固体比表面积的测定—溶液吸附法
- 格式:doc
- 大小:49.00 KB
- 文档页数:5
实验五 溶液吸附法测固体比表面积一、实验目的:1.了解溶液吸附法测定固体比表面的优缺点。
2.掌握溶液吸附法测定固体比表面积的基本原理和测定方法。
3.用亚甲基蓝水溶液吸附法测定活性碳、硅藻土、碱性层析氧化铝比表面积。
二、实验原理:① Langmuir 吸附定律:在一定温度下以及一定的浓度范围内,大多数固体对次甲基蓝的吸附是单分子层吸附,与固体对气体的吸附很相似,可用Langmuir 单分子层吸附模型来处理。
Langmuir 吸附理论的基本假定是:a) 固体表面是均匀的;b) 吸附是单分子层吸附;c) 被吸附在固体表面上的分子相互之间无作用力;d) 吸附剂一旦被吸附质覆盖就不能被再吸附;e) 吸附平衡时,吸附和脱附建立动态平衡;f) 吸附平衡前,吸附速率与空白表面成正比,解吸速率与覆盖度成正比。
根据以上假定,推导出吸附方程:设固体表面的吸附位总数为N ,覆盖度为θ,溶液中吸附质的浓度为c ,根据上述假定,有?)c (kr= kN (1-为吸附速率常数) 吸附速率: 1 1吸? = rkN(k 为脱附速率常数)脱附速率: -1 -1脱?? N = N (1-k )c 当达到吸附平衡时: r= r 即 k -11 脱吸Kc :由此可得 (1)吸 θ? 1?Kc 吸式中K=k/k 称为吸附平衡常数,其值决定于吸附剂和吸附质的性质及温11-吸度,K 值越大,固体对吸附质吸附能力越强。
若以q表示浓度c 时的平衡吸附量,吸? =q/: q 以q 表示全部吸附位被占据时单分子层吸附量,即饱和吸附量,则?? q 代入式(1)得)(2 式中:K 为吸附作用的平衡常数,也称为吸附系数,与吸附质、吸附剂性质及温度有关,其值越大,则表示吸附能力越强;q 为平衡吸附量,1g 吸附剂达吸附平衡时,吸附的溶质的物质的量(mg/g );q 为饱和吸附量,1g 吸附剂的表面∞上盖满一层吸附质分子时所能吸附的最大量(mg/g );c 为达到吸附平衡时,溶 质在溶液本体中的平衡浓度。
实验6 溶液吸附法测定固体吸附剂的比表面积注意事项:1.吸附用溶液和标准溶液均需精确配制。
2.活性炭颗粒应均匀,且称重应尽量接近,称量速度要快。
3.实验所用活性炭位于马弗炉里,磨口小试管位于靠窗口的烘箱中。
实验步骤:1.活化样品:称取给定活性炭约 1 g,置于磨口瓶中。
将电子恒温干燥箱的接触温度计调至200 ℃,将称好的活性炭放入,恒温1-2 h。
(已提前由老师准备好)2.亚甲基蓝溶液A的稀释:用刻度移液管分别取2.00 mL、2.50 mL、3.00 mL、3.50 mL和4.00 mL亚甲基蓝溶液A于5个已洗净的10 mL 容量瓶中,用去离子水稀释到刻度,摇匀备用。
3.溶液吸附:从靠窗口的恒温干燥箱中取出活性炭立即放入干燥器中,待凉至室温后取出,用电子分析天平迅速称取5份各20.0 mg活性炭,放入已洗净烘干的磨口小试管中(烘干的试管位于靠窗口的烘箱里),倒入步骤2中已稀释好的各溶液,迅速塞上塞子。
放入振荡器中恒温(20-30℃)振荡2h.4. 配制标准溶液:用刻度移液管分别取2.00 mL、4.00 mL、6.00 mL、8.00 mL、10.00 mL和12.00 mL亚甲基蓝溶液B于6个已洗净的50 mL容量瓶中,用去离子水稀释到刻度,摇匀备用。
5.取上述标准溶液1份,以去离子水为空白液,测定最大吸收波长λmax。
该波长即为工作波长。
在此波长下,测不同浓度标准溶液的吸光度。
6.待步骤3振荡结束后取出磨口瓶,静置使活性炭沉淀。
取上层清液放入离心管内,离心分离5-10分钟。
将澄清溶液注入比色皿内(注意5份溶液的编号不要乱!)7.在步骤5所测得最大吸收波长下测5份待测液的吸光度,再根据标准工作曲线求出各平衡溶液的浓度。
数据处理:1.绘制A~c工作曲线。
2.由工作曲线确定吸附平衡后各溶液的浓度,并计算相应浓度对应的吸附量。
3.作c / ~ c图,由直线斜率求出饱和吸附量。
4.依据式(6-3)计算活性炭的质量表面积A m。
实验目的:1.了解固体比表面积的测定方法;2.掌握溶液吸附法的原理和操作步骤;3.掌握实验数据的处理和结果分析方法。
实验原理:1.固体比表面积是指单位质量的固体样品所具有的表面积,通常用平方米/克来表示;2.溶液吸附法是利用气体或液体在样品表面上的吸附作用来测定固体比表面积的一种方法;3.溶液吸附法的基本原理是通过在较低温度下,用已知浓度的试剂溶液对固体样品进行吸附,然后通过测定吸附剂溶液中溶质的浓度变化,计算出固体比表面积。
实验仪器和药品:1.比表面积测定仪;2.甲醛溶液;3.乙二醇溶液。
实验步骤:1.将测定仪清洗干净,并将样品装入测定仪中;2.根据实验要求,选择合适的试剂溶液,并将溶液装入测定仪;3.在恒定温度下,将溶液加入测定仪中,并记录下溶质浓度变化的数据;4.根据实验数据,计算出固体比表面积。
实验数据处理与结果分析:1.将实验得到的数据进行整理和处理,获得准确的吸附剂溶液中溶质浓度变化曲线;2.根据吸附剂溶液中溶质浓度的变化,计算出固体的比表面积;3.对比不同样品的比表面积数据,进行结果分析和讨论。
结论:在本实验中,我们通过溶液吸附法成功地测定了固体样品的比表面积,并获取了准确的实验数据。
通过对比不同样品的比表面积数据,可以得出结论:溶液吸附法是一种简单、快捷、准确的测定固体比表面积的方法。
我们还发现不同样品的比表面积差异较大,说明样品的性质和制备方法对比表面积有较大的影响。
实验中存在的问题和改进方法:1.实验中部分数据出现了较大的误差,可能是由于实验操作不规范或仪器设备故障引起的。
在以后的实验中,应该加强对仪器设备的维护和保养,同时要注意在实验操作过程中要严格按照操作规程进行;2.在实验操作中,应该严格控制实验条件,确保溶液的浓度和温度等因素的稳定,从而获得更加准确可靠的实验数据。
实验的意义和应用价值:1.固体比表面积是一个重要的物理学特性参数,对于催化剂、吸附剂等材料的性能评价具有重要意义;2.溶液吸附法作为一种常用的测定固体比表面积的方法,具有操作简单、结果准确和易于控制实验条件等优点,因此具有较高的实用价值和广泛的应用前景。
固体从溶液中的吸附实验报告院(系)生化系年级 10级专业化工姓名学号课程名称物化实验实验日期 2012 年 11月 29 日实验地点 3栋指导老师一、实验目的:1·熟悉溶液吸附法测定固体比表面的原理和实验方法。
2•测定活性炭的比表面。
二、实验原理:吸附能力的大小常用吸附量Γ表示之。
Γ通常指每克吸附剂上吸附溶质的物质的量。
吸附量Γ的大小与吸附平衡时溶质的浓度C有关,常用的关联式有两个:(1)Freundlich经验公式:式中,x 表示吸附溶质的物质的量(mol);m 表示吸附剂的质量(g);c 表示吸附平衡时溶液的浓度(mol/L);k,n表示经验常数,由温度、溶剂、吸附质与吸附剂的性质决定。
以lg Γ对lgc 作图可得一直线,由直线的斜率和截距可求得n 和k。
(2)Langmuir吸附方程:式中,Γ∞表示饱和吸附量;C 表示吸附平衡时溶液的浓度;K 为常数.用c/Γ对c 作图得一直线,由此直线的斜率和截距可求得Γ∞,并进一步计算出吸附剂的比表面积S 0S 0(m 2/g)=三、实验准备:1.仪器:电动振荡器、分析天平、碱式滴定管、带塞锥形瓶(5个)、移液管、锥形瓶2:药品:活性炭;HAC(0.4mol ·ml -3);NaOH (0.1mol ·ml -3);酚酞指示剂。
四、实验步骤: 1.3.4. 五、注意事项1.溶液的浓度配制要准确,活性炭颗粒要均匀并干燥2. 醋酸是一种有机弱酸,其离解常数Ka = 1.76×10-5 ,可用标准碱溶液直接滴定,化学计量点时反应产物是NaAc ,是一种强碱弱酸盐,其溶液pH 在8.7 左右,酚酞的颜色变化范围是8-10,滴定终点时溶液的pH 正处于其内,因此采用酚酞做指示剂,而不用甲基橙和甲基红。
直到加入半滴NaOH 标准溶液使试液呈现微红色,并保持半分钟内不褪色即为终点。
3.变红的溶液在空气中放置后,因吸收了空气中的CO2,又变为无色。
固液吸附法测定比表面思考题一、引言二、固液吸附法的原理和方法1. 原理2. 方法三、比表面的概念和计算方法1. 概念2. 计算方法四、固液吸附法测定比表面的步骤及注意事项1. 步骤2. 注意事项五、固液吸附法测定比表面的优缺点及应用前景1. 优点2. 缺点3. 应用前景六、结论一、引言比表面是材料科学中一个重要的物理量,它反映了单位质量或单位体积材料表面积的大小,是研究材料物理化学性质和应用性能的基础。
因此,测定材料比表面是许多领域研究中必不可少的工作。
固液吸附法是常用的测定材料比表面积的方法之一,本文将对该方法进行详细介绍。
二、固液吸附法的原理和方法1. 原理固液吸附法是利用气体分子在固体表面上发生吸附现象来测定固体比表面积的方法。
当气体分子在固体表面上发生吸附时,会占据一定的表面积,因此可以通过测量吸附剂在固体表面上所占据的面积来计算固体比表面积。
2. 方法固液吸附法一般采用液态吸附剂,如水、乙醇等。
其具体操作步骤如下:(1)将待测样品置于吸附瓶中;(2)向瓶中加入一定量的液态吸附剂;(3)在一定温度下静置一段时间,使吸附平衡达到稳定;(4)取出瓶中样品,用滤纸或其他方法去除多余的液态吸附剂,并称重;(5)根据液态吸附剂在样品表面上所占据的面积计算出样品比表面积。
三、比表面的概念和计算方法1. 概念材料比表面是指单位质量或单位体积材料内部和外部界面总和。
它是材料物理化学性质和应用性能的基础,与催化反应、传质、电化学反应等密切相关。
2. 计算方法材料比表面的计算方法根据不同的测定方法而异。
在固液吸附法中,比表面的计算公式如下:S = (m2 - m1) / (ρV)其中,S为比表面积,m1为样品质量,m2为样品与吸附剂共同质量,ρ为吸附剂密度,V为吸附剂体积。
四、固液吸附法测定比表面的步骤及注意事项1. 步骤固液吸附法测定比表面的步骤主要包括:(1)准备好待测样品和液态吸附剂;(2)将待测样品置于吸附瓶中;(3)向瓶中加入一定量的液态吸附剂;(4)在一定温度下静置一段时间,使吸附平衡达到稳定;(5)取出瓶中样品,用滤纸或其他方法去除多余的液态吸附剂,并称重;(6)根据液态吸附剂在样品表面上所占据的面积计算出样品比表面积。
实验七溶液吸附法测定固体比表面积一、实验目的1.用次甲基蓝水溶液吸附法测定颗粒活性碳的比表面。
2.了解Langmuir单分子层吸附理论及溶液法测定比表面的基本原理。
3.了解722型光电分光光度计的基本原理并熟悉其使用方法。
二、实验原理根据光吸收定律,当入射光为一定波长的单色光时,某溶液的吸光度与溶液中有色物质的浓度及溶液层的厚度成正比:A=lg(I0/I)=KCL式中A为吸光度,I0为入射光强度,I为透射光强度,K为消光系数,c为溶液浓度,L为液层厚度。
一般来说光的吸收定律可适用于任何波长的单色光,但同一种溶液在不同波长所测得的吸光度不同,如果把吸光度A对波长λ作图可得到溶液的吸收曲线,为了提高测量的灵敏度,工作波长一般选在A值最大处。
次甲基蓝在可见区有两个吸收峰,445nm和Array 665nm;但在445nm处,活性碳吸附对吸收峰有很大的干扰,故本实验选用的工作波长为665nm。
水溶液染料的吸附已用于固体比表面的测定,在所有染料中次甲基蓝具有最大的吸附倾向。
研究表明,在一定的浓度范围之内,大多数固体对次甲基蓝的吸附是单分子吸附,即符合朗格缪尔型(图7—1)。
但当原始溶液的浓度过高时,会出现多分子层吸附,而如果平衡后的浓度过低,吸附又不能达到饱和,因此原始溶液的浓度以及吸附平衡后的浓度都应选择在适当的范围之内,本实验原始溶液的浓度为0.2%左右,平衡溶液浓度不小于0.1%。
次甲基蓝具有以下矩形平面结构:阳离子大小为17.0×7.6×3.25×10-30m2。
次甲基蓝的吸附有三种取向:平面吸附投影面积为135×10-20m2;侧面吸附投影面积为75×10-20m2;端基吸附投影面积为39×10-20m2;;对于非石墨型的活性碳,次甲基蓝是以端基吸附取向。
根据实验结果推算,在单层吸附的情况下,1毫克次甲基蓝复盖的面积可按2.45米2计算。
物理化学实验报告院系化学院环境工程学院班级 0409402学号 23姓名张玉日期 2011/11/24同组者姓名张永胜实验二十 固液吸附法测定比表面Ⅰ.次甲基蓝在活性炭上的吸附一、实验目的1.用溶液吸附法测定活性炭的比表面。
2.了解溶液吸附法测定比表面的基本原理。
二、预习要求1.掌握比表面的概念及其计算式。
2.明确实验所测各个物理量的意义,并掌握测定方法。
三、实验原理比表面是指单位质量(或单位体积)的物质所具有的表面积,其数值与分散粒子大小有关。
测定固体比表面的方法很多,常用的有BET 低温吸附法、电子显微镜法和气相色谱法,但它们都需要复杂的仪器装置或较长的实验时间。
而溶液吸附法则仪器简单,操作方便。
本实验用次甲基蓝水溶液吸附法测定活性炭的比表面。
此法虽然误差较大,但比较实用。
活性炭对次甲基蓝的吸附,在一定的浓度范围内是单分子层吸附,符合朗格缪尔(Langmuir)吸附等温式。
根据朗格缪尔单分子层吸附理论,当次甲基蓝与活性炭达到吸附饱和后,吸附与脱附处于动态平衡,这时次甲基蓝分子铺满整个活性粒子表面而不留下空位。
此时吸附剂活性炭的比表面可按下式计算:()060C C G S 2.4510W-=⨯⨯ (1)式中,S 0为比表面(m 2·kg -1);C 0为原始溶液的质量分数;C 为平衡溶液的质量分数;G 为溶液的加入量(kg);W 为吸附剂试样质量(kg);2.45×106是1kg 次甲基蓝可覆盖活性炭样品的面积(m 2·kg -1)。
本实验溶液浓度的测量是借助于分光光度计来完成的,根据光吸收定律,当入射光为一定波长的单色光时,某溶液的光密度与溶液中有色物质的浓度及溶液的厚度成正比,即: E=KCL 。
式中,E 为光密度;K 为常数;C 为溶液浓度;L 为液层厚度。
实验首先测定一系列已知浓度的次甲基蓝溶液的光密度,绘出E—C工作曲线,然后测定次甲基蓝原始溶液及平衡溶液的光密度,再在E—C曲线上查得对应的浓度值,代入(1)式计算比表面。
固液吸附法测定固体比表面积(6学时) 综合性实验教学及实验内容:基本要求:用亚甲基蓝水溶液吸附法测定颗粒活性炭的比表面积;了解朗谬尔(Langmuir )单分子层吸 附理论及溶液法测定比表面积的基本原理 重 点:掌握溶液法测定比表面积的基本原理和方法。
难 点:溶液法测定比表面积的基本原理。
实验 固液吸附法测定固体比表面积(6学时)一、实验目的1、掌握用固液吸附法测定活性炭的比表面积基本原理和方法。
2、掌握分光光度计的工作原理及使用方法。
二、实验原理比表面积是指单位质量(或单位体积)的物质所具有的表面积,其数值与分散粒子大小有关。
测定固体比表面的方法很多,常用的有BET 低温吸附法、电子显微镜法和气相色谱法,但它们都需要复杂的仪器装置或较长的实验时间。
而固液吸附法则仪器简单,操作方便,还可以同时测定许多个样品。
活性炭对亚甲基蓝的吸附,在适当的浓度范围内是单分子层吸附,符合朗格缪尔吸附等温式。
当亚甲基蓝与活性炭达到饱和吸附后,吸附与脱附处于动态平衡,这时亚甲基蓝分子铺满整个活性炭粒子表面而不留下空位。
吸附剂活性炭的比表面可按下式计算:600() 2.4510c c VS W-=⨯⨯ (1)式中,S 0为比表面积(m 2/kg),c 0为原始溶液的浓度(kg /L),c 为平衡溶液的浓度(kg /L),V 为溶液的加入量(L),W 为吸附剂试样质量(kg),2.45×106代表单分子层吸附的情况下每kg 亚甲基蓝可以覆盖活性炭样品的面积(m 2/kg)。
本实验通过分光光度法测定测定亚甲基蓝原始溶液及吸附平衡时溶液的吸光度,在工作曲线上查得相应的浓度,由上式即可计算活性炭比表面积。
三、主要仪器与试剂1. 仪器: 722型分光光度计及其附件一套,(共用) SX2-4-13箱式电阻炉一台(共用),HY -3多功能调速振荡器一台(共用),砂芯漏斗,100mL 容量瓶5个,500mL 容量瓶2个,250mL 带塞磨口锥形瓶1个 50mL 移液管1支,10mL 刻度移液管1支2. 试剂:亚甲基蓝原始溶液(2g/L ),亚甲基蓝标准溶液(0.1g/L ),颗粒活性炭(非石墨型)若干,四、实验步骤1. 样品的活化将颗粒活性炭置于瓷坩锅中,放入箱式电阻炉内,500℃下活化1h(或在真空烘箱中300℃下活化1h),然后放入干燥器中备用。
实验三十 溶液吸附法测固体比表面积一、实验目的1.用次甲基兰水溶液吸附法测定颗粒活性炭的比表面积。
2.了解朗缪尔单分子层吸附理论及用溶液法测定比表面的基本原理。
二、实验原理在一定温度下.固体在某些溶液中的吸附与固体对气体的吸附很相似,可用朗缪尔(Langmuir )单分子层吸附方程来处理。
Langmuir 吸附理论的基本假定是:固体表面是均匀的.吸附是单分子层吸附,被吸附在固体表面上的分子相互之间无作用力,吸附平衡是动态平衡;根据以上假定.推导出吸附方程1KcKc∞Γ=Γ+ (1)式中11k K k -=——吸附作用的平衡常数,也称吸附系数,与吸附质、吸附剂性质及温度有关,其值愈大,则表示吸附能力愈强,具有浓度倒数的量纲。
Γ——平衡吸附量,1g 吸附剂达吸附平衡时,吸附溶质的物质的量(mol ·g -1); ∞Γ——饱和吸附量,1g 吸附剂的表面上盖满一层吸附质分子时所能吸附的最大量(mol ·g -1)。
c ——达到吸附平衡时.溶质在溶液本体中的平衡浓度(mol ·L -1)。
将式(1)整理,得1111K c∞∞=+ΓΓΓ (2) 以1Γ对1c作图得一直线,由此直线的斜率和截距可求得∞Γ和常数K 。
根据∞Γ的数值A N A S ∞Γ比= (3)式中 A N ——阿伏加德罗常数;A ——吸附质分子的截面积(m 2); 活性炭是一种固体吸附剂,而作为染料的次甲基兰具有最大的吸附倾向。
研究表明,在一定的浓度范围内,大多数固体对次甲基兰的吸附是单分了层吸附符合朗缪尔吸附理论。
本实验以活性炭为吸附剂,将定量的活性炭与一定量的几种不同浓度的次甲基兰相混,在常温下振荡,使其达到吸附平衡。
用分光光度计测量吸附前后次甲基兰溶液的浓度。
从浓度的变化可以求出每克活性炭吸附次甲基兰的吸附量Γ。
0()c c Vm-Γ=(4) 式中 V ——吸附溶液的总体积(L);m ——加入溶液的吸附剂质量(g);c 和0c ——平衡浓度和原始浓度(mol ·L -1)。
溶液吸附法测固体吸附剂比表面积结果分析田福平;张艳娟;姚云龙;武烨;盛炳琛;刘潇彧【摘要】溶液吸附法测定活性炭的比表面积是研究多孔材料表面吸附的一个经典实验,但其实验结果往往与N2吸附方法存在较大差异.给出两种方法的测量结果,并从吸附剂的孔道和表面性质、吸附质的分子大小和吸附预处理、吸附过程等方面详细分析了导致结果差异的主要因素.该实验的进行,加深了学生对相关知识的理解,并提高了学生分析问题和解决问题的能力.【期刊名称】《实验室科学》【年(卷),期】2017(020)006【总页数】4页(P25-28)【关键词】活性炭;亚甲基蓝;溶液吸附;比表面积【作者】田福平;张艳娟;姚云龙;武烨;盛炳琛;刘潇彧【作者单位】大连理工大学化工与环境生命学部化学学院, 辽宁大连 116024;大连理工大学化工与环境生命学部化学学院, 辽宁大连 116024;大连理工大学化工与环境生命学部化学学院, 辽宁大连 116024;大连理工大学化工与环境生命学部化学学院, 辽宁大连 116024;大连理工大学化工与环境生命学部化学学院, 辽宁大连 116024;大连理工大学化工与环境生命学部化学学院, 辽宁大连 116024【正文语种】中文【中图分类】G482“溶液吸附法测定固体吸附剂比表面积”是物理化学实验开设的实验项目之一,是研究多孔材料表面吸附的一种重要手段[1-2]。
学生在做完实验后,往往将实验计算结果与用低温N2吸附法得到的结果对照。
面对两种实验方法所得结果之间的巨大差异,学生难免存在疑问:结果差异的来源是什么?能否用实验操作原因来简单解释此结果差异?为了客观地回答学生的疑问,我们指导学生一方面大量查阅相关文献,获得影响实验结果因素的初步认识;另一方面,设计了几组对比实验,探讨一些实验因素对测试结果的影响。
该过程的进行,不仅拓展了本科生的专业知识,而且培养了他们解决问题的能力,并提高了学生的综合能力,这正是实验教学的主要目的之一[3-6]。
溶液吸附法测定固体比表面积实验报告引言固体比表面积是一个重要的物理化学性质,它与物质的吸附、催化、光学等性质密切相关。
溶液吸附法是一种常用的测定固体比表面积的方法,通过测量物质在固液界面上的吸附行为来推导固体比表面积。
本实验旨在利用溶液吸附法测定固体比表面积,并通过实验结果验证该方法的可行性和准确性。
实验原理溶液吸附法是一种通过测量溶液中被固体颗粒吸附的物质质量来间接测定固体比表面积的方法。
其基本原理是:在溶液中,固体颗粒与溶质之间会发生吸附作用,吸附量与固体颗粒的比表面积成正比。
通过测量吸附量和溶液中溶质的浓度,可以计算出固体颗粒的比表面积。
根据等温吸附原理,溶质吸附到固体表面上的量与溶液中溶质的浓度之间存在着一定的关系。
在一定浓度范围内,溶液中溶质的浓度与其在固体表面上的吸附量呈线性关系。
利用这一关系,可以通过测量溶液中溶质的浓度变化来间接测定固体比表面积。
本实验采用了特定的溶质(如亚甲基蓝)作为指示剂,通过测量溶质浓度的变化来间接测定固体比表面积。
实验材料与方法实验材料:固体样品(如活性炭或硅胶)亚甲基蓝溶液乙酸钠溶液去离子水实验方法:1.准备工作:将固体样品研磨成粉末,并在110℃的烘箱中预热2小时,以去除已吸附的水分和其他杂质。
准备一定浓度的亚甲基蓝溶液。
准备一定浓度的乙酸钠溶液。
2.实验步骤:1.取一定质量的固体样品,并将其加入一个已知体积的容器中,记录下固体样品的质量和容器的初始质量。
2.向容器中加入一定体积的亚甲基蓝溶液,并充分搅拌,使固体样品充分与溶液接触。
然后将容器密封,并在一定时间间隔内进行摇动,以达到吸附平衡。
3.取出溶液中一定体积的样品,并用去离子水稀释至一定体积,得到稀释后的溶液。
4.在稀释后的溶液中添加一定体积的乙酸钠溶液,用于还原亚甲基蓝。
5.使用分光光度计测量溶液中亚甲基蓝的吸光度,并记录下吸光度值。
6.根据已知浓度的亚甲基蓝溶液的吸光度和样品溶液的吸光度,计算出溶液中亚甲基蓝的浓度。
溶液吸附法测固体比表面积
由实验结果看到,该吸附剂的比表面积不是很大。
这与所用的活性碳为颗粒状有关。
颗粒状的活性炭吸附能力较弱,吸附平衡需要的时间更长。
由于粒径较大,可以直接用玻璃漏斗过滤,否则若用粉末状的活性炭,需要使用其它方法过滤。
分光光度法的应用不限于可见光区,可以扩大到紫外和红外区,因此对于一系列没有颜色的物质也可以应用。
同时,还可以在同一样品中,对两种以上的物质(不需预先分离)进行测量。
由于吸收光谱实际上决定于物质内部结构和相互作用,一次该法还有助于了解溶液中分子结构及溶液中发生的各种相互作用(如离解、络合、氢键等性质)。
有几组溶液,由于其浓度过大,导致吸光度较大,超出量程,无法测量,需要二次稀释,这样会增加实验误差。
在以后的实验中,可根据已有经验,在开始时候,主要选择合适的稀释倍数,使得吸光度的值在正常范围内。
— 1 —。
固体比表面积的测定——溶液吸附法一、目的要求1. 学会用次甲基蓝水溶液吸附法测定活性炭的比表面积。
2. 了解郎缪尔单分子层吸附理论及溶液法测定比表面积的基本原理。
二、基本原理溶液的吸附可用于测定固体比表面积。
次甲基蓝是易于被固体吸附的水溶性染料,研究表明,在一定浓度范围内,大多数固体对次甲基蓝的吸附是单分子层吸附,符合郎缪尔吸附理论。
郎缪尔吸附理论的基本假设是:固体表面是均匀的,吸附是单分子层吸附,吸附剂一旦被吸附质覆盖就不能被再吸附;在吸附平衡时候,吸附和脱附建立动态平衡;吸附平衡前,吸附速率与空白表面成正比,解吸速率与覆盖度成正比。
设固体表面的吸附位总数为N ,覆盖度为θ,溶液中吸附质的浓度为c ,根据上述假定,有吸附速率: r 吸 = k 1N (1-θ)c (k 1为吸附速率常数) 脱附速率: r 脱 = k -1N θ (k -1为脱附速率常数)当达到吸附平衡时: r 吸 = r 脱 即 k 1N (1-θ)c = k -1N θ由此可得: c K cK 吸吸+=1θ (2-25-1)式中K 吸=k 1/k -1称为吸附平衡常数,其值决定于吸附剂和吸附质的性质及温度,K 吸值越大,固体对吸附质吸附能力越强。
若以Γ表示浓度c 时的平衡吸附量,以Γ∞表示全部吸附位被占据时单分子层吸附量,即饱和吸附量,则: θ =Γ /Γ∞带入式(2-25-1)得 cK cK 吸吸+=∞1ΓΓ (2-25-2)整理式(2-25-2)得到如下形式c K c∞∞+=ΓΓΓ11吸 (2-25-3)作c /Γ~c 图,从直线斜率可求得Γ∞,再结合截距便可得到K 吸。
Γ∞指每克吸附剂对吸附质的饱和吸附量(用物质的量表示),若每个吸附质分子在吸附剂上所占据的面积为σA ,则吸附剂的比表面积可以按照下式计算S =Γ∞L σA (2-25-4)式中S 为吸附剂比表面积,L 为阿伏加德罗常数。
次甲基蓝的结构为:阳离子大小为17.0 ×7.6× 3.25 ×10-30 m3次甲基蓝的吸附有三种取向:平面吸附投影面积为135×10–20m 2,侧面吸附投影面积为75×10–20m 2,端基吸附投影面积为39×10–20m 2。
实验报告溶液吸附法测固体比表面积一、实验目的:1.用次甲基蓝水溶液吸附法测定颗粒活性炭的比表面积。
2.了解朗缪尔单分子层吸附理论及用溶液法测定比表面的基本原理。
二、实验原理见预习报告三.仪器和试剂:1、仪器722型光电分光光度计及其附件1台;康氏振荡器1台;容量瓶(500mL)6个;容量瓶(50mL,100mL)各5个;2号砂心漏斗1只,带塞锥形瓶(100mL)5个;滴管若干;移液管若干。
2、试剂次甲基蓝(质量分数分别为0.2%和0.1%的原始溶液和标准溶液);颗粒状非石墨型活性炭。
四、实验步骤:1.样品活化:将颗粒活性炭置于瓷坩埚中,放入500℃马弗炉中活化1h,然后置于干燥器中备用。
试验中用到的活性炭为颗粒状,已经由老师制备好,此步骤略去。
2.平衡溶液:取5个洁净干燥的100mL带塞锥形瓶,编号,分别准确称取活性炭约0.1g 置于瓶中,记录活性炭的用量。
按下表中的数据配制不同浓度的次甲基蓝溶液,然后塞上磨口瓶塞,放置在振荡器上振荡适当时间,振荡速率以活性炭可翻动为(实验所用振荡器100r左右为宜)吸附样品编号 1 2 3 4 5 V(w0.2%次甲基蓝溶30 20 15 10 5液)/mLV(蒸馏水)/mL 20 30 25 40 45 样品振荡达到平衡后,将锥形瓶取下,用玻璃漏斗(塞上棉花)过滤,得到吸附平衡后溶液。
分别量取滤液1g,放入500mL容量瓶中,并用蒸馏水稀释至刻度,待用。
3.原始溶液为了准确称取质量分数约为0.2%的次甲基蓝原始溶液(此浓度为一近似值,故需进一步测量),称取1g溶液放入500mL容量瓶中,并用蒸馏水稀释至刻度,待用。
4.次甲基蓝标准溶液的配制用移液管吸取0.5mL,1mL,1.5mL,2mL,2.5mL质量分数0.01%标准次甲基蓝溶液于100mL容量瓶中。
用蒸馏水稀释至刻度,即得2×10-6、4×10-6、6×10-6、8×10-6、10×10-6的标准溶液,待用。
实验五溶液吸附法测定固体比表面积一、实验目的了解Langmuir吸附理论及溶液法测定比表面积的基本原理二、实验原理比表面积是粉末及多孔性物质的一个重要特性参数。
它在催化、色谱、环保及纺织等生产和科研部门有着广泛的应用。
测定比表面积的方法有电子显微镜法、色谱法及BET法。
常用BET法(又分静态法和动态法),但仪器及数据处理复杂是其缺点。
而本法所用仪器简单,操作方便。
本实验采用亚甲蓝染料水溶液吸附法测定硅胶的比表面积,亚甲蓝具有很强的吸附倾向,可被大多数固体物质吸附,在一定条件下为单层吸附,该吸附具有Langmuir吸附特征。
根据Langmuir理论,当吸附达饱和时,吸附质(亚甲蓝)分子铺满整个吸附剂(硅胶)表面而不留下空位。
此时,单位质量的吸附质分子所占的面积就等于被吸附的吸附质的分子数与每个分子在表面层所占面积的乘积。
通常通过测定吸附质的重量而求得吸附质分子数。
按下式计算吸附剂的比表面积S(m2/g):S=Γ∞N A A/ΓM 5-1式中:M为吸附质分子量(亚甲蓝的分子量为373.88),N A为阿弗伽德罗常数(6.0222 ×1023),Γ为吸附剂的质量(g),Γ∞为吸附达饱和时吸附质的质量(g),A为吸附质(亚甲蓝)分子吸附投影面积。
亚甲蓝易溶于水呈天蓝色,在空气中较稳定,不易受吸附剂酸碱性的影响。
亚甲蓝水溶液在445nm和665nm处具有吸收峰,用紫外分光光度计测定吸附前后溶液吸收度值的变化,求出Γ∞。
由于亚甲蓝分子具有矩形结构,分子长16.0 Å,宽8.4 Å,最小的宽度为4.7 Å,如下图所示:它吸附于吸附剂上有三种取向,平面吸附投影面积为135 Å2,侧面吸附投影面积为75 Å2,端积吸附投影面积为39.5 Å2。
因此,对于不同吸附剂或同种吸附剂的不同条件,吸附取向不同,投影面积也不同,测得的A也不同。
所以实验时要严格控制实验条件的一致。
实验十一 溶液吸附法测定固体比表面积
一、目的要求
1. 学会用次甲基蓝水溶液吸附法测定活性炭的比表面积。
2. 了解郎缪尔单分子层吸附理论及溶液吸附法测定比表面积的基本原理。
二、重点与难点
1.单分子层吸附理论
2.溶液吸附法测定比表面积的原理
三、基本原理
溶液的吸附可用于测定固体比表面积。
次甲基蓝是易于被固体吸附的水溶性染料,研究表明,在一定浓度范围内,大多数固体对次甲基蓝的吸附是单分子层吸附,符合郎缪尔吸附理论。
郎缪尔吸附理论的基本假设是:固体表面是均匀的,吸附是单分子层吸附,吸附剂一旦被吸附质覆盖就不能被再吸附;在吸附平衡时候,吸附和脱附建立动态平衡;吸附平衡前,吸附速率与空白表面成正比,解吸速率与覆盖度成正比。
设固体表面的吸附位总数为N ,覆盖度为θ,溶液中吸附质的浓度为c ,根据上述假定,有
吸附速率: r 吸 = k1N(1-θ)c (k1为吸附速率常数)
脱附速率: r 脱 = k-1N θ (k-1为脱附速率常数)
当达到吸附平衡时: r 吸 = r 脱 即 k1N(1-θ)c = k-1N θ
由此可得: c K c
K 吸吸+=1θ (2-25-1)
式中K 吸=k1/k-1称为吸附平衡常数,其值决定于吸附剂和吸附质的性质及温度,K 吸值越大,固体对吸附质吸附能力越强。
若以Γ表示浓度c 时的平衡吸附量,以Γ∞表示全部吸附位被占据时单分子层吸附量,即饱和吸附量,则: θ =Γ /Γ∞
代入式(2-25-1)得 c K c K 吸吸+=∞1ΓΓ (2-25-2)
整理式(2-25-2)得到如下形式
c K c
∞∞+=ΓΓΓ11吸 (2-25-3)
作c/Γ~c 图,从直线斜率可求得Γ∞,再结合截距便可得到K 吸。
Γ∞指每克吸附剂对吸附质的饱和吸附量(用物质的量表示),若每个吸附质分子在吸附剂上所占据的面积为σA ,则吸附剂的比表面积可以按照下式计算
S=Γ∞L σA (2-25-4)
式中S 为吸附剂比表面积,L 为阿伏加德罗常数。
次甲基蓝的结构为:
阳离子大小为17.0 ×7.6× 3.25 ×10-30 m3
次甲基蓝的吸附有三种取向:平面吸附投影面积为135×10–20m2,侧面吸附投影面积为75×10–20m2,端基吸附投影面积为39×10–20m2。
对于非石墨型的活性炭,次甲基蓝是以端基吸附取向,吸附在活性炭表面,因此A σ=39 ×10–20m2。
根据光吸收定律,当入射光为一定波长的单色光时,某溶液的吸光度与溶液中有色物质的浓度及溶液层的厚度成正比
A= -lg(I/I 0)=εbc (2-25-5)
式中,A 为吸光度,I0为入射光强度,I 为透过光强度,ε为吸光系数,b 为光径长度或液层厚度,c 为溶液浓度。
次甲基蓝溶液在可见区有2个吸收峰:445nm 和665nm 。
但在445nm 处活性炭吸附对吸收峰有很大的干扰,故本试验选用的工作波长为665nm , 并用分光光度计进行测量。
四、仪器与试剂
分光光度计及其附件
1套 容量瓶(500mL) 6只
HY 振荡器 1台 2号砂芯漏斗 5只
容量瓶(50mL) 5只 带塞锥心瓶 5只
容量瓶(100mL) 5只 滴管 2支 次甲基蓝溶液(0.2%左右原始溶液) 次甲基蓝标准液(0.3126×10–3
mol·L–1)
颗粒状非石墨型活性炭
五、实验步骤
1. 样品活化
颗粒活性炭置于瓷坩埚中放入500℃马福炉活化1h,然后置于干燥器中备用。
(此步骤实验前已经由实验室做好)
2. 溶液吸附
取5只干燥的带塞锥型瓶,编号,分别准确称取活化过的活性炭约0.1g置于瓶中,按下列表格配制不同浓度的次甲基蓝溶液50mL,塞好,放在振荡器上震荡3h。
样品振荡达到平衡后,将锥形瓶取下,用砂芯漏斗过滤,得到吸附平衡后滤液。
分别量取滤液5 mL于500 mL容量瓶中,用蒸馏水定容摇匀待用。
此为平衡稀释液。
表2-25-1 吸附试样配制比例
瓶编号 1 2 3 4 5
30 20 15 10 5
V(0.2%次甲基蓝溶
液)/mL
V(蒸馏水)/mL 20 30 35 40 45
3. 原始溶液处理
为了准确测量约0.2%次甲基蓝原始溶液的浓度,量取2.5 mL溶液放入500 mL容量瓶中,并用蒸馏水稀释至刻度,待用。
此为原始溶液稀释液。
4. 次甲基蓝标准溶液的配制
分别量取2、4、6、9、11 mL浓度为0.3126×10-3 mol·L–1的标准溶液于100 mL 容量瓶中,蒸馏水定容摇匀,依次编号B2#、B3#、B4#、B5#、B6#待用。
取B2#标液5mL于50 mL容量瓶中定容,得B1#标液。
B1#、B2#、B3#、B4#、B5#、B6#等六个标液的浓度依次为0.002、0.02、0.04、0.06、0.09、0.11×(0.3126×10-3 mol·L–1)。
5. 选择工作波长
对于次甲基蓝溶液,工作波长为665 nm。
由于各分光光度计波长刻度略有误
差,取浓度为0.04×(0.3126×10-3 mol·L –1)的标准溶液(即B3#),在600~700 nm 范围内测量吸光度,以吸光度最大的波长为工作波长。
6. 测量吸光度
选择透光率T%高的比色皿用作参比。
因为次甲基具有吸附性,应按照从稀到浓的顺序测定。
因本实验的标准溶液浓度范围太宽,所以工作曲线作两条:一是以B1#为参比,依次测量B1#、B2#、B3#标准溶液的透光率T%;二是以B3#标准溶液为参比,测量B3#、B4#、B5#、B6#标准溶液的透光率T%。
用洗液洗涤比色皿,用自来水冲洗,再用蒸馏水清洗2~3次,以B1#为参比,测量5#、4#、3#吸附平衡溶液的稀释液的透光率T%;以B3#标准溶液为参比,测量2#、1#吸附平衡液稀释及原始溶液稀释液的透光率T%。
六、数据处理
1. 作次甲基蓝溶液吸光度对浓度的工作曲线
工作曲线作两条:一是以B1#为参比,测定的B1#、B2#、B3#标液的吸光度A 对浓度c 作图;二是以B3#标溶为参比,测定的B3#、B4#、B5#、B6#标液的吸光度A 对浓度c 作图。
所得两条直线即为工作曲线。
2. 求次甲基蓝原始溶液浓度和各个平衡溶液浓度
据稀释后原始溶液的吸光度,从工作曲线上查得对应的浓度,乘上稀释倍数200,即为原始溶液的浓度c0。
将试验测定的各个稀释后的平衡溶液吸光度,从工作曲线上查得对应的浓度,乘上稀释倍数200,即为平衡溶液的浓度ci 。
3. 计算吸附溶液的初始浓度 按照试验步骤2的溶液配制方法,计算各吸附溶液的初始浓度c0,i 。
4. 计算吸附量 由平衡浓度ci 及初始浓度c0,i 数据,按(2-25-6)式计算吸附量Γi
m V
c c i i i )(0,-=Γ (2-25-6)
式中V(L)为吸附溶液的总体积,m(g)为加入溶液的吸附剂质量。
5. 做郎缪尔吸附等温线 以Γ为纵坐标,c 为横坐标,作Γ~c 吸附等温线。
6. 求饱和吸附量由Γ和c数据计算c/Γ 值,然后作c/Γ~c图,由图求得饱和吸附量Γ∞。
将Γ∞ 值用虚线作一水平线在Γ~c图上。
这一虚线即是吸附量Γ的渐近线。
7. 计算试样的比表面积将Γ∞值带入式(2-25-4),可算得试样的比表面积S。
七、注意事项
1. 测量吸光度时要按从稀到浓的顺序,每个溶液要测3~4次,取平均值。
2. 用洗液洗涤比色皿时,接触时间不能超过2min,以免损坏比色皿。
八、思考题
1. 根据郎缪尔理论的基本假设,结合本实验数据,算出各平衡浓度的覆盖度,估算饱和吸附的平衡浓度范围。
2. 溶液产生吸附时,如何判断其达到平衡?。