第8章雷电及防雷保护设备
- 格式:ppt
- 大小:3.96 MB
- 文档页数:15
雷电及防雷装置培训
雷电是一种自然天气现象,常常在暴风雨天气中出现。
它会给人们的生活和财产带来巨大的风险和损失。
为了有效防范雷电危害,保护生命和财产安全,进行雷电及防雷装置的培训就显得尤为重要。
首先,了解雷电的危害是培训的重点之一。
雷电是由云与地面之间的静电放电所产生,它不仅可以直击物体,还可以通过引入并沿着导体传导致损坏。
同时,雷电还会引发火灾、爆炸和设备故障,对人身安全和财产造成极大的威胁。
在培训中还需要介绍不同种类的防雷装置。
例如避雷针、避雷带、接地装置等。
这些装置的作用都是为了将雷电引向大地,并减少对建筑物、设备和人员的危害。
培训还应包括如何正确使用和维护防雷装置。
需要教育人们在安装和使用防雷装置时要严格按照规范操作,确保其正常运行。
同时,还需要定期进行检查和维护,确保其在关键时刻发挥作用。
另外,培训也需要教育人们如何在雷电天气下采取应对措施。
例如在室外时要迅速转移到安全的场所,避开高处和水源,避免使用大型金属设备等。
总之,雷电及防雷装置的培训是非常重要的,它可以有效提高人们对雷电的防范意识,减少雷电灾害对人们生命和财产的损
失。
希望更多的人能够参与到这项培训中来,为防止雷电灾害尽一份力量。
第八章雷电放电及防雷保护装置避雷针(线)的保护范围计算避雷器:保护间隙与管型避雷器原理,优缺点,应用范围,阀型避雷器的结构、原理、主要特性、分类及应用场合,氧化锌避雷器*防雷接地:接地分类,雷电流通过接地体向土壤流散时的物理过程,冲击系数。
第一节雷电参数电力系统中的大气过电压主要由雷电放电所造成的。
为了对大气过电压进行计算和采取合理的防护措施,必须掌握雷电的雷电的电气参数。
雷电形成过程如下:雷电先导通道带有与雷云极性相同的电荷(一般雷云多为负极性),自雷云向大地发展。
由于雷云及先导作用,大地被感应出与雷云极性相反的电荷。
当先导发展到离大地一定距离时,先导头部与大地之间的空气间隙会被击穿,雷电通道中的主放电过程开始,主放电自雷击点沿通道向上发展,若大地的土壤电阻率为零,则主放电所到之处的电位即降为零电位。
具体情况如下图所示:从雷电过电压计算和防雷设计的角度来看,值得注意的雷电参数如下:1.雷暴日及雷暴小时:一天或一小时内听见一次雷声计为一个雷暴电日或雷暴电小时以年雷暴电日或年雷暴电小时表征不同地区雷电活动的强度2.地面落雷密度(γ):一个雷电日中,地面每平方千米面积内落雷次数γ=0.07(次/km2·雷电日)3.雷电通道波阻抗(Z0):300Ώ左右4.雷电的极性:90%的雷电流为负极性,因此电气设备防雷保护及进行绝缘配合时都是以负极性的雷电冲击波进行分析研究5.雷电流幅值(I):雷电流定义:流经被击物阻抗z=0的电流雷电流幅值是表示雷电强度的指标,也是产生雷电过电压的根源,所以是最重要的雷电参数。
雷电流幅值概率分布公式:6.雷电流的波前时间、陡度及波长:τt=2.6μs τ=50 μs (2.6/50 μs波)7.雷电流的计算波形在防雷计算中,可按不同的要求,采用不同的计算波形。
常用的有以下几种计算波形:(1)双指数波:(2)半余弦波(3)斜角与斜角平顶波8.等值电路:(略))(tt eeIiφα---=)()(111时时Tt IaTiTtati>==≤=)cos1(2ti Iω-=第二节 避雷针、避雷线的保护范围为了防止设备遭受到直接雷击,通常采用装设高于被保护物的避雷针,其作用是将雷电吸引到避雷针上并安全的将电流引入大地,从而保护了设备。
《高压电技术》课程复习要点课程名称:《高压电技术》适用专业:2016级电力系统自动化(专科业余函授)辅导教材:《高电压技术(第三版)》常美生主编中国电力出版社复习要点:第一章绪论内容:电介质的极化、电导与损耗。
要求:掌握电介质的极化;了解质的介电常数;掌握电介质的电导和损耗。
第二章气体放电的基本物理过程内容:气体中带电质点的产生和消失;气体放电过程的一般描述;均匀电场气隙的击穿;不均匀电场气隙的击穿。
要求:了解带电粒子的产生和消失及电子崩;了解自持放电条件,掌握气体放电的汤逊理论和流注理论;熟悉不均匀电场中的放电过程及电晕放电;掌握沿面放电及污闪。
第三章气体介质的电气强度内容:气隙的击穿时间;气隙的伏秒特性;气隙的击穿电压;提高气隙击穿电压的方法;的电气特性。
要求:了解气体介质的电气强度的影响因素;掌握提高气体介质电气强度的方法。
第四章液体和固体介质的电气特性内容:固体、液体电介质击穿的机理;影响固体、液体电介质击穿电压的因素;提高固体、液体电介质击穿电压的方法。
要求:了解固体与液体介质的击穿和老化;掌握提高击穿电压的方法。
第五章电气设备绝缘预防性试验内容:绝缘预防性试验;在线监测和故障诊断技术概述。
要求:掌握绝缘电阻与吸收比的测量、泄漏电流的测量及介质损耗角正切的测量。
第六章绝缘的高电压试验内容:工频高压试验;直流高压试验;冲击电压发生器基本原理。
要求:掌握工频高压试验基本内容;冲击电压发生器基本原理;直流高压试验基本内容。
第七章输电线路和绕组中的波过程内容:单导线线路中的波过程;行波的折射与反射;行波通过串联电感和并联电容;行波的多次折反射。
要求:掌握波沿均匀无损单导线的传播;掌握行波的折射和反射;掌握波作用于单绕组时引起的振SF6气体荡、三相绕组的波过程及波在变压器绕组间的传播。
第八章雷电及防雷装置内容:雷电参数;避雷针与避雷器;接地装置。
要求:了解雷电参数和雷击过电压的基本分类;掌握各种防雷装置的基本原理和防雷性能;掌握防雷接地。
第八章电力系统雷电防护本章分析输电线路、发电厂和变电所以及旋转电机的防雷保护原理及措施。
§8-1 输电线路的防雷保护输电线路分布面积广,易受雷击,所以雷击是引起线路跳闸的主要起因。
同时,雷击以后雷电波将沿输电线侵入变电所,给电力设备带来危害, 因此对线路防雷保护应予以充分重视和研究。
根据过电压的形成过程,一般将线路发生的雷击过电压分为两种,一种是雷击线路附近地面, 由于电磁感应所引起的,称为感应雷过电压。
另一种是雷击于线路引起的称为直击雷过电压。
运行经验表明,直击雷过电压对高压电力系统的危害更为严重。
输电线路的耐雷性能和所采用防雷措施的效果在工程计算中用耐雷水平和雷击跳闸率来衡量。
耐雷水平是指雷击线路时线路绝缘不发生闪络的最大雷电流幅值。
线路的耐雷水平较高,就是防雷性能较好。
雷击跳闸率是指折算为统一的条件下,因雷击而引起的线路跳闸的次数, 此统一条件规定为每年40个雷暴日和100km的线路长度。
应该指出,由于雷电放电的复杂性,通过工程分析得到的计算结果可以作为衡量线路防雷性能的相对指标,而运行经验的积累和实施对策的分析则应是十分重视的。
输电线路防雷一般采取下列措施 :1 .防止雷直击导线沿线架设避雷线,有时还要装避雷针与其配合。
在某些情况下可改用电缆线路,使输电线路免受直接雷击。
2 .防止雷击塔顶或避雷线后绝缘闪络输电线路的闪络是指雷击塔顶或避雷线时,使塔顶电位升高。
为此,降低杆塔的接地电阻,增大耦合系数,适当加强线路绝缘,在个别杆塔上采用线路型避雷器等,是提高线路耐雷水平,减少绝缘闪络的有效措施。
3 .防止雷击闪络后转化为稳定的工频电弧当绝缘子串发生闪络后,应尽量使它不转化为稳定的工频电弧,不建立这一电弧,则线路就不会跳闸。
适当增加绝缘子片数,减少绝缘子串上工频电场强度,电网中采用不接地或经消弧线圈接地方式,防止建立稳定的工频电弧。
4 .防止线路中断供电可采用自动重合闸,或双回路、环网供电等措施,即使线路跳闸,也能不中断供电。
雷电及防雷保护装置简介1. 引言雷电是一种自然现象,它带来的强烈电流和电压波动可能对电子设备和人身安全造成严重威胁。
为了保护电子设备免受雷击的侵害,人们开发了各种防雷保护装置。
本文将介绍雷电的原理和一些常见的防雷保护装置。
2. 雷电原理雷电是由大气中云与地表之间的电位差引发的放电现象。
当云与地面或建筑物之间的电压达到一定程度时,将发生电流的放电现象,电流沿着路径瞬间流动,产生强大的能量释放。
这种释放可能导致设备损坏、火灾或人员伤亡。
3. 防雷保护装置的分类根据防雷装置的作用方式和工作原理,可以将防雷保护装置分为以下几类:3.1 避雷针避雷针是一种通过尖端释放电荷以减少云与地球之间电势差的装置。
它通常安装在建筑物的高处,当云层形成电荷时,避雷针会将电荷引导到地面,从而避免了雷电放电。
3.2 避雷器避雷器是一种用来吸收剩余电荷并将其分散到地面的装置。
它通常由金属氧化物构成,当电压超过设定值时,避雷器将导电,吸收过剩电流并将其释放到地面。
3.3 防雷网防雷网是一种通过导电网格将雷电压力分散到地面,从而保护设备和建筑物不受雷击的装置。
它可以在建筑物周围或设备附近安装。
3.4 接地系统接地系统是一种将电流引导到地面的装置。
通过使用导体材料和良好的接地电极,接地系统能够将电流引导到地面,从而减少设备和人员受雷击的风险。
4. 防雷保护装置的安装与维护为了确保防雷保护装置的有效性,正确的安装和维护是必不可少的。
以下是一些常见的安装和维护注意事项:•安装防雷装置时,应根据建筑物的结构和特点选择合适的防雷装置类型。
•根据设备和建筑物的需求,合理安排防雷装置的数量和布局。
•定期检查和测试防雷装置,确保其正常工作。
•在雷电活动频繁的地区,应定期进行维护和更新,确保防雷装置的可靠性。
5. 结论雷电是一种具有潜在危险的自然现象,对设备和人员的损害可能造成严重后果。
防雷保护装置的使用可以有效地减少雷电对电子设备和人身安全的威胁。
第八章雷电过电压及防护8-1试述雷电放电的基本过程及各阶段的特点。
8-2试述雷电流幅值的定义,分别计算下列雷电流幅值出现的概率:30kA、50kA、88kA、100kA、150kA、200kA。
8-3雷电过电压是如何形成的?8-4某变电所配电构架高11m,宽10.5m,拟在构架侧旁装设独立避雷针进行保护,避雷针距构架至少5m。
试计算避雷针最低高度。
8-5设某变电所的四支等高避雷针,高度为25m,布置在边长为42m的正方形的四个顶点上,试绘出高度为11m的被保护设备,试求被保护物高度的最小保护宽度。
8-6什么是避雷线的保护角?保护角对线路绕击有何影响?8-7试分析排气式避雷器与保护间隙的相同点与不同点。
8-8试比较普通阀式避雷器与金属氧化物避雷器的性能,说说金属氧化物避雷器有哪些优点?8-9试述金属氧化物避雷器的特性和各项参数的意义。
8-10限制雷电过电压破坏作用的基本措施是什么?这些防雷设备各起什么保护作用?8-11平原地区110kV单避雷线线路水泥杆塔如图所示,绝缘子串由6×X-7组成,长R为7Ω,导线和避雷线的直径分别为1.2m,其正极性U50%为700kV,杆塔冲击接地电阻i为21.5mm和7.8mm,15℃时避雷线弧垂2.8m,下导线弧垂5.3m,其它数据标注在图中,单位为m,试求该线路的耐雷水平和雷击跳闸率。
习题8-11图8-12某平原地区550kV输电线路档距为400m,导线水平布置,导线悬挂高度为28.15m,相间距离为12.5m,15℃时弧垂12.5m。
导线四分裂,半径为11.75mm,分裂距离0.45m(等值半径为19.8cm)。
两根避雷线半径5.3mm,相距21.4m,其悬挂高度为37m,15℃时弧垂9.5m。
杆塔电杆15.6μH,冲击接地电阻为10Ω。
线路采用28片XP-16绝缘子,串长4.48m,其正极性U50%为2.35MV,负极性U50%为2.74MV,试求该线路的耐雷水平和雷击跳闸率。
安徽省电力公司输变电设备防雷技术规定第一章总则第一条为预防输变电设备雷击故障的发生,减少雷击故障造成的影响,确保电网安全、可靠运行,特制定本技术规定。
第二条本规定依据国家有关标准、规程和规范并结合近年来国家电网公司输变电设备雷击故障分析及运行经验制定。
第三条本规定针对输变电设备所发生的雷击故障,从设计选型、基建和验收、运行维护、技改和报废设备全寿命周期角度提出了具体的技术措施。
第四条本规定适用于安徽省电力公司系统所属交流输变电设备,直流系统可参照执行。
第二章规范性引用技术文件以下为本技术规定所引用的国家、行业和企业的标准及规范,但不仅限于此:GB 50150 电气装置安装工程电气设备交接试验标准GB 311.1高压输变电设备的绝缘配合GB/T 311.2 绝缘配合第2部分:高压输变电设备的绝缘配合使用导则GB 11032 交流无间隙金属氧化物避雷器GB/T 17949.1 接地系统的土壤电阻率、接地阻抗和地面电位测量导则第一部分:常规测量DL/T 475 接地装置工频特性参数的测量导则DL/T 620 交流电气装置的过电压保护和绝缘配合DL/T 621 交流电气装置的接地DL/T 815 交流输电线路用复合外套金属氧化物避雷器DL/T 804 交流电力系统金属氧化物避雷器使用导则DL / T 474.5 现场绝缘试验实施导则:避雷器试验国家电网公司十八项重大反事故措施安徽电网电力设备预防性试验规程安徽电力通信站过电压保护标准第三章输电线路第五条在线路初设阶段,应收集线路路径区域内的雷电活动历史资料,并结合所途经单位提供的运行经验,优化路径,尽可能避开雷电活动强烈地区,必要时开展专题分析,采取相应的防雷措施。
第六条根据土壤电阻率,优化地网设计,尽可能降低杆塔接地阻抗。
第七条线路避雷器的选用应满足DL/T 815-2002的要求,并选择通过产品鉴定、具有良好运行业绩的制造厂的产品。
第八条架空地线的接地方式应综合考虑感应损耗和防雷效果等因素,雷害严重地区应采用直接接地方式。
第八章防雷接地系统8.1概述众所周知,雷电具有极大的破坏性,其电压高达数百万伏,瞬间电流可高达数十万安培。
雷击所造成的破坏性后果体现于下列三种层次:①设备损坏,人员伤亡;②设备或元器件寿命降低;③传输或储存的信号、数据(模拟或数字)受到干扰或丢失,甚至使电子设备产生误动作而暂时瘫痪或整个系统停顿。
目前,世界上各种建筑、设施大多数仍在使用传统的避雷针防雷。
用避雷针防止直接雷击实践证明是经济和有效的。
但是,随着现代电子技术的不断发展,大量精密电子设备的使用和联网,避雷针对这些电子设备的保护却显得无能为力。
避雷针不能阻止感应雷击过电压、操作过电压以及雷电波入侵过电压,而这类过电压却是破坏大量电子设备的罪魁祸首。
现代防雷技术系统的防雷方案包括外部防雷和内部防雷两个方面:外部防雷包括避雷针、避雷带、引下线、接地极等等,其主要的功能是为了确保建筑物本体免受直击雷的侵袭,将可能击中建筑物的雷电通过避雷针、避雷带、引下线等,泄放入大地。
内部防雷系统是为保护建筑物内部的设备以及人员的安全而设置的。
通过在需要保护设备的前端安装合适的防雷器,使设备、线路与大地形成一个有条件的等电位体。
将可能进入的雷电流阻拦在外,将因雷击而使内部设施所感应到的雷电流得以安全泄放入地,确保后接设备的安全。
避雷带、引下线(建筑物钢筋)和接地等构成的外部防雷系统,主要是为了保护建筑物本体免受雷击引起的火灾事故及人身安全事故,而内部防雷系统则是防止感应雷和其他形式的过电压侵入设备造成损坏,这是外部防雷系统无法保证的。
8.2防雷方案设计依据(1)建筑物防雷设计规范GB50057-94(2)电子计算机机房设计规范GB50174-93(3)民用建筑电气设计规范JGJ/T16-92(4)计算站场地安全要求GB9361-88(5)计算站场地技术文件GB2887-89(6)计算机信息系统防雷保安器GA173-1998(7)雷电电磁脉冲的防护IECI312(8)微波站防雷与接地设计规范YD 2011-93(9)通信局(站)接地设计暂行技术规定YDJ26E98.3雷害的途径分析雷电对电气设备的影响,主要由以下四个方面造成:①直击雷;②传导雷;③感应雷;④开关过电压。