16.1追寻碰撞中的守恒量
- 格式:pptx
- 大小:948.86 KB
- 文档页数:16
课时1实验:探究碰撞中的不变量对应学生用书P1一、选择题1.在气垫导轨上进行“探究碰撞中的不变量”实验时首先应该做的是()A.给气垫导轨通气B.给光电计时器进行归零处理C.把滑块放到导轨上D.检查挡光片通过光电门时是否能够挡光计时答案A解析为保护气垫导轨,实验时应该先给它通气。
故A正确。
2.在用气垫导轨进行“探究碰撞中的不变量”实验时,不需要测量的物理量是()A.滑块的质量B.挡光的时间C.挡光片的宽度D.光电门的高度答案D解析从实验原理出发进行分析,A、B、C三个选项都是必须要测量的物理量。
故选D。
3.对于“探究碰撞中的不变量”实验最终的结论m1v1+m2v2=m1v1′+m2v2′,下列说法正确的是()A.仅限于一维碰撞B.任何情况下m1v21+m2v22=m1v1′2+m2v2′2也一定成立C.式中的v1、v2、v1′、v2′都是速度的大小D.式中的不变量是m1和m2组成的系统的质量与速度乘积的矢量和答案D解析这个实验虽然是在一维情况下设计的实验,但结论具有普遍性,对各种碰撞均成立,A错误;系统的质量与速度乘积的矢量和在碰撞前后为不变量是实验的结论,B项中的结论不成立,而速度是矢量,应考虑方向。
故B、C错误,D正确。
4.(多选)在利用气垫导轨做“探究碰撞中的不变量”实验中,下列哪些因素可导致实验误差()A.导轨安放不水平B.滑块上挡光板倾斜C.两滑块质量不相等D.两滑块碰后粘在一起答案AB解析导轨不水平将导致滑块速度受重力作用影响,从而产生实验误差,A 正确;挡光板倾斜会导致挡光板宽度不等于挡光阶段滑块通过的位移,使滑块的速度测量出现误差,进而导致实验误差,B正确;实验中并不要求两滑块的质量相等,C错误;两滑块碰后粘在一起只意味着碰撞过程机械能损失最大,并不影响碰撞中的守恒量,D错误。
5.(多选)用如图所示的装置探究碰撞中的不变量时,下列注意事项正确的是()A.A球到达最低点时,两球的球心连线可以不水平B.A球到达最低点时,两球的球心连线要水平C.由静止释放A球,以便较准确地计算小球碰撞前的速度D.两球必须都是刚性球,且质量相同答案BC解析要保证碰撞是一维对心碰撞,必须保证碰撞时两球的球心在同一高度,A错误,B正确;由于计算碰撞前速度时用到了动能定理:mgh=12m v2-0,故要求初速度为0,即A球应由静止释放,C正确;本实验中对小球是否有弹性及质量是否相等均无要求,D错误。
高一物理碰撞中的动量守恒【本讲主要内容】碰撞中的动量守恒碰撞中的动量守恒问题的理解本讲的重点、难点是对三种碰撞:弹性碰撞(碰撞过程中动能守恒),非弹性碰撞(碰撞过程中动能不守恒),完全非弹性碰撞(碰撞过程中系统的动能损失最大)的理解和应用。
【知识掌握】【知识点精析】1. 碰撞 两物体互相接触时间极短而互相作用力较大的相互作用.在碰撞问题中,忽略碰撞时间,将物体接触的时间定义为极短,因此物体接触过程中的位移忽略,撞击物之间相互作用的内力极大。
为此,在碰撞现象中,有时尽管撞击物所受的合外力不为零,但合外力的冲量远小于内力的冲量,若仅以相撞物体为系统,则动量近似守恒。
假设碰撞的整个过程中,物体均做直线运动。
将碰撞问题可分为撞击模型和追及模型。
撞击模型中,若两物碰后同向运动,则撞入物的速度应小于或等于被撞物的速度;在追及模型中,碰撞后, 撞入物的速度应等于或大于被撞物的速度(即速度较大的物体在碰撞后仍具有较大的速度)。
假设在碰撞过程中,满足动量守恒定律要求的所有条件。
这就要求学生在解决此类问题的过程中,必须将动量守恒定律作为解决问题的手段之一。
并且部分的满足能量的转化与守恒定理,即除了爆炸与反冲现象以外,在碰撞的过程中,系统的动能不可能增加。
从动能改变的观点,可以将碰撞问题归结为:弹性碰撞(碰撞过程中动能守恒),非弹性碰撞(碰撞过程中动能不守恒),完全非弹性碰撞(碰撞过程中系统的动能损失最大)。
2. 完全弹性碰撞 两物体碰撞之后, 它们的动能之和不变。
完全弹性碰撞 如下图所示(五个小球质量全同)现象:左边下落与静止小球碰撞,最右边小球开始上升,出现了左右两边的小球速度交换运动。
例1. 设有两个质量分别为1m 和2m ,速度分别为10v 和20v 的弹性小球作对心碰撞,两球的速度方向相同。
若碰撞是完全弹性的,求碰撞后的速度1v 和2v 。
解析:取速度方向为正向,由动量守恒定律得讨论:(1)若21m m =,则201v v =,102v v =(2)若2m >1m ,且020=v ,则101v v -≈,02≈v(3)若2m <1m ,且020=v ,则101v v ≈,1022v v ≈3. 非弹性碰撞 由于非保守力的作用,两物体碰撞后,使机械能转换为热能、声能,化学能等其他形式的能量。
§16.1 实验:探究碰撞中的不变量一、教学目标(1)知识与技能:能够领会“探究碰撞中的不变量”实验的设计思路,并初步知道物体碰撞过程中动量守恒。
(2)过程与方法:能独立进行实验操作,会采集实验数据。
能够对实验数据进行分析,寻找物体碰撞前后的不变量。
(3)情感、态度与价值观:让学生经历自主探究、合作学习的情感体验。
二、重点难点本节教学内容的重点是实验方案的设计与筛选,难点是通过对实验数据的分析得出物体碰撞前后的不变量。
三、教学过程(一)课题的引入播放视频:台球的碰撞、两个小球的碰撞师:这是生活中常见的一种运动形式——碰撞。
发生碰撞的物体的运动状态发生了变化,我们可以通过什么物理量来描述物体的运动状态?生:……师:物体碰撞前后速度发生了变化,不同质量的物体碰撞前后速度的变化情况也是不同的。
那么,碰撞前后会不会有什么物理量保持不变?(提出问题,引导学生思考,猜测可能的情况)生:……师:以上几种情况,可能存在什么样的数学关系?生:……('22'112211v m v m v m v m +=+;2'222'11222211v m v m v m v m +=+;'2'2'1'12211m v m v m v m v +=+;……) 师:事实是怎样的呢?我们可以通过物理实验来证实。
(二)实验方案的设计与选择师:我们应该采用什么实验方案进行探究呢?请同学们先设计一个合适的实验方案。
说明:(稍顷)让学生交流所设计的实验方案(学生在草稿纸上画,教师选择在巡回指导中注意到若干典型的设计方案在投影仪上打出)。
师:同学们提出了许多实验方案,我们应选用什么方案比较好呢?请同学们认真考虑一下,利用实验探究碰撞中的不变量时需要测量哪些物理量?生:测量质量与速度。
师:刚才视频播放中,我们看到台球与被碰台球并是在同一直线上运动,考虑到速度是矢量,这为研究碰撞前后不变量的探究增加了难度,我们从最简单的碰撞形式开始研究。
动量守恒定律及碰撞问题解析动量守恒定律是物理学中一个重要的基本原理,它在解决碰撞问题时发挥着重要的作用。
本文将对动量守恒定律进行详细的解析,并探讨碰撞问题的应用。
一、动量守恒定律的概念及原理动量是物体运动的一个重要物理量,它等于物体的质量与速度的乘积。
动量守恒定律指出,在一个孤立系统中,当没有外力作用时,系统的总动量保持不变。
动量守恒定律的数学表达为:∑mv = ∑mv'其中,m为物体的质量,v为物体的初速度,v'为物体的末速度。
∑mv表示碰撞前系统的总动量,∑mv'表示碰撞后系统的总动量。
二、弹性碰撞问题的解析弹性碰撞是指碰撞后物体能够恢复其原有形状和大小,并且动能守恒。
在弹性碰撞中,动量守恒定律可以用来解决碰撞前后物体的速度和质量之间的关系。
考虑两个物体A和B的弹性碰撞情况。
设它们的质量分别为m1和m2,初速度分别为v1和v2,碰撞后的速度分别为v1'和v2'。
根据碰撞前后的动量守恒定律可以得到以下方程组:m1v1 + m2v2 = m1v1' + m2v2' (1)(1/2)m1v1^2 + (1/2)m2v2^2 = (1/2)m1v1'^2 + (1/2)m2v2'^2 (2)通过解方程组(1)和(2),可以求解出碰撞后物体A和物体B的速度。
这种方法在解决弹性碰撞问题时非常实用。
三、非弹性碰撞问题的解析非弹性碰撞是指碰撞后物体不能完全恢复其原有形状和大小,动能不守恒。
在非弹性碰撞中,可以利用动量守恒定律解决碰撞前后物体的速度和质量之间的关系。
考虑两个物体A和B的非弹性碰撞情况。
设它们的质量分别为m1和m2,初速度分别为v1和v2,碰撞后的速度为v。
根据碰撞前后的动量守恒定律可以得到以下方程:m1v1 + m2v2 = (m1 + m2)v (3)通过解方程(3),可以求解出碰撞后物体的速度。
需要注意的是,非弹性碰撞中动能不守恒,所以无法通过动量守恒定律求解出速度的具体数值。
动量守恒定律碰撞实验与动量守恒的验证动量守恒定律是力学中的基本定律之一,它表明在不受外力作用的条件下,系统的总动量保持不变。
为了验证动量守恒定律,科学家们进行了许多碰撞实验。
本文将介绍动量守恒定律的基本原理,以及几个碰撞实验的过程和结果,通过这些实验来验证动量守恒定律的有效性。
一、动量守恒定律的基本原理动量是物体运动的重要性质,它由物体的质量和速度决定。
动量守恒定律指出,在一个孤立系统内,系统内部物体的总动量在时间上保持不变。
即使在碰撞等外力作用下,系统内部物体的总动量仍然保持不变。
动量守恒定律可以用数学公式表示为:m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'其中,m₁和m₂分别为两个物体的质量,v₁和v₂分别为它们的初速度,v₁'和v₂'分别为它们的末速度。
基于动量守恒定律,我们可以预测物体在碰撞时的运动状态,同时也可以通过实验来验证这一定律的准确性。
二、碰撞实验一:弹性碰撞弹性碰撞是指在碰撞中,两个物体既不损失动能,也不发生变形的碰撞。
在这种碰撞中,动量守恒定律可以准确地描述物体的运动状态。
为了验证动量守恒定律在弹性碰撞中的适用性,科学家们进行了一系列实验。
实验中,他们选择了两个具有不同质量和速度的弹性物体,并让它们进行正面碰撞。
实验结果显示,两个物体在碰撞前的总动量等于碰撞后的总动量。
这验证了动量守恒定律在弹性碰撞过程中的有效性。
三、碰撞实验二:非弹性碰撞非弹性碰撞是指在碰撞中,两个物体既损失动能,又发生变形的碰撞。
在这种碰撞中,动量守恒定律同样适用,但需要结合能量守恒定律才能准确描述物体的运动状态。
科学家们进行了一项非弹性碰撞的实验。
他们选取了两个具有不同质量和速度的物体,并以一定的速度让它们进行碰撞。
实验结果显示,在非弹性碰撞中,虽然物体的动量发生了变化,但碰撞前后物体的总动量仍然保持不变。
这进一步验证了动量守恒定律在非弹性碰撞中的有效性。
四、碰撞实验三:爆炸碰撞爆炸碰撞实验是一种特殊的碰撞实验方式。
16.1《实验:探究碰撞中的不变量》学案【学习目标】识记:明确探究碰撞中的不变量的基本思路.理解:根据实验要求,设计实验,完成某种规律的探究方法。
应用:根据实验数据进行猜测、探究,发现规律的探究方法。
【重点难点】重点:碰撞中的不变量的探究 难点:实验数据的处理.【自主检测】碰撞是日常生活、生产活动中常见的一种现象,两个物体发生碰撞后, 都发生变化。
两个物体的质量比例不同时,它们的 也不一样。
物理学中研究运动过程中的守恒量具有特别重要的意义,本节通过实验探究碰撞过程中的什么物理量保持不变(守恒)。
我们只研究最简单的情况——两个物体碰撞前沿同一直线运动,碰撞后仍沿同一直线运动。
这种碰撞叫做 。
设两个物体的质量分别为m1、m2,碰撞前它们速度分别为v1、v2,碰撞后的速度分别为1v '、2v '. 规定某一速度方向为正.碰撞前后速度的变化和物体的质量m 的关系,我们可以做如下猜测:(1)22112211v m v m v m v m '+'=+(2)222211222211v m v m v m v m '+'=+(3)22112211m v m v m v m v '+'=+分析:①碰撞前后物体质量不变,但质量并不描述物体的运动状态,不是我们追寻的“不变量”.②必须在各种碰撞的情况下都不改变的量,才是我们追寻的不变量.【知识点拨】测量物体的速度的方法(1)光电门测速原理如图所示,图中滑块上红色部分为挡光板,挡光板有一定的宽度,设为L , 当挡光板穿入时,将光挡住开始计时,穿过后不再挡光则停止计时,设记录的时间为t ,滑块匀速运动的速度v=L/t 。
(2)摆球测速原理把两个小球用线悬挂起来,一个小球静止,拉起另一个小球,放下时它们相碰。
如图测量小球被拉起的角度,从而算出落下时的速度;设摆线长为L ,小球的半径为r ,质量为m ,被拉起的角度为θ,落下时的速度为v ,根据机械能守恒有:解得:同理可求出碰后各小球的速度。
实验:研究碰撞中的动量守恒【学习目标】1.明确探究碰撞中的不变量的基本思路;2.掌握同一条直线上运动的两个物体碰撞前、后速度的测量方法; 3.掌握实验数据处理的方法; 4.掌握案例的原理、方法.【要点梳理】要点诠释: 要点一、实验内容 1.实验目的该实验的目的是追寻碰撞过程中的不变量,由于质量不是描述运动状态的量,因此我们需要在包括物体质量和速度在内的整体关系中探究哪些是不变的,所以实验中一方面需要控制碰撞必须是一维碰撞,另一方面还要测量物体的质量和速度,并通过计算探究不变量存在的可能性.2.实验探究的基本思路 (1)一维碰撞.两个物体碰撞前沿同一直线运动,碰撞后仍沿这一直线运动,这种碰撞叫做一维碰撞. (2)追求不变量.在一维碰撞的情况下,设两个物体的质量分别为12m m 、,碰撞前的速度分别为12v v 、,碰撞后的速度分别为12v v 、'',如果速度与我们规定的正方向一致取正值,相反取负值,依次研究以下关系是否成立:①11112222m v m v m v m v ==,'';②11221122m v m v m v m v +=+'';③ 222211221122''m v m v m v m v +=+;④12121212''v v v v m m m m +=+. 3.实验探究的案例方案一:利用气垫导轨实现一维碰撞,如图所示.(1)质量的测量:用天平测量. (2)速度的测量:xv t∆=∆,式中x ∆为滑块(挡光片)的宽度,t ∆为数字计时器显示的滑块(挡光片)经过光电门的时间.(3)各种碰撞情景的实现:利用弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥设计各种类型的碰撞,利用滑块上加重物的方法改变碰撞物体的质量.方案二:利用等长悬线悬挂等大小球实现一维碰撞,如图所示.(1)质量的测量:用天平测量.(2)速度的测量:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度.(3)不同碰撞情景的实现:用贴胶布的方法增大两球碰撞时的能量损失.方案三:利用小车在光滑桌面上碰撞另一静止小车实现一维碰撞,如图所示.(1)质量的测量:用天平测量. (2)速度的测量:xv t∆=∆,x ∆是纸带上两计数点间的距离,可用刻度尺测量.t ∆为小车经过x ∆所用的时间,可由打点间隔算出.4.实验步骤不论采用哪种方案,实验过程均可按实验方案合理安排,参考步骤如下: (1)用天平测相关质量. (2)安装实验装置. (3)使物体发生碰撞.(4)测量或读出相关物理量,计算有关速度. (5)改变碰撞条件,重复步骤(3)、(4).(6)进行数据处理,通过分析比较,找出碰撞中的守恒量.(7)整理器材,结束实验. 5.实验数据分析碰撞前 碰撞后质量 1m 2m 1m 2m 速度1v2v1v '2v 'mv1122m v m v +1122m v m v +'' mv 2221122m v m v +221122''m v m v +6.注意事项(1)保证两物体发生的是一维碰撞,即两个物体碰撞前沿同一直线运动,碰撞后仍沿这一直线运动.(2)若利用气垫导轨进行实验,调整气垫导轨时注意利用水平仪确保导轨水平.(3)若利用摆球进行实验,两小球静放时球心应在同一水平线上,且刚好接触,摆线竖直,将小球拉起后,两条摆线应在同一竖直面内.(4)碰撞有很多情形.我们寻找的不变量必须在各种碰撞情况下都不改变,才符合要求. 7.误差分析(1)碰撞是否为一维碰撞是产生误差的一个原因,设计实验方案时应保证碰撞为一维碰撞. (2)碰撞中是否受其他力(例如摩擦力)影响是带来误差的又一个原因,实验中要合理控制实验条件,避免除碰撞时相互作用力外的其他力影响物体速度.要点二、实验总结1.探究一维碰撞中的不变量的设计思路 2.实验探究中要注意的两个问题(1)保证两个物体做一维碰撞:可用斜槽、气垫导轨等控制物体的运动. (2)速度的测量要比较方便、精确:可利用光电门、打点计时器(配纸带)、闪光照片等手段,也可利用匀速运动、平抛运动等间接测量.【典型例题】类型一、纸带研究碰撞问题【高清课堂:实验:研究碰撞中的动量守恒 例2】例1.某同学设计了一个用打点计时器探究碰撞中的不变量的实验:在小车A 的前端粘有橡皮泥,推动小车A 使之做匀速直线运动,然后与原来静止在前方的小车B 相碰并粘合成一体,继续做匀速直线运动.他设计的具体装置如图甲所示.在小车A 后面连着纸带,电磁打点计时器的电源频率为50 Hz ,长木板下垫着小木片用以平衡摩擦力.(1)与物体运动有关的物理量可能有哪些; (2)碰撞前后哪些物理量可能不变; (3)如何研究碰撞的各种不同形式. 实验思路 (1)怎样保证碰撞是一维的? (2)如何测量质量?(3)如何测量速度? (4)数据如何处理? 需要考虑的问题探究一维碰撞 中的不变量(1)若已得到打点纸带如图乙所示,并将测得的各计数点间距标在图上,A 为运动起始的第一点.则应选________段计算A 碰前的速度,应选________段计算A 和B 碰后的共同速度.(填“AB ”或“BC ”“CD ”或“DE ”) (2)已测得小车A 的质量0.40 kg A m =,小车B 的质量0.20 kg B m =,由以上测量结果可得:碰前 ________kg m/s A A B B m v m v +=⋅,碰后________kg m/s A A B B m v m v +⋅''. (3)通过以上实验及计算结果,你能得出什么结论?【思路点拨】解此类问题关键是求小车的速度,而小车碰撞前后的速度求解方法是利用纸带上匀速运动过程求解,为了减小测量的相对误差,应多测几个间距来求速度.【答案】(1)BC DE (2)0.420.417【解析】(1)小车A 碰前做匀速直线运动,打出纸带上的点应该是间距均匀的,故计算小车碰前速度应选BC 段;CD 段上所打的点由稀变密,可见在CD 段A B 、两小车相互碰撞.A B 、碰撞后一起做匀速直线运动,所打出的点又是间距均匀的,故应选DE 段计算碰后速度.(2)0.105m / s 1.05m / s 0.1A BC v t ===∆, 0.0695''m / s 0.695m / s 0.1A B DE v v v t =====∆.碰前0.41.05 kg m/s 0.42 kg m/s A A B B m v m v +=⨯⋅=⋅,碰后()0.60.695 kg m/s 0.417 kg m/s A A B B A B m v m v m m v +=+=⨯⋅=⋅''.举一反三:【变式】用半径相同的两个小球A B 、的碰撞探究碰撞中的不变量,实验装置如图所示,斜槽与水平槽圆滑连接.实验时先不放B 球,使A 球从斜槽上某一固定点C 由静止滚下,落到位于水平地面的记录纸上留下痕迹.再把B 球静置于水平槽的前端边缘处,让A 球仍从C 处由静止滚下,A 球和B 球碰撞后分别落在记录纸上留下各自的痕迹.记录纸上的O 点是重垂线所指的位置,若测得各落点痕迹到D 点的距离: 2.68 cm OM =,8.26 cm OP =,11.50 cm ON =,并已知A B 、两球的质量比为21∶,则未放B 球时A 球落点是记录纸上的________ 点,系统碰撞前总动量A A p m v =与碰撞后总动量A AB B p m v m v =+'''的百分误差|'|p p p-=________.(结果保留一位有效数字)【答案】P 2【解析】未放B 球时A 球的落点是P .用小球的质量和水平位移的乘积代替动量,则有|()||'|A A B A m OP m OM m ON p p p m OP⋅-⋅+⋅-=⋅ |8.62( 2.6811.50)|2%8.62A AB A m m m m ⨯-⨯+⨯=≈⨯.类型二、气垫导轨研究物体速度【高清课堂:实验:研究碰撞中的动量守恒 例1】例2.为了研究碰撞,实验可以在气垫导轨上进行,这样就可以大大减小阻力,使滑块在碰撞前后的运动可以看成是匀速运动,使实验的可靠性及准确度得以提高.在某次实验中,A B 、两铝制滑块在一水平长气垫导轨上相碰,用闪光照相机每隔0.4 s 的时间拍摄一次照片,每次拍摄时闪光的延续时间很短,可以忽略,如图所示,已知A B 、之间的质量关系是1.5B A m m =,拍摄共进行了4次,第一次是在两滑块相撞之前,以后的三次是在碰撞之后.A 原来处于静止状态,设A B 、滑块在拍摄闪光照片的这段时间内是在10 cm 至105 cm 这段范围内运动(以滑块上的箭头位置为准),试根据闪光照片求出:(1)A B 、两滑块碰撞前后的速度各为多少?(2)根据闪光照片分析说明两滑块碰撞前后各自的质量与自己的速度的乘积和是不是不变量?【答案】见解析【解析】由图分析可知,(1)碰撞后:'0.2'm/s 0.50m/s 0.4'0.3'm/s 0.75m/s 0.4B BA A s v t s v t ∆⎧===⎪⎪∆⎨∆⎪===⎪∆⎩.从发生碰撞到第二次拍摄照片,A 运动的时间是1''0.15s 0.2s '0.75A A s t v ∆===, 由此可知:从拍摄第一次照片到发生碰撞的时间为2(0.40.2)0.2 s t ==-,则碰撞前B 物体的速度为2''0.2m/s 1.0m/s 0.2B B s v t ∆===, 由题意得0A v =.(2)碰撞前:1.5A A B B A m v m v m +=,碰撞后:0.750.15 1.5A A B B A A A m v m v m m m +=+='',所以A AB B A A B B m v m v m v m v +=+'',即碰撞前后两个物体各自的质量与自己的速度的乘积之和是不变量.【总结升华】准确把握题目中信息“A 原来处于静止状态”是正确分析照片信息的前提,图示滑块位置只是对应运动中不同时刻的几个状态,碰撞不一定发生在闪光时刻,在不计碰撞时间的情况下,相邻两位置对应的时间仍为闪光间隔,但碰撞前后物体速度不同,所以在这0.4 s 内不可以用总位移与总时间的比值求速度.举一反三:【变式】气垫导轨(如图甲)工作时,空气从导轨表面的小孔喷出,在导轨表面和滑块内表面之间形成一层薄薄的空气层,使滑块不与导轨表面直接接触,大大减小了滑块运动时的阻力.为了验证动量守恒定律,在水平气垫导轨上放置两个质量均为a 的滑块,每个滑块的一端分别与穿过打点计时器的纸带相连,两个打点计时器所用电源的频率均为b .气垫导轨正常工作后,接通两个打点计时器的电源,并让两滑块以不同的速度相向运动,两滑块相碰后粘在一起继续运动.图乙为某次实验打出的、点迹清晰的纸带的一部分,在纸带上以同间距的6个连续点为一段划分纸带,用刻度尺分别量出其长度12s s 、和3s .若题中各物理量的单位均为国际单位,郡么,碰撞前两滑块的动量大小分别为________、________,两滑块的总动量大小为________;碰撞后两滑块的总动量大小为________.重复上述实验,多做几次.若碰撞前、后两滑块的总动量在实验误差允许的范围内相等,则动量守恒定律得到验正.【答案】10.2abs 30.2abs 130.2()ab s s - 20.4abs 【解析】因为打点计时器所用电源的频率均为b ,所以打点周期为1b,所以碰撞前两清块的动量分别为:11110.215s p mv a abs b ==⋅=⨯, 32230.215sp mv a abs b==⋅=⨯.因为运动方向相反,所以碰前两物块总动量为12130.2()p p p ab s s ==--,碰后两滑块的总动量22'20.415s p a abs b=⋅=⨯.【总结升华】本题是验证性实验,与探究性实验是有区别的.类型三、利用平抛运动探究碰撞中的不变量例3、(2015 巫溪县校级期末考)如图,用“碰撞实验器”可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撞前后的动量关系.(1)实验中,直接测定小球碰撞前后的速度是不容易的,但是,可以通过仅测量________(填选项前的符号),间接地解决这个问题.A 小球开始释放高度hB 小球抛出点距地面的高度HC 小球做平抛运动的射程(2) 图中O 点是小球抛出点在地面上的垂直投影.实验时,先让入射球m 1多次从斜轨上S 位置静止释放,找到其平均落地点的位置P ,测量平抛射程OP .然后,把被碰小球m 2静置于轨道的水平部分,再将入射球m 1从斜轨上S 位置静止释放,与小球m 2相碰,并多次重复.接下来要完成的必要步骤是________.(填选项前的符号)A .用天平测量两个小球的质量m 1、m 2B .测量小球m 1开始释放高度hC .测量抛出点距地面的高度HD .分别找到m 1、m 2相碰后平均落地点的位置M 、NE .测量平抛射程OM ,ON(3) 若两球相碰前后的动量守恒,其表达式可表示为 (用第(2)小题中测量的量表示); 若碰撞是弹性碰撞,那么还应满足的表达式为 (用第(2)小题中测量的量表示). 【答案】(1)C ;(2)ADE 或DEA 或DAE ; (3)m 1·OM +m 2·ON =m 1·OP 、m 1·OM 2+m 2·ON 2=m 1·OP 2【解析】①根据平抛规律,若落地高度不变,则运动时间不变,因此可以用位移x 来代替速度v ,因此待测的物理量就是位移x 、小球的质量m .②待测的物理量就是位移x (水平射程OM ,ON )和小球的质量m ,所以,要完成的必要步骤是ADE .③若两球相碰前后的动量守恒,则m 1v 0=m 1v 1+m 2v 2,又OP =v 0t ,OM =v 1t ,ON =v 2t ,代入得:m 1OP =m 1OM +m 2ON若碰撞是弹性碰撞,满足动能守恒,则:222012121111222v v m m m v =+,代入得;m 1OP 2=m 1OM 2+m 2ON 2【总结升华】该实验中,虽然小球做平抛运动,但是却没有用到速度、时间,而是用位移x 来替代速度v ,成为解决问题的关键。
碰撞中的动量守恒【重要知识提示】1.实验目的、原理(1)实验目的运用平抛运动的知识分析、研究碰撞过程中相互作用的物体系动量守恒(2)实验原理(a)因小球从斜槽上滚下后做平抛运动,由平抛运动知识可知,只要小球下落的高度相同,在落地前运动的时间就相同,若用飞行时间作时间单位,小球的水平速度在数值上就等于小球飞出的水平距离.(b)设入射球、被碰球的质量分别为m1、m2,则入射球碰撞前动量为(被碰球静止)p1=m1v1①设碰撞后m1,m2的速度分别为v’1、v’2,则碰撞后系统总动量为p2=m l V’1+m2v’2②只要测出小球的质量及两球碰撞前后飞出的水平距离,代入①、②两式就可研究动量守恒.2.买验器材斜槽,两个大小相同而质量不等的小钢球,天平,刻度尺,重锤线,白纸,复写纸,三角板,圆规.3.实验步骤及安装调试(1)用天平测出两个小球的质量m l、m2.(2)按图5—29所示安装、调节好实验装置,使斜槽末端切线水平,将被碰小球放在斜槽末端前小支柱上,入射球放在斜槽末端,调节支柱,使两小球相碰时处于同一水平高度,且在碰撞瞬间入射球与被碰球的球心连线与斜槽末端的切线平行,以确保正碰后两小球均作平抛运动.(3)在水平地面上依次铺放白纸和复写纸.(4)在白纸上记下重锤线所指的位置O,它表示入射球m1碰撞前的位置,如图5—30所示.(5)移去被碰球m2,让入射球从斜槽上同一高度滚下,重复10次左右,用圆规画尽可能小的圆将所有的小球落点圈在里面,其圆心即为人射球不发生碰撞情况下的落点的平均位置P,如图5—31所示.(6)将被碰小球放在小支柱上,让入射球从同一高度滚下,使它们发生正碰,重复10次左右,同理求出入射小球落点的平均位置M和被碰小球落点的平均位置N.(7)过O、N作一直线,取O0’=2r(r为小球的半径,可用刻度尺和三角板测量小球直径计算厂),则O’即为被碰小球碰撞前的球心的位置(即投影位置).(8)用刻度尺测量线段OM、OP、ON的长度.则系统碰撞前的动量可表示为p1=m1·OP,系统碰撞后的总动量可表示为p2=m1·OM+m2·O'N若在误差允许范围内p1与p2相等,则说明碰撞中动量守恒.(9)整理实验器材,放回原处.4.注意事项(1)斜槽末端切线必须水平.说明:调整斜槽时可借助水准仪判定斜槽末端是否水平.(2)仔细调节小立柱的高度,使两小球碰撞时球心在同一高度,且要求两球球心连线与斜槽末端的切线平行。