实验内容1. 求下列表达式的值。
(1)z1=2185sin 2e +结果:>> z1=2*sin((85/360)*pi)/(1+eps*eps) z1 =1.3512(2)z2=),x 1(ln 21++x ?-+=5,45.0t *21,2x结果:>> x=[2 1+2*i;-0.45 5] x =2.0000 1.0000 + 2.0000i -0.4500 5.0000 >> z2=1/2*log(x+sqrt(1+x)) z2 =0.6585 0.6509 + 0.4013i -0.6162 1.0041 (3)z3=22.0^3.0^e a e a -×sin(a+0.3)+ln(23.0a +),a=-3.0,-2.9,-2.8,…2.8,2.9,3.0结果:>> a=-3:0.1:3;>> z3=(eps(a*0.3)-eps(a*0.2))/2.0.*sin(a+0.3)+log((a+0.3)/2.0) z3 =Columns 1 through 50.3001 + 3.1416i 0.2624 + 3.1416i 0.2231 + 3.1416i 0.1823 + 3.1416i 0.1398 + 3.1416i0.0953 + 3.1416i 0.0488 + 3.1416i -0.0000 + 3.1416i -0.0513 + 3.1416i -0.1054 + 3.1416i Columns 11 through 15-0.5108 + 3.1416i -0.5978 + 3.1416i -0.6931 + 3.1416i -0.7985 + 3.1416i -0.9163 + 3.1416i Columns 21 through 25-1.0498 + 3.1416i -1.2040 + 3.1416i -1.3863 + 3.1416i -1.6094 + 3.1416i -1.8971 + 3.1416i Columns 26 through 30-2.3026 + 3.1416i -2.9957 + 3.1416i -37.0245 -2.9957 -2.3026 Columns 31 through 35-1.8971 -1.6094 -1.3863 -1.2040 -1.0498Columns 36 through 40-0.9163 -0.7985 -0.6931 -0.5978 -0.5108Columns 41 through 45-0.4308 -0.3567 -0.2877 -0.2231 -0.1625Columns 46 through 50-0.1054 -0.0513 0.0000 0.0488 0.0953Columns 51 through 550.1398 0.1823 0.2231 0.2624 0.3001Columns 56 through 600.3365 0.3716 0.4055 0.4383 0.4700Column 610.50082.创建⼀个由10个元素组成的等差数列x,第⼀个元素是1,第10个元素是20.(1)计算其元素个数;(2)取出其中第⼆个元素赋值给y.(3)将数组X的前3个元素分别赋值为4,5,6.(4)将数组X的前5个元素倒序后构成⼀个字数组赋值给Z。
数值分析matlab实验报告数值分析 Matlab 实验报告一、实验目的数值分析是研究各种数学问题数值解法的学科,Matlab 则是一款功能强大的科学计算软件。
本次实验旨在通过使用 Matlab 解决一系列数值分析问题,加深对数值分析方法的理解和应用能力,掌握数值计算中的误差分析、数值逼近、数值积分与数值微分等基本概念和方法,并培养运用计算机解决实际数学问题的能力。
二、实验内容(一)误差分析在数值计算中,误差是不可避免的。
通过对给定函数进行计算,分析截断误差和舍入误差的影响。
例如,计算函数$f(x) =\sin(x)$在$x = 05$ 附近的值,比较不同精度下的结果差异。
(二)数值逼近1、多项式插值使用拉格朗日插值法和牛顿插值法对给定的数据点进行插值,得到拟合多项式,并分析其误差。
2、曲线拟合采用最小二乘法对给定的数据进行线性和非线性曲线拟合,如多项式曲线拟合和指数曲线拟合。
(三)数值积分1、牛顿柯特斯公式实现梯形公式、辛普森公式和柯特斯公式,计算给定函数在特定区间上的积分值,并分析误差。
2、高斯求积公式使用高斯勒让德求积公式计算积分,比较其精度与牛顿柯特斯公式的差异。
(四)数值微分利用差商公式计算函数的数值导数,分析步长对结果的影响,探讨如何选择合适的步长以提高精度。
三、实验步骤(一)误差分析1、定义函数`compute_sin_error` 来计算不同精度下的正弦函数值和误差。
```matlabfunction value, error = compute_sin_error(x, precision)true_value = sin(x);computed_value = vpa(sin(x), precision);error = abs(true_value computed_value);end```2、在主程序中调用该函数,分别设置不同的精度进行计算和分析。
(二)数值逼近1、拉格朗日插值法```matlabfunction L = lagrange_interpolation(x, y, xi)n = length(x);L = 0;for i = 1:nli = 1;for j = 1:nif j ~= ili = li (xi x(j))/(x(i) x(j));endendL = L + y(i) li;endend```2、牛顿插值法```matlabfunction N = newton_interpolation(x, y, xi)n = length(x);%计算差商表D = zeros(n, n);D(:, 1) = y';for j = 2:nfor i = j:nD(i, j) =(D(i, j 1) D(i 1, j 1))/(x(i) x(i j + 1));endend%计算插值结果N = D(1, 1);term = 1;for i = 2:nterm = term (xi x(i 1));N = N + D(i, i) term;endend```3、曲线拟合```matlab%线性最小二乘拟合p = polyfit(x, y, 1);y_fit_linear = polyval(p, x);%多项式曲线拟合p = polyfit(x, y, n);% n 为多项式的次数y_fit_poly = polyval(p, x);%指数曲线拟合p = fit(x, y, 'exp1');y_fit_exp = p(x);```(三)数值积分1、梯形公式```matlabfunction T = trapezoidal_rule(f, a, b, n)h =(b a) / n;x = a:h:b;y = f(x);T = h ((y(1) + y(end))/ 2 + sum(y(2:end 1)));end```2、辛普森公式```matlabfunction S = simpson_rule(f, a, b, n)if mod(n, 2) ~= 0error('n 必须为偶数');endh =(b a) / n;x = a:h:b;y = f(x);S = h / 3 (y(1) + 4 sum(y(2:2:end 1))+ 2 sum(y(3:2:end 2))+ y(end));end```3、柯特斯公式```matlabfunction C = cotes_rule(f, a, b, n)h =(b a) / n;x = a:h:b;y = f(x);w = 7, 32, 12, 32, 7 / 90;C = h sum(w y);end```4、高斯勒让德求积公式```matlabfunction G = gauss_legendre_integration(f, a, b)x, w = gauss_legendre(5);%选择适当的节点数t =(b a) / 2 x +(a + b) / 2;G =(b a) / 2 sum(w f(t));end```(四)数值微分```matlabfunction dydx = numerical_derivative(f, x, h)dydx =(f(x + h) f(x h))/(2 h);end```四、实验结果与分析(一)误差分析通过不同精度的计算,发现随着精度的提高,误差逐渐减小,但计算时间也相应增加。
matlab数值计算实验报告Matlab数值计算实验报告引言:Matlab是一种强大的数值计算软件,广泛应用于科学和工程领域。
本实验旨在通过实际案例,展示Matlab在数值计算中的应用能力。
本报告将从三个方面进行讨论:数值积分、线性方程组求解和最优化问题。
一、数值积分:数值积分是数学中常见的问题,Matlab提供了多种函数和方法来解决这类问题。
我们以求解定积分为例进行讨论。
假设我们要求解函数f(x) = x^2在区间[0, 1]上的定积分。
我们可以使用Matlab中的quad函数来进行计算,代码如下:```matlabf = @(x) x.^2;integral = quad(f, 0, 1);disp(integral);```运行以上代码,我们可以得到定积分的近似值为0.3333。
通过调整积分方法和精度参数,我们可以得到更精确的结果。
二、线性方程组求解:线性方程组求解是数值计算中的重要问题,Matlab提供了多种函数和方法来解决线性方程组。
我们以一个简单的线性方程组为例进行讨论。
假设我们要求解以下线性方程组:```2x + y = 5x - y = 1```我们可以使用Matlab中的linsolve函数来求解,代码如下:```matlabA = [2 1; 1 -1];B = [5; 1];X = linsolve(A, B);disp(X);```运行以上代码,我们可以得到方程组的解为x = 2,y = 3。
通过调整方程组的系数矩阵和右侧向量,我们可以求解更复杂的线性方程组。
三、最优化问题:最优化问题在科学和工程领域中广泛存在,Matlab提供了多种函数和方法来解决这类问题。
我们以求解无约束最优化问题为例进行讨论。
假设我们要求解函数f(x) = x^2的最小值。
我们可以使用Matlab中的fminunc函数来进行计算,代码如下:```matlabf = @(x) x.^2;x0 = 1; % 初始点options = optimoptions('fminunc', 'Display', 'iter');[x, fval] = fminunc(f, x0, options);disp(x);disp(fval);```运行以上代码,我们可以得到最小值的近似解为x = 0,f(x) = 0。
数值分析MATLAB 计算实验报告姓名 班级 学号一、实验名称根据给定数据利用MATLAB 编程做出4次牛顿插值与三次样条插值的插值函数与被插值函数图形 二、实验目的1.理解牛顿插值的定义并且编写出与其算法对应的MATLAB 程序代码;2.了解三次样条插值的构造方法并且编写出与其算法对应的MATLAB 程序代码; 3.体会利用MATLAB 软件进行数值计算 。
三、实验内容已知函数在下列各点的值为:x i 0.2 0.4 0.6 0.8 1 .0 f(x i )0.980.920.810.640.38试用4次牛顿插值多项式P 4(x)及三样条函数S(x)(自然边界条件)对数据进行插值。
使用Matlab 软件用图给出{(x i ,y i ),x i =0.2+0.08i, i=0,1,11,10},P 4(x)及S(x) 四、算法描述 1.牛顿插值公式:P n (x)=f(x 0)+f[x 0,x 1](x-x 0)+f[x 0,x 1,x 2](x-x 0)(x-x 1)+… +f[x 0,x 1,…,x n ](x-x 0)…(x-x n-1),当n=4时,将插值点x i 及插值点对应的函数值f(x i )带入上式可得4次牛顿插值多项式。
2.三次样条插值:使用三弯矩法,令n i x s M i i ,,2,1,0),( =''=, 首先,以(x i ,M i ),(x i-1,M i-1)为结点作线性插值:i ii i i i M h x x M h x x x s 11)(---+--='',其中h i =x i -x i-1紧接着,连续积分两次:213131)(6)(6)(c x c x x h M x x h M x s i ii i i i ++-+-=--再利用插值条件11)(,)(--==i i i i y x s y x s)()6()()6()(6)(6)(1113131-------+--+-+-=i i ii i i i i i i i i i i i i x x h M h y x x h Mh y x x h M x x h M x sn i x x x i i ,,2,1,1 =≤≤-然后利用s '(x)在内结点连续的条件求M i ,s '(x i -0)=s '(x i +0))6()6()(2)(2)(112121i i i i i i i i i i i i i i h Mh y h M h y x x h M x x h M x s -+---+--='----ii ii i i i i i i i i h y y M M h x x h M x x h M 112121)(6)(2)(2-----+---+--=ii x x x ≤≤-11111211211)(6)(2)(2)(++++++++-+---+--='i ii i i i i i i i i i h y y M M h x x h M x x h M x s1+≤≤i i x x xii i i i i i i h y y M h M h x s 1163)0(---++=-'1111163)0(+++++-+--=+'i ii i i i i i h y y M h M h x s得i i i i i i i h y y M h M h 1163---++1111163+++++-+--=i ii i i i i h y y M h M hii i i i i i i i i i i i h y y h y y M h M h h M h 11111116)33(6-+++++----=+++)(62111111111ii i i i i i i i i i i i i i i i h y y h y y h h M h h h M M h h h -++++++-+---+=++++1,,2,1,211-==+++-n i M M M i i i i i i βαγ最后,根据三条边界条件,求出的值。
matlab数值计算实验报告Matlab数值计算实验报告一、实验目的本次实验的目的是通过使用Matlab软件进行数值计算,掌握Matlab的基本操作和数值计算方法,了解数值计算的基本原理和方法,提高数学建模和计算能力。
二、实验内容本次实验主要包括以下内容:1. Matlab基本操作:包括Matlab软件的安装、启动、界面介绍、基本命令和语法等。
2. 数值计算方法:包括数值积分、数值微分、线性方程组的求解、非线性方程的求解、插值和拟合等。
3. 数学建模:通过实际问题的建模,运用Matlab进行数值计算,得到问题的解答。
三、实验步骤1. Matlab基本操作(1)安装Matlab软件:根据官方网站提供的下载链接,下载并安装Matlab软件。
(2)启动Matlab软件:双击Matlab图标,启动Matlab软件。
(3)界面介绍:Matlab软件界面分为命令窗口、编辑器窗口、工作区窗口、命令历史窗口、变量编辑器窗口等。
(4)基本命令和语法:Matlab软件的基本命令和语法包括数学运算、矩阵运算、逻辑运算、控制语句等。
2. 数值计算方法(1)数值积分:使用Matlab中的quad函数进行数值积分,求解定积分。
(2)数值微分:使用Matlab中的diff函数进行数值微分,求解函数的导数。
(3)线性方程组的求解:使用Matlab中的inv函数和\运算符进行线性方程组的求解。
(4)非线性方程的求解:使用Matlab中的fsolve函数进行非线性方程的求解。
(5)插值和拟合:使用Matlab中的interp1函数进行插值和拟合。
3. 数学建模(1)实际问题的建模:选择一个实际问题,将其转化为数学模型。
(2)运用Matlab进行数值计算:使用Matlab进行数值计算,得到问题的解答。
四、实验结果通过本次实验,我掌握了Matlab的基本操作和数值计算方法,了解了数值计算的基本原理和方法,提高了数学建模和计算能力。
在实际问题的建模和运用Matlab进行数值计算的过程中,我深刻体会到了数学建模和计算的重要性,也发现了Matlab在数学建模和计算中的重要作用。
《数值计算方法》实验指导(Matlab版)学院数学与统计学学院计算方法课程组《数值计算方法》实验1报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验1 算法设计原则验证(之相近数相减、大数吃小数和简化计算步骤) 2. 实验题目(1) 取1610=z ,计算z z -+1和)1/(1z z ++,验证两个相近的数相减会造成有效数字的损失.(2) 按不同顺序求一个较大的数(123)与1000个较小的数(15310-⨯)的和,验证大数吃小数的现象.(3) 分别用直接法和九韶算法计算多项式n n n n a x a x a x a x P ++++=--1110)(在x =1.00037处的值.验证简化计算步骤能减少运算时间.对于第(3)题中的多项式P (x ),直接逐项计算需要2112)1(+=+++-+n n n 次乘法和n 次加法,使用九韶算法n n a x a x a x a x a x P ++++=-)))((()(1210则只需要n 次乘法和n 次加法. 3. 实验目的验证数值算法需遵循的若干规则. 4. 基础理论设计数值算法时,应避免两个相近的数相减、防止大数吃小数、简化计算步骤减少运算次数以减少运算时间并降低舍入误差的积累.两相近的数相减会损失有效数字的个数,用一个大数依次加小数,小数会被大数吃掉,乘法运算次数太多会增加运算时间. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab6. 实验过程(1) 直接计算并比较;(2) 法1:大数逐个加1000个小数,法2:先把1000个小数相加再与大数加; (3) 将由高次项到低次项的系数保存到数组A[n]中,其中n 为多项式次数.7. 结果与分析 (1) 计算的z z -+1= ,)1/(1z z ++.分析:(2) 123逐次加1000个6310-⨯的和是 ,先将1000个6310-⨯相加,再用这个和与123相加得.分析:(3) 计算次的多项式:直接计算的结果是,用时;用九韶算法计算的结果是,用时.分析:8. 附录:程序清单(1) 两个相近的数相减.%*************************************************************%* 程序名:ex1_1.m *%* 程序功能:验证两个相近的数相减会损失有效数字个数 *%*************************************************************z=1e16;x,y======================================================================(2) 大数吃小数%*************************************************************%* 程序名:ex1_2.m *%* 程序功能:验证大数吃小数的现象. *%*************************************************************clc; % 清屏clear all; % 释放所有存变量format long; % 按双精度显示浮点数z=123; % 大数t=3e-15; % 小数x=z; % 大数依次加小数% 重复1000次给x中加上ty=0; % 先累加小数% 重复1000次给y中加上ty=z + y; % 再加到大数x,y======================================================================(3) 九韶算法%*************************************************************%* 程序名:ex1_3.m *%* 程序功能:验证九韶算法可节省运行时间. *%*************************************************************clc; % 清屏clear all; % 释放所有存变量format long; % 按双精度显示浮点数A=[8,4,-1,-3,6,5,3,2,1,3,2,-1,4,3,1,-2,4,6,8,9,50,-80,12,35,7,-6,42,5,6,23,74,6 5,55,80,78,77,98,56];A(10001)=0; % 扩展到10001项,后面的都是分量0% A为多项式系数,从高次项到低次项x=1.00037;n=9000; % n为多项式次数% 直接计算begintime=clock; % 开始执行的时间 % 求x的i次幂% 累加多项式的i次项endtime=clock; % 完毕执行的时间time1=etime(endtime,begintime); % 运行时间disp('直接计算');disp(['p(',num2str(x),')=',num2str(p)]);disp([' 运行时间: ',num2str(time1),'秒']);% 九韶算法计算begintime=clock; % 开始执行的时间% 累加九韶算法中的一项endtime=clock; % 完毕执行的时间time2=etime(endtime,begintime); % 运行时间disp(' ');disp('九韶算法计算');disp(['p(',num2str(x),')=',num2str(p)]);disp([' 运行时间: ',num2str(time2),'秒']);《数值计算方法》实验1报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验1 算法设计原则验证(之数值稳定性) 2. 实验题目 计算定积分⎰==-1110,1,0,d n x e xI x nn ,分别用教材例1-7推导出的算法A 和B ,其中:算法A :⎩⎨⎧≈-=-6321.0101I nI I n n 算法B :⎪⎩⎪⎨⎧≈-=-0)1(1101I I nI n n 验证算法不稳定时误差会扩大.3. 实验目的验证数值算法需遵循的若干规则. 4. 基础理论设计数值算法时,应采用数值稳定性好的算法.数值稳定的算法,误差不会放大,甚至会缩小;而数值不稳定的算法会放大误差. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab6. 实验过程分别用数组IA[ ]和IB[ ]保存两种算法计算的结果. 7. 结果与分析 运行结果:(或拷屏)8. 附录:程序清单%*************************************************************%* 程序名:ex1_4.m *%* 程序功能:验证数值稳定性算法可控制误差. *%*************************************************************clc; % 清屏clear all; % 释放所有存变量format long; % 按双精度显示浮点数I=[0.856, 0.144, 0.712, 0.865, ...0.538, 0.308, 0.154, 0.938, ...0.492, 0.662, 0.843];% 保留14位小数的精确值, …是Matlab中的续行符% 算法AIA(1) = 0.6321; % Matlab下标从1开始,所以要用IA(n+1)表示原问题中的I(n)% 算法Bdisp('n 算法A 算法B 精确值');for n=1:11fprintf('%2d %14.6f %14.6f %14.6f\n',n-1,IA(n),IB(n),I(n));end% n显示为2位整数, 其它显示为14位其中小数点后显示6位的小数《数值计算方法》实验1报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验1 算法设计原则(除数绝对值不能太小) 2. 实验题目将线性方程组增广矩阵利用初等行变换可化为⎪⎪⎭⎫⎝⎛→-⎪⎪⎭⎫ ⎝⎛→-⎪⎪⎭⎫ ⎝⎛''0'0''02221112'12221121112222211121122121121b a b a r r b a b a a r r b a a b a a a a a a由此可解得'/',/'22221111a b x a b x ==.分别解增广矩阵为161011212-⎛⎫ ⎪⎝⎭和162121011-⎛⎫⎪⎝⎭的方程组,验证除数绝对值远小于被除数绝对值的除法会导致结果失真. 3. 实验目的验证数值算法需遵循的若干规则. 4. 基础理论设计数值算法时,应避免除数绝对值远小于被除数绝对值的除法,否则绝对误差会被放大,使结果失真. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab6. 实验过程用二维数组A 和B 存放方程组的增广矩阵,利用题目所给初等行变换求解方程组. 7. 结果与分析第1种顺序的方程组的解为x =,y =;第2种顺序的方程组的解为x =,y =. 分析:8. 附录:程序清单%************************************************************* %* 程 序 名:ex1_5.m * %* 程序功能:验证除数的绝对值太小可能会放大误差. * %*************************************************************clc;A=[1e-16, 1, 1; 2, 1, 2];B=[2, 1, 2; 1e-16, 1, 1]; % 增广矩阵% 方程组A% m = - a_{21}/a_{11} 是第2行加第1行的倍数% 消去a_{21}% m = - a_{12}/a_{22} 是第1行加第2行的倍数% 消去a_{12}, 系数矩阵成对角线% 未知数x1的值% 未知数x2的值disp(['方程组A的解: x1=',num2str(A(1,3)),', x2=',num2str(A(2,3))]); disp(' ');% 方程组B% m = - b_{21}/b_{11} 是第2行加第1行的倍数% 消去b_{21}% m = - b_{12}/b_{22} 是第1行加第2行的倍数% 消去b_{12}, 系数矩阵成对角线% 未知数x1的值% 未知数x2的值disp(['方程组B的解: x1=',num2str(B(1,3)),', x2=',num2str(B(2,3))]);《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之简单迭代法) 2. 实验题目用简单迭代法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的掌握非线性方程的简单迭代法. 4. 基础理论简单迭代法:将方程0)(=x f 改写成等价形式)(x x ϕ=,从初值0x 开始,使用迭代公式)(1k k x x ϕ=+可以得到一个数列,若该数列收敛,则其极限即为原方程的解.取数列中适当的项可作为近似解. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之Newton 迭代法) 2. 实验题目用Newton 迭代法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的掌握求解非线性方程的Newton 迭代法. 4. 基础理论Newton 迭代法:解方程0)(=x f 的Newton 迭代公式为)(')(1k k k k x f x f x x -=+.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之对分区间法) 2. 实验题目用对分区间法求方程310x x --=在区间[1, 1.5]的一个实根,取绝对误差限为410-. 3. 实验目的掌握求解非线性方程的对分区间法. 4. 基础理论对分区间法:取[a ,b ]的中点p ,若f (p ) ≈ 0或b – a < ε,则p 为方程0)(=x f 的近似解;若f (a ) f (p ) < 0,则说明根在区间取[a ,p ]中;否则,根在区间取[p ,b ]中.将新的有根区间记为 [a 1,b 1],对该区间不断重复上述步骤,即可得到方程的近似根. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程用宏定义函数f (x );为了循环方便,得到的新的有根区间始终用[a ,b ]表示;由于新的有根区间可能仍以a 为左端点,这样会反复使用函数值f (a ),为减少运算次数,将这个函数值保存在一个变量fa 中;同样在判断新的有根区间时用到函数值f (p ),若新的有根区间以p 为左端点,则下一次用到的f (a )实际上就是现在的f (p ),为减少运算次数,将这个函数值保存在一个变量fp 中.算法的伪代码描述:Input :区间端点a ,b ;精度要求(即误差限)ε;函数f (x );最大对分次数N Output :近似解或失败信息7. 结果与分析8. 附录:程序清单说明: 源程序中带有数字的空行,对应着算法描述中的行号%**********************************************************%* 程序名:Bisection.m *%* 程序功能:使用二分法求解非线性方程. *%**********************************************************f=inline('x^3-x-1'); % 定义函数f(x)a=input('有根区间左端点: a=');b=input('右端点:b=');epsilon=input('误差限:epsilona=');N=input('最大对分次数: N=');1 % 对分次数计数器n置12 % 左端点的函数值给变量fafprintf('\n k p f(p) a(k) f(a(k))'); fprintf(' b(k) b-a\n');% 显示表头fprintf('%2d%36.6f%12.6f%12.6f%12.6f\n',0,a,fa,b,b-a);% 占2位其中0位小数显示步数0, 共12位其中小数6位显示各值3% while n≤ N 4 % 取区间中点p5% 求p 点函数值给变量fpfprintf('%2d%12.6f%12.6f',n,p,fp); % 输出迭代过程中的中点信息p 和f(p)6 % 如果f(p)=0或b-a 的一半小于误差限εfprintf('\n\n 近似解为:%f\n',p);% 则输出近似根p (7)return;% 并完毕程序 (7)89 % 计数器加110% 若f(a)与f(p)同号11% 则取右半区间为新的求根区间, 即a 取作p 12 % 保存新区间左端点的函数值 13% 否则14 % 左半区间为新的求根区间, 即b 取作p 15fprintf('%12.6f%12.6f%12.6f%12.6f\n',a,fa,b,b-a); %显示新区间端点与左端函数值、区间长度 16fprintf('\n\n 经过%d 次迭代后未达到精度要求.\n',N); % 输出错误信息(行17)《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之Aitken-Steffensen 加速法) 2. 实验题目用Aitken-Steffensen 加速法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的熟悉求解非线性方程的Aitken-Steffensen 加速法. 4. 基础理论将方程0)(=x f 改写成等价形式)(x x ϕ=,得到从初值0x 开始的迭代公式)(1k k x x ϕ=+后,基于迭代公式)(1k k x x ϕ=+的Aitken-Steffensen 加速法是通过“迭代-再迭代-加速”完成迭代的,具体过程为kk k k k k k k k k k x y z z y x x y z x y +---===+2)(),(),(21ϕϕ. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程为了验证Aitken-Steffensen 加速法可以把一些不收敛的迭代加速成迭代收敛,我们使用将方程组变形为31021x x -=,取迭代函数31021)(x x -=ϕ,并利用宏定义出迭代函数.由于不用保存迭代过程,所以用x0表示初值同时也存放前一步迭代的值,y 和z 是迭代过程中产生的y k 和z k ,x 存放新迭代的结果.算法的伪代码描述:Input :初值x 0;精度要求(即误差限)ε;迭代函数φ(x );最大迭代次数N7. 结果与分析8. 附录:程序清单%************************************************************* %* 程 序 名:Aitken_Steffensen.m * %* 程序功能:用Aitken-Steffensen 加速法求方程. * %************************************************************* clc;clear all;phi=inline('0.5 * sqrt( 10 - x^3)'); % 迭代函数x0=input('初值: x0 = ');epsilon=input('误差限: epsilon='); N=input('最大迭代次数: N=');disp(' n 迭代中间值y(n-1) 再迭代结构z(n-1) 加速后的近似值x(n)'); fprintf('%2d%54.6f\n',0,x0);% 占2位整数显示步数0, 为了对齐, 占54位小数6位显示x01 % n 是计数器2 % while n<=Ny= 3 ; % 迭代 z= 3 ; % 再迭代 x= 3 ; % 加速% x0初值与前一步的近似值, y 和z 是中间变量, x 是下一步的近似值fprintf('%2d%18.6f%18.6f%18.6f\n',n,y,z,x);%显示中间值和迭代近似值6 % 如果与上一步近似解差的绝对值不超过误差限 fprintf('\n\n 近似解 x≈x(%d)≈%f \n',n,x);% 则输出近似根 (7), 可简略为: fprintf('\n\n 近似解 x=%f',x); return; % 并完毕程序(7) 8 % 相当于endif9 % 计数器加110 % 新近似值x 作为下一次迭代的初值 11fprintf('\n 迭代%d 次还不满足误差要求.\n\n',N); %输出错误信息(12)《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之Newton 下山法) 2. 实验题目用Newton 下山法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的熟悉非线性方程的Newton 下山法. 4. 基础理论Newton 下山法:Newton 下山法公式为)(')(1k k kk k x f x f x x λ-=+,使|)(||)(|1k k x f x f <+,其中10≤<k λ.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程定义函数f(x)和df(x),其中df(x)是f(x)的导函数.每步迭代时先取下山因子为1,尝试迭代,判断尝试结果是否满足下山因子,若满足则作为这步的迭代结果;否则将下山因子减半,然后再尝试.为防止当前的x k 是极小值点,附近不会有满足下述条件的其它点,使尝试陷入死循环,同时计算机中能表示出的浮点数也有下界,因此我们设置了最大尝试次数.当超过最大尝试次数时,不再进行下山尝试.由于反复尝试迭代且要判断下山条件,所以f (x 0)和f ‘(x 0)会反复使用,为避免重复计算浪费运行时间,将这两个值分别保存在变量fx0和dfx0.而尝试产生的节点,判断下山条件时要用到它的函数值,若尝试成功,这个点会作为下一步的初值再使用,所以把该点的函数值也保存在变量fx 中.算法的伪代码描述:Input :初值x 0;精度要求(即误差限)ε;函数与其导函数f (x )和f’(x);最大迭代次数N ;K 下山尝试最大次数Output :近似解或失败信息7. 结果与分析8. 附录:程序清单%*************************************************************%* 程序名:NewtonDownhill.m *%* 程序功能:用Newton下山法求解非线性方程. *%*************************************************************clc;clear all;f=inline('x^3-x-1'); % 函数f(x)df=inline('3*x^2-1'); % 函数f(x)的导函数x0=input('初值: x0 = ');epsilon=input('误差限: epsilon=');N=input('最大迭代次数: N=');K=input('最大下山尝试次数: K=');1 % 迭代次数计数器2 % 存x0点函数值fprintf('\n\n n x(n) f(x(n))\n'); % 显示表头fprintf('%2d%14.6f%14.6f\n',0,x0,fx0); % 2位整数显示0, 共14位小数6位显示x0和fx03 % while n≤ Ndisp(''); % 换行显示下山尝试过程的表头disp(' 下山因子尝试x(n) 对应f(x(n)) 满足下山条件');disp('');4 % 存x0点导数值, 每次下山尝试不用重新计算ifdfx0==0 % 导数为0不能迭代disp(‘无法进行Newton迭代’);return;endlambda=1.0; % 下山因子从1开始尝试k=1; % k下山尝试次数计数器while k<=K % 下山最多尝试K次% 下山公式fx=f(x); % 函数值fprintf('%22.6f%14.6f%14.6f',lambda,x,fx); % 显示尝试结果if (abs(fx)<abs(fx0)) % 判断是否满足下山条件fprintf(' 满足\n');break; % 是, 则退出下山尝试的循环elsefprintf(' 不满足\n');endlambda=lambda/2; % 不是, 则下山因子减半k=k+1; % 计数器加1endif k>Kfprintf('\n 下山条件无法满足, 迭代失败.\n\n');return;endfprintf('%2d%14.6f%14.6f\n',n,x,fx);% 2位整数显示步数n, 共14位小数6位显示下步迭代结果22 % 达到精度要求否fprintf('\n\n 方程的近似解为: x≈%f\n\n',x); % (23)return; % 达到, 则显示结果并完毕程序(23) end % (24)% 用x0,fx0存放前一步的近似值和它的函数值, 进行循环迭代25262728fprintf('\n 迭代%d次还不满足误差要求.\n\n',N);《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之弦截法) 2. 实验题目用弦截法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-. 3. 实验目的熟悉非线性方程的弦截法. 4. 基础理论将Newton 迭代法中的导数用差商代替,得到弦截法(或叫正割法)公式)()()(111k k k k k k k x f x f x f x x x x --+---=.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程不保存迭代过程,所以始终以x 0和x 1分别存放x k -1和x k ,而x 存放新产生的迭代值x k +1,这样,下一次迭代时需要把上一步的x 1(即x k )赋值于x 0(做新的x k -1).这些点的函数值会重复用到,在迭代公式中也要用到,上一步的x 1作为下一步的x 0也会再一次用它的函数值,为减少重新计算该点函数值的运行时间,将x 1点的函数值保存在变量fx1中.算法的伪代码描述:Input :初值x 0,x 1;精度要求(即误差限)ε;函数f (x );最大迭代次数N7. 结果与分析8. 附录:程序清单%*************************************************************%* 程序名:SecantMethod.m *%* 程序功能:用弦截法求解非线性方程. *%*************************************************************clc;clear all;f=inline('2*x^3-5*x-1'); % 函数f(x)x0=input('第一初值: x0 = ');x1=input('第二初值: x1 = ');epsilon=input('误差限: epsilon=');N=input('最大迭代次数: N=');fprintf('\n n x(n)\n'); % 显示表头fprintf('%2d%14.6f\n', 0, x0); % 占2位显示步数0, 共14位其中小数6位显示x0fprintf('%2d%14.6f\n', 1, x1); % 占2位显示步数1, 共14位其中小数6位显示x11 % 存x0点函数值2 % 存x1点函数值3 % 迭代计数器4 % while n≤ N% 弦截法公式fprintf('%2d%14.6f\n', n, x); %显示迭代过程6 % 达到精度要求否fprintf('\n\n 方程的近似解为: x≈%f\n\n', x);return; % 达到, 则显示结果并完毕程序89 % 原x1做x0为前两步的近似值10 % 现x做x1为一两步的近似值11 % x0点函数值12 % 计算x1点函数值, 为下一次循环13 % 计数器加1 14fprintf('\n 迭代%d 次还不满足误差要求.\n\n',N);《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之Gauss 消去法) 2. 实验题目用Gauss 消去法求解线性方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--000.3000.2000.1643.5072.1000.2623.4712.3000.1000.3000.2001.0321x x x . 3. 实验目的掌握解线性方程组的Gauss 消去法. 4. 基础理论Gauss 消去法是通过对增广矩阵的初等行变换,将方程组变成上三角方程组,然后通过回代,从后到前依次求出各未知数.Gauss 消去法的第k 步(1≤k≤n -1)消元:若0≠kk a ,则依次将增广矩阵第k 行的kk ik a a /-倍加到第i 行(k+1≤i≤n),将第k 列对角线下的元素都化成0.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之Gauss 列主元消去法) 2. 实验题目用Gauss 列主元消去法求解线性方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--000.3000.2000.1643.5072.1000.2623.4712.3000.1000.3000.2001.0321x x x . 3. 实验目的掌握解线性方程组的Gauss 列主元消去法. 4. 基础理论Gauss 列主元消去法也是通过对增广矩阵的初等行变换,将方程组变成上三角方程组,然后通过回代,从后到前依次求出各未知数.Gauss 列主元消去法的第k 步(1≤k≤n -1)消元:先在nk k k kk a a a ,,,,1 +中找绝对值最大的,将它所在的行与第k 行交换,然后将第k 行的kk ik a a /-倍加到第i 行(k+1≤i≤n),将第k 列对角线下的元素都化成0. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之Doolittle 分解) 2. 实验题目对矩阵A 进行Doolittle 分解,其中⎪⎪⎪⎪⎪⎭⎫⎝⎛----=3101141101421126A .3. 实验目的掌握矩阵的Doolittle 分解. 4. 基础理论矩阵的Doolittle 分解是指将矩阵n n ij a A ⨯=)(可以分解为一个单位下三角矩阵和一个上三角矩阵的乘积.若设⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n n n u u u u u u u u u u U l l ll l l L000000,1010010001333223221131211321323121则可依如下顺序公式计算⎪⎪⎩⎪⎪⎨⎧++=-=+=-=∑∑-=-=1111,,2,1,/)(,,1,,k t kk tk it ik ik k r rj kr kj kj nk k i u u l a l nk k j u l a u其中k = 1,2,…,n .5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程(1)按计算公式依次计算一行u 同时计算一列l ;(2)因为计算完u ij (或l ij )后,a ij 就不再使用,为节省存储空间,将计算的u ij (和l ij )仍存放在矩阵A 中的相应位置;(3)使用L 矩阵和U 矩阵时需要根据元素所在位置取固定值或A 中相应位置的值.L 对角线上的元素为1,上三角部分为0,下三角部分为A 中对应的元素;U 的下三角部分为0,上三角部分为A 中对应的元素.算法的伪代码描述: Input :阶数n ;矩阵A7. 结果与分析8. 附录:程序清单%****************************************************% 程序名: Doolittle.m *% 程序功能: 矩阵LU分解中的Doolittle分解. *%****************************************************clc;clear all;n=4; % 矩阵阶数A=[6 2 1 -1;2 4 1 0; 1 1 4 -1; -1 0 -1 3]disp('A=');disp(A);% LU分解(Doolittle分解)for k=1:n% 计算矩阵U的元素u_{kj}% (可参照下面l_{ik}的公式填写)% 计算矩阵L的元素l_{ik}% L 在A 下三角, U 在上三角(对角线为1) enddisp('分解结果:'); disp('L='); for i=1:n for j=1:nif i>j % 在下三角部分, 则取A 对于的元素显示 fprintf(' %8.4f',A(i,j));elseif i==j % 在对角线上, 则显示1 fprintf(' %8d',1);else % 在上三角部分, 则显示0 fprintf(' %8d',0); end endfprintf('\n'); % 换行 enddisp('U='); for i=1:n for j=1:nif i<=j % 在上三角部分或对角线上, 则取A 对于的元素显示 fprintf(' %8.4f',A(i,j));else % 在下三角部分, 则显示0 fprintf(' %8d',0); end endfprintf('\n'); % 换行 end《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之LU 分解法) 2. 实验题目用LU 分解(Doolittle 分解)法求解线性方程组⎪⎩⎪⎨⎧=++=++=++104615631552162321321321x x x x x x x x x 3. 实验目的熟悉解线性方程组LU 分解法.4. 基础理论若将矩阵A 进行了Doolittle 分解,A = LU ,则解方程组b x A=可以分解求解两个三角方程组b y L=和y x U =.它们都可直接代入求解,其中b y L=的代入公式为∑-==-=11,,2,1,k j j kj k k n k y l b y而y x U=的代入公式为∑+=-=-=nk j kk j kjk k n n k u x uy x 11,,1,,/)( .5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程(1)Doolittle 分解过程依次计算一行u 同时计算一列l 完成,并将计算的u ij (和l ij )仍存放在矩阵A 中的相应位置;(2)求解方程组的代入公式中用到的u ij 和l ij 都直接在A 的相应位置取值即可. 算法的伪代码描述:Input :阶数n ;矩阵A ;常数项向量b7. 结果与分析8. 附录:程序清单%**************************************************** % 程序名: LinearSystemByLU.m *% 程序功能: 利用LU分解(Doolittle分解)解方程组. *%****************************************************clc;clear all;n=3; % 矩阵阶数A=[1 2 6; 2 5 15; 6 15 46];b=[1;3;10];% LU分解(Doolittle分解)for k=1:n% 计算矩阵U的元素u_{kj}% (可参照下面l_{ik}的公式填写)% 计算矩阵L的元素l_{ik}% L在A下三角, U在上三角(对角线为1) endfor k=1:n % 用代入法求解下三角方程组Ly=by(k)=b(k);3 %∑-==-=11,,2,1,kjj kjk knkylby33enddisp('方程组Ly=b的解:y=');disp(y');for k=n:-1:1 % 回代求解上三角方程组Ux=y x(k)=y(k);6 %∑+=-=-=nkjj kjk knnkxuyx11,,1,,666 enddisp('原方程组的解:x='); disp(x');《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X成绩:1. 实验名称实验3 解线性方程组的直接法(之Cholesky 分解) 2. 实验题目对矩阵A 进行Cholesky 分解,其中⎪⎪⎪⎪⎪⎭⎫⎝⎛----=3101141101421126A . 3. 实验目的理解矩阵的Cholesky 分解. 4. 基础理论矩阵的Cholesky 分解是指将矩阵n n ij a A ⨯=)(可以分解为一个下三角矩阵L 和L 转置的乘积,即A =LL T,其中L 各元素可依如下顺序公式计算⎪⎪⎩⎪⎪⎨⎧++=-=-=∑∑-=-=11112,,2,1,/)(k t kktk it ik ik k r kr kk kk nk k i l l l a l l a l其中k = 1,2,…,n .5. 实验环境操作系统:Windows xp ; 程序设计语言:VC++ 6. 实验过程(1)按计算公式依次先计算一列对角线上的元素l kk ,再计算这列其他元素l ik ,且对称位置的元素也取同一个值;(2)因为计算完l ij 后,a ij 就不再使用,为节省存储空间,将计算的l ij 仍存放在矩阵A 中的相应位置;(3)使用L 矩阵时需要根据元素所在位置取固定值或A 中相应位置的值.L 上三角部分为0,对角线和下三角部分为A 中对应的元素.算法的伪代码描述:Input :阶数n ;矩阵AOutput :矩阵L (合并存储在数组A 中)行号 伪代码注释1 for k ← 1 to n2∑-=-=112k r krkk kk l a l3 for i ← k to n4 ∑-=-=11/)(k t kk tk it ik ik l l l a l计算结果存放在a ij5 endfor6 endfor7return L输出L7. 结果与分析8. 附录:程序清单%************************************************************* %* 程 序 名:Cholesky.m * %* 程序功能:对称正定矩阵的Cholesky 分解. * %*************************************************************n=4; % 矩阵阶数 A=[6,2,1,-1; 2,4,1,0; 1,1,4,-1; -1,0,-1,3];disp('A ='); for i=1:n for j=1:nfprintf('%10.4f',A(i,j)); % 共占14位endfprintf('\n');% 一行完毕换行end% Cholesky 分解 for k=1:n % 计算对角线上的l _{kk}% 计算其他的l _{ik} % 和l _{ki}end % L 在A 下三角, L^T 在上三角disp('分解结果:'); disp('L='); for i=1:n for j=1:n if i>=j % 在下三角部分或对角线上, 则取A 对于的元素显示fprintf('%10.4f',A(i,j));else % 在上三角部分, 则显示0 fprintf('%10d',0); end endfprintf('\n'); % 换行 end《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X成绩:1. 实验名称实验3 解线性方程组的直接法(之改进的Cholesky 分解) 2. 实验题目对矩阵A 进行改进的Cholesky 分解,其中⎪⎪⎪⎪⎪⎭⎫⎝⎛----=3101141101421126A .3. 实验目的理解矩阵改进的Cholesky 分解. 4. 基础理论矩阵的改进的Cholesky 分解是指将矩阵n n ij a A ⨯=)(可以分解为一个单位下三角矩阵L 和对角矩阵D 与L 转置的乘积,即A =LDL T,其中L 和D 各元素可依如下顺序公式计算⎪⎪⎩⎪⎪⎨⎧++=-=-=∑∑-=-=11112,,2,1,/)(k t k kt it t ik ik k r kr r kk k nk k i d l l d a l l d a d其中k = 1,2,…,n .5. 实验环境操作系统:Windows xp ; 程序设计语言:VC++ 6. 实验过程(1)按计算公式依次先计算D 的一个元素d k ,再计算L 中这列的元素l ik ,且对称位置的元素也取同一个值;(2)因为计算完d k 和l ij 后,a kk 或a ij 就不再使用,为节省存储空间,将计算的a kk 或l ij 仍存放在矩阵A 中的相应位置;(3)使用L 矩阵时需要根据元素所在位置取固定值或A 中相应位置的值.L 对角线和上三角部分为0,下三角部分为A 中对应的元素;D 对角线为A 中对应的元素,其余都是0.算法的伪代码描述: Input :阶数n ;矩阵AOutput :矩阵L (合并存储在数组A 中)7. 结果与分析8. 附录:程序清单%************************************************************* %* 程 序 名:ImprovedCholesky.m * %* 程序功能:对称正定矩阵的改进的Cholesky 分解. * %*************************************************************n=4; % 矩阵阶数A=[6,2,1,-1; 2,4,1,0; 1,1,4,-1; -1,0,-1,3];disp('A =');for i=1:nfor j=1:nfprintf('%10.4f',A(i,j)); % 共占14位endfprintf('\n'); % 一行完毕换行end% Cholesky分解for k=1:n% 计算D对角线上的u_{kk}% 计算L的元素l_{ik}% 和L转置的元素l_{ki} end % L在A下三角, D在对角线disp('分解结果:');disp('L=');for i=1:nfor j=1:nif i>j % 在下三角部分, 则取A对于的元素显示fprintf('%10.4f',A(i,j));elseif i==j % 在对角线上, 则显示1fprintf('%10d',1);else % 在上三角部分, 则显示0fprintf('%10d',0);endendfprintf('\n'); % 换行enddisp('D='); for i=1:n for j=1:n if i==j % 在对角线上, 则取A 对于的元素显示fprintf('%10.4f',A(i,j));else % 其余显示0fprintf('%10d',0); end endfprintf('\n'); % 换行 end《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之追赶法) 2. 实验题目用追赶法求解线性方程组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----101053001210023100124321x x x x 3. 实验目的熟悉解线性方程组的追赶法. 4. 基础理论对于系数矩阵为三对角矩阵的方程组,其Crout 分解可分解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=------11111211122111122211n n nn n n nn n n t t t s a s a s a s b a c b a c b a c b A这样,解方程组可以由如下2步完成:“追”:,,,3,2,/)(,,/,/,1111111111n i s y a f y t a b s s c t s f y b s i i i i i i i i i i i i =-=-====-----其中:Tn f f ),,(1 为方程组的常数项,n t 没用;“赶”:.1,,2,1,,1 --=-==+n n i x t y x y x i i i i n n5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程在“追”的过程中,向量s 和y 都有n 个元素,t 只有n -1个元素,又1s 和1y 的计算公式与其它i s 和i y 不同,所以先单独计算1s 和1y ,然后在一个n -1次循环中,求其它i s 和i y 以与i t .由于在“追”的过程中,i b ,i c 和i f 在分别计算完对应的i s ,i t 和i y 后就不再使用,所以借用数组b ,c 和f 存储向量s ,t 和y ;同样在“赶”的过程中,i y 在计算完对应的i x 后就不再使用,所以再一次借用数组f 存储向量x .追赶法算法的伪代码描述:Input :阶数n ;三对角矩阵的三条对角线向量a ,b ,c ,常数项向量f Output :方程组的解x改进的追赶法算法的伪代码描述:Input :阶数n ;三对角矩阵的三条对角线向量a ,b ,c ,常数项向量f Output :方程组的解x7. 结果与分析8. 附录:程序清单%*************************************************************%* 程序名:ChaseAfter.m *%* 程序功能:用追赶法求解三对角线性方程组. *%*************************************************************clc;clear all;n=4;a=[0,-1,-1,-3];b=[2, 3, 2, 5];c=[-1, -2, -1, 0];f=[0, 1, 0, 1];% "追"s(1) = b(1);y(1) = f(1); % 先单独求s_1和y_1 for k = 1 : n-1% 再求t_i(i=1,2,…,n-1)% s_i(i=2,3,…,n)% y_i(i=2,3,…,n)end% "赶"x(n) = y(n); % 先单独求x_nfor k = n-1 : -1 : 1% 再求x_i(i=n-1,n-2, (1)endx=x' % 输出解向量-------------------------------------------------------------------------------------------------------------------改进的程序:%*************************************************************%* 程序名:ChaseAfter.m *%* 程序功能:用追赶法求解三对角线性方程组. *%*************************************************************clc;clear all;n=4;a=[0,-1,-1,-3];b=[2, 3, 2, 5];c=[-1, -2, -1, 0];f=[0, 1, 0, 1];% "追"% b(1)=b(1); % s_1仍在b_1中,不用重新计算y(1)=f(1)/b(1); % 先单独y_1for k=1:n-1% 再求t_i(i=1,2,…,n-1)% s_i(i=2,3,…,n)% y_i(i=2,3,…,n)end% "赶"% f(n)=f(n); % x_n等于y_n仍在f_n中for k=n-1:-1:1% 再求x_i(i=n-1,n-2, (1)endx=f' % 输出解向量《数值计算方法》实验4报告班级:20##级####x班学号:20##2409####:##X 成绩:1. 实验名称实验4 解线性方程组的迭代法(之Jacobi迭代)2. 实验题目用Jacobi迭代法求解线性方程组1231231232251223x x x x x x x x x +-=⎧⎪++=⎪⎨++=⎪⎪⎩任取3. 实验目的掌握解线性方程组的Jacobi 迭代法. 4. 基础理论将第i (n i ≤≤1)个方程i n in i i b x a x a x a =+++ 2211移项后得到等价方程ii n in i i i i i i i i i a x a x a x a x a b x /)(11,11,11------=++--便可构造出Jacobi 迭代公式,1,0,/)()()(11,)(11,)(11)1(=------=++--+k a x a x a x a x a b x ii k n in k i i i k i i i k i i k i . 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验4报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验4 解线性方程组的迭代法(之Gauss-Seidel 迭代) 2. 实验题目用Gauss-Seidel 迭代法求解线性方程组。