实验六-窗函数及其对信号频谱的影响
- 格式:docx
- 大小:175.07 KB
- 文档页数:9
信号谱分析——窗函数窗函数在信号谱分析中起着重要的作用,它可以对信号进行加窗处理,从而在频谱分析中使信号具有更好的性能和准确度。
窗函数的选择直接关系到信号的频谱分辨率以及频谱泄漏的情况。
在信号谱分析中,窗函数是一种对信号序列进行加窗处理的函数。
它通过改变信号的时域特性,从而在频域上实现对信号的调整,使其能够更好地适应频谱分析。
常见的窗函数包括矩形窗、汉宁窗、汉明窗、布莱克曼窗等。
矩形窗是最简单的窗函数,它在信号的时域上直接用一个矩形波形来进行加窗处理。
虽然矩形窗的频谱分辨率很高,但它会产生频谱泄漏的现象,使得信号的频谱失真,无法准确地描述信号的频率。
汉宁窗是一种常用的窗函数,它在信号的时域上采用了一个凸曲线波形来对信号进行加窗处理。
与矩形窗相比,汉宁窗具有较小的频谱泄漏,能够提高信号的频谱准确度。
然而,汉宁窗的频谱分辨率相对较低,不适用于需要精确分辨信号频率的情况。
汉明窗是在汉宁窗基础上进行改进的窗函数,它在信号的时域上采用了一个更精细的凸曲线波形,具有更好的频谱性能。
汉明窗相对于汉宁窗来说,频谱分辨率更高,且频谱泄漏更小,因此在许多应用中更为常用。
布莱克曼窗是窗函数中的一种特殊形式,它在信号的时域上采用了一个通过多项式插值的波形。
布莱克曼窗在频谱分析中具有很好的性能,既能提高信号的频谱分辨率,又能降低频谱泄漏。
它适用于需要较高信号频率精度和较低频谱泄漏的情况。
在选择窗函数时,需要根据具体的实际应用场景和信号性质来进行选择。
如果需要较高的频谱分辨率,可以选择矩形窗或者布莱克曼窗;如果需要较低的频谱泄漏,可以选择汉宁窗或者汉明窗。
此外,还可以根据信号的特点进行自定义的窗函数设计,以满足实际需求。
总结起来,窗函数在信号谱分析中起到了重要的作用,它可以在频域上调整信号的性能和准确度。
合理选择窗函数可以提高信号分析的精度和可靠性,从而更好地理解和处理信号的频谱特性。
窗函数对频率测量的影响实验名称:窗函数对频率测量的影响实验目的:1、通过图形观察窗函数对频谱测量的影响;2、了解窗函数的特性及MATLAB 仿真方法;3、熟练掌握MATLAB 实现DFT 的方法,提高编程实践能力;4、观察对比不同窗函数的性能。
实验原理1. 离散复正弦信号的DFT2110()()N j nkNn X kf x n eπ-==∑(1)2、MTALAB 函数wnHamming=hamming(64);% 生成64点的海明窗;wnBlackman=blackman(64);% 生成64点的布莱克曼窗wnHann=Hann(64);% 生成64点的汉宁窗 wnKaiser=kaiser(64,6);% 生成64点的凯泽窗wnTriang=triang(64);% 生成64点的三角窗函数fft ()和fftshift ()在实验一介绍 3、峰值搜索方法一维黄金分割精搜算法实验步骤:1、设置输入信号的参数以及DFT 变换的点数;根据要求,输入信号的模拟频率为10.111111111f =,20.222222222f =。
那么采样频率满足12s f f >且22s f f >即可,为方便观察频率最大值位置,取s f =2Hz 。
给定DFT 点数为64点,而为了使的被观察的频谱峰值在频谱图的中央,将抽样时间取在1[,]22s ssN Nt f f f =-的区间,采样间隔为1/s s T f =。
其中N=64。
这样得到输入信号的表达式为1122ssj f nT j f nT signal eeππ=+ (2)2、应用窗函数产生函数产生64点的不同窗函数;=;min()hanw hann N=;()hamw ham g N=;()bw blackman N=。
tw triang N()kw kaiser N=;()3、窗函数与输入信号相乘;=;()Sighanw hann N=;Sigbw blackman N=;()min()Sighamw ham g N=。
如何选择窗函数窗函数的分析比较窗函数在信号处理和频谱分析中起着重要的作用,用于改善信号的频谱性质,以便更好地分析信号。
选择适合的窗函数可以提高信号的频域分辨率和抑制频谱泄漏。
首先,需要了解窗函数的基本概念和特性,以便更好地进行选择和分析。
1.窗函数的定义:窗函数是定义在有限时间和频率范围内的函数,用于将信号在时间和频域上进行截断。
常见的窗函数包括矩形窗、汉宁窗、汉明窗、布莱克曼窗等。
2.窗函数的性质:不同的窗函数具有不同的性质,如频域主瓣宽度、旁瓣衰减、频域泄漏等。
选择窗函数时需要考虑这些性质,以满足实际需求。
在选择窗函数时,需要考虑以下几个方面:1. 频域主瓣宽度:频域主瓣宽度反映了窗函数的频域分辨能力,即能否准确地分辨出信号的频率。
主瓣越窄,频率分辨能力越高。
因此,在需要高频率分辨率的应用中,应选择主瓣宽度较窄的窗函数,如Kaiser 窗、Slepian窗等。
2. 旁瓣衰减:窗函数的旁瓣衰减反映了窗函数对于频域旁瓣的抑制能力。
旁瓣越低,表示频域泄漏越小,能更好地抑制邻近频率的干扰。
因此,在需要高频域抑制能力的应用中,应选择旁瓣衰减较大的窗函数,如Blackman窗、Nuttall窗等。
3.时域响应:窗函数的时域响应直接影响波形的平滑程度和能否准确地表示信号的时域特征。
时域响应平滑的窗函数可以减小信号的突变,但也会造成时间分辨率的损失。
因此,在需要准确表示信号时域特征的应用中,应选择合适的时域响应窗函数,如Gaussian窗、Dolph-Chebyshev 窗等。
4.计算效率:窗函数的计算效率也是选择的重要因素。
复杂的窗函数可能需要更多的计算资源和消耗更多的时间。
因此,在需要实时处理和高效率计算的应用中,应选择计算效率较高的窗函数,如矩形窗和汉宁窗。
综合考虑以上因素,可以根据不同应用需求选择合适的窗函数。
在实际应用中,也可以通过试验和比较不同窗函数的效果,选择最符合要求的窗函数。
需要注意的是,窗函数的选择并没有绝对的标准,要根据具体的应用需求来进行选择,并对选择的窗函数进行分析和评估。
窗函数(window function)窗函数是频谱分析中一个重要的部分,CoCo包含了所有通用的窗函数以及冲击测试中的受迫/指数(force/exponential)窗。
窗函数修正了由于信号的非周期性并减小了频谱中由于泄露而带来的测量不准确性。
快速傅里叶变换假定了时间信号是周期无限的。
但在分析时,我们往往只截取其中的一部分,因此需要加窗以减小泄露。
窗函数可以加在时域,也可以加在频域上,但在时域上加窗更为普遍。
截断效应带来了泄漏,窗函数是为了减小这个截断效应,其设计成一组加权系数。
例如,一个窗函数可以定义为:w(t)=g(t) -T/2<t<T/2w(t)=0 其他g(t)是窗函数,T是窗函数的时间待分析的数据x(t)则表示为:x(t)=w(t)*x(t)'x(t)'表示原始信号x(t)表示待分析信号。
加窗在时域上表现的是点乘,因此在频域上则表现为卷积。
卷积可以被看成是一个平滑的过程。
这个平滑过程可以被看出是由一组具有特定函数形状的滤波器,因此,原始信号中在某一频率点上的能量会结合滤波器的形状表现出来,从而减小泄漏。
基于这个原理,人们通常在时域上直接加窗。
大多数的信号分析仪一般使用矩形窗(rectangular),汉宁(hann),flattop和其他的一些窗函数。
矩形窗函数:w(k)=1汉宁窗:w(k)=0.5*(1-cos(2*pi*k/(N-1))) 0<=k<=N-1由于加窗计算中衰减了原始信号的部分能量,因此对于最后的结果还需要加上修正系数。
在线性谱分析中,一般使用幅度系数(amplitude correction),在功率谱中,一般使用能量系数(energy correction)。
具体请看下以章节。
泄露效应对于简单的信号,比如一个单频率的正弦波,泄露就表现为不在其频率点上仍然会有能量的出现。
离其本身的频率越近的频率,泄露的情况越严重,而离的越远,则情况则会好一些。
窗函数及其对信号频谱的影响窗函数是一种在数字信号处理和频谱分析中常用的数学工具,用于对信号进行截断和减小频谱泄漏的影响。
它的主要作用是将一个无限延伸的信号变为有限长度的信号,通过在时域上对信号进行加权操作,以减小信号的边界效应和频谱泄漏。
在频谱分析中,窗函数可以用于对信号进行谱估计、滤波和频谱改善等操作。
窗函数对信号频谱的影响主要体现在两个方面:频谱泄漏和分辨率。
首先,频谱泄漏是指当信号的频率不是完美整数倍的时候,由于信号和窗函数之间的乘积在时域上的周期性,会导致频谱泄漏现象的出现。
这种泄漏会使原本只存在于其中一频率的能量分散到其他频率上,使得谱线变得模糊,丧失了原始信号中的精细结构和局部特征。
频谱泄漏的程度与窗函数的性质有关,不同的窗函数具有不同的泄漏特性。
例如,矩形窗函数具有最大的频谱泄漏,而汉宁窗函数则具有较小的频谱泄漏。
其次,窗函数对信号频谱分辨率的影响也是十分重要的。
分辨率是指信号在频域上的清晰度和能够分辨不同频率成分的能力。
在频谱分析中,较窄的窗函数会使得频率分辨率更高,可以更好地分析信号的细节和频率成分;而较宽的窗函数会导致频率分辨率降低,无法很好地区分信号的细微差异。
这是因为较窄的窗函数在频域上对应较宽的主瓣,较宽的窗函数对应较窄的主瓣。
常见的窗函数中,矩形窗函数具有最宽的主瓣,而汉宁窗函数具有较窄的主瓣。
为了找到在不同应用场景下最合适的窗函数,需要根据信号的特点和要求进行选择。
例如,如果需要精确地测量信号的频率,可以选择具有较小频谱泄漏和较窄主瓣的窗函数,如汉宁窗函数和黑曼窗函数。
而在频谱分析中,为了更好地观察信号的整体特征和频率分布情况,可以选择具有较大频谱泄漏和较宽主瓣的窗函数,如矩形窗函数和三角窗函数。
总之,窗函数是数字信号处理和频谱分析中不可或缺的工具,通过对信号的截断和加权操作,可以减小信号的边界效应和频谱泄漏的影响。
不同的窗函数具有不同的频谱特性,可以根据需要选择合适的窗函数来对信号进行分析和处理,以提高频谱分辨率和准确性。
实验六 用窗函数法设计 FIR 滤波器一、实验目的(1) 掌握用窗函数法设计FIR 数字滤波器的原理和方法。
(2) 熟悉线性相位FIR 数字滤波器特性。
(3) 了解各种窗函数对滤波特性的影响。
二、实验原理滤波器的理想频率响应函数为H d (e j ω),则其对应的单位脉冲响应为:h d (n) =⎰-ππωωωπd e e H nj j d )(21窗函数设计法的基本原理是用有限长单位脉冲响应序列h(n)逼h d (n)。
由于h d (n)往往是无限长序列,且是非因果的,所以用窗函数。
w(n)将h d (n)截断,并进行加权处理:h(n) = h d (n) w(n)h(n)就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函数H(e j ω)为:H(e j ω) =∑-=-1)(N n nj en h ω如果要求线性相位特性,则h (n )还必须满足:)1()(n N h n h --±=可根据具体情况选择h(n)的长度及对称性。
用窗函数法设计的滤波器性能取决于窗函数w(n)的类型及窗口长度N 的取值。
设计过程中,要根据对阻带最小衰减和过渡带宽度的要求选择合适的窗函数类型和窗口长度N 。
三、实验步骤1. 写出理想低通滤波器的传输函数和单位脉冲响应。
2. 写出用四种窗函数设计的滤波器的单位脉冲响应。
rad,选择窗函数的长度N=15,33两种情况。
要求在两种窗口长度下,分别求出h(n),打印出相应的幅频特性和相频特性曲线,观察3dB带宽和阻带衰减;4 用其它窗函数(汉宁窗(升余弦窗)、哈明窗(改进的升余弦窗)、布莱克曼窗) 设计该滤波器,要求同1;比较四种窗函数对滤波器特性的影响。
四、实验用MATLAB函数可以调用MATLAB工具箱函数fir1实现本实验所要求的线性相位FIR-DF的设计,调用一维快速傅立叶变换函数fft来计算滤波器的频率响应函数。
fir1是用窗函数法设计线性相位FIRDF的工具箱函数,调用格式如下:hn=fir1(N, wc, ‘ftype’, window)fir1实现线性相位FIR滤波器的标准窗函数法设计。
实验报告实验课程:数字信号处理实验开课时间:2020—2021 学年秋季学期实验名称:随机信号功率谱分析实验时间: 2020年9月30日星期三学院:物理与电子信息学院年级:大三班级:182 学号:1843202000234 姓名:武建璋一、实验预习实验目的要求深刻理解随机信号的特性,掌握随机信号功率谱估计的基本原理,灵活运用各种随机信号功率谱估计的基本方法。
实验仪器用具装有Matlab的计算机一台实验原理功率谱估计是随机信号处理中的一个重要的研究和应用领域.功率谱估计基本上可以非参数估计的经典方法和参数估计的近代方法.典型功率谱估计是基于FFT 算法的非参数估计,对足够长的记录数据效果较好。
在工程实际中,经典功率谱估计法获得广泛应用的是修正期图发。
该方法采取数据加窗处理再求平均的办法。
通过求各段功率谱平均,最后得到功率谱计P(m),即:式中:为窗口函数ω[k]的方差。
K表示有重叠的分数段。
由于采用分段加窗求功率谱平均,有效地减少了方差和偏差,提高了估计质量,使修正周期图法在经典法中得到普遍应用。
但在估计过程存在两个与实际不符的假设,即(1)利用有限的N个观察数据进行自相关估计,隐含着在已知N个数据之外的全部数据均为零的假设。
(2)假定数据是由N个观察数据以N为周期的周期性延拓。
同时在计算过程中采用加窗处理,使得估计的方差和功率泄露较大,频率分辨率较低,不适用于短系列的谱分析和对微弱信号的检测。
近代谱估计是建立在随机信号参数模型的基础上,通过信号参数模型或预测误差滤波器(一步预测器)参数的估计,实现功率谱估计。
由于既不需要加窗,又不需要对相关函数的估计进行如经典法那样的假设,从而减少公里泄露,提高了频谱分辨率。
常用的参数模型有自回归(AR)模型、滑动平均(MA)模型、自回归滑动平均(ARMA)模型。
其中AR模型是基本模型,求解AR模型的参数主要有L—D算法和Burg算法。
1.某随机信号由两余弦信号与噪声构成x(t)=cos(20*pi*t)+cos(40*pi*t)+s(t)式中:s(t)是均值为0、方差为1的高斯白噪声。
窗函数在频率响应函数计算中的影响分析窗函数是一种对信号进行截断和加权的函数。
它可以减少信号的频谱泄漏,使频谱更加集中在主要频率上。
频谱泄漏是指信号在变换过程中产生的能量分散到其他频率上的现象。
窗函数通过给信号施加衰减系数,在主要频率附近增加信号的衰减,从而减少频谱泄漏。
在频率响应函数计算中,窗函数的选择会对结果产生影响。
不同的窗函数具有不同的特性,如频谱主瓣宽度、频谱旁瓣衰减等。
常见的窗函数有矩形窗、汉宁窗、汉明窗、布莱克曼窗等。
首先,窗函数会影响频率响应函数的频谱分辨率。
频谱分辨率是指变换后频率的间隔。
使用窗函数可以抑制频谱泄漏,使得频谱主瓣集中在主要频率上,从而提高频率分辨率。
较宽的主瓣会导致频率分辨率较低,而较窄的主瓣会导致频率分辨率较高。
其次,窗函数还会影响频率响应函数的频率响应特性。
频率响应特性主要包括主瓣峰度、旁瓣衰减和过渡带宽等。
窗函数的形状和参数决定了频率响应函数的这些特性。
一般来说,较窄的主瓣会导致较高的主瓣峰度,较大的旁瓣衰减和较窄的过渡带宽。
因此,在选择窗函数时需要根据应用需求来平衡这些特性。
另外,窗函数还会导致频率响应函数的频率偏移。
窗函数引入了额外的相位延迟,使得频率响应函数在频率轴上发生偏移。
这种偏移会导致实际频率与理论频率之间存在差异,从而对系统的性能产生影响。
为了减少这种影响,可以采取补偿措施,如相位校正或者选择相位平稳的窗函数。
总之,窗函数在频率响应函数计算中起到了重要的作用。
选择适合的窗函数可以减少频谱泄漏,提高频率分辨率,改善频率响应特性。
然而,窗函数也会导致频率偏移等影响,需要根据具体应用需求进行权衡。
因此,在实际应用中,需要根据具体情况选择合适的窗函数,以获得准确的频率响应函数。
窗函数的实现及分析窗函数是指将理想的频谱截断成有限的频谱,并对信号进行加权的函数。
在信号处理中,窗函数被广泛应用于频谱分析、滤波器设计、波形合成和信号的时频分析等方面。
其作用是减小频谱泄漏、降低旁瓣干扰和改善频谱估计的准确性。
1. 直接实现法(Direct Approach):直接实现法是指通过直接计算窗函数的定义式来得到窗函数的采样值。
例如,常见的矩形窗函数可以通过以下公式计算得到:w(n)=1,0<=n<Nw(n)=0,其他情况其中,n为窗函数的采样序号,N为窗函数的长度。
类似地,其他窗函数如汉宁窗、汉明窗、布莱克曼窗等也可以通过相应的定义式计算得到。
直接实现法的优点是实现简单,计算速度快。
缺点是窗函数的采样点数需要提前确定,并且无法根据需要动态调整窗函数的长度。
此外,直接实现法在频率分辨率方面相对较差,易产生频谱泄漏现象。
2. 卷积实现法(Convolution Approach):卷积实现法是指利用卷积运算的性质,通过将序列信号和窗函数进行卷积来实现窗函数。
例如,矩形窗可以通过以下卷积运算实现:w(n)=RECT(n)=δ(n)*δ(n)其中,δ(n)为单位脉冲函数。
卷积实现法的优点是可以根据需要动态调整窗函数的长度和形状,适应不同的信号分析要求。
此外,卷积实现法拥有较好的频率分辨率和抗频谱泄漏能力。
对于窗函数的分析,可以从以下几个方面进行:1.主瓣宽度:主瓣宽度是指窗函数的主瓣在频谱中的宽度。
窗函数的主瓣宽度决定了频率分辨率的能力,主瓣宽度越窄,频率分辨率越高。
例如,矩形窗的主瓣宽度较宽,频谱分辨率相对较低;而汉宁窗、汉明窗等窗函数的主瓣宽度相对较窄,频谱分辨率较高。
2.旁瓣干扰:旁瓣干扰是指窗函数在频谱中产生的旁瓣能量。
窗函数的旁瓣干扰会引入频谱泄漏现象,降低频谱估计的准确性。
一般而言,窗函数的旁瓣干扰越低,频谱估计的准确性越高。
常见的窗函数如布莱克曼窗具有较低的旁瓣干扰能力。
窗函数的实现及分析1窗函数1.1基本概念在实际进行数字信号处理时,往往需要把信号的观察时间限制在一定的时间间隔内,只需要选择一段时间信号对其进行分析。
这样,取用有限个数据,即将信号数据截断的过程,就等于将信号进行加窗函数操作。
而这样操作以后,常常会发生频谱分量从其正常频谱扩展开来的现象,即所谓的“频谱泄漏”。
当进行离散傅立叶变换时,时域中的截断是必需的,因此泄漏效应也是离散傅立叶变换所固有的,必须进行抑制。
而要对频谱泄漏进行抑制,可以通过窗函数加权抑制DFT 的等效滤波器的振幅特性的副瓣,或用窗函数加权使有限长度的输入信号周期延拓后在边界上尽量减少不连续程度的方法实现。
而在后面的FIR 滤波器的设计中,为获得有限长单位取样响应,需要用窗函数截断无限长单位取样响应序列。
另外,在功率谱估计中也要遇到窗函数加权问题。
窗函数的基本概念。
设x (n )是一个长序列,w (n )是长度为N 的窗函数,用w (n )截断x (n ),得到N 点序列x n (n ),即x n (n ) = x (n ) w (n )在频域上则有由此可见,窗函数w (n )不仅仅会影响原信号x (n )在时域上的波形,而且也会影响到频域内的形状。
1.2设计原理窗函数设计法的基本原理是用有限长单位脉冲响应序列()n h 逼近()n h d 。
由于()n h d 往往是无限长序列,而且是非因果的,所以用窗函数()n ω将()n h d 截断,并进行加权处理,得到:()n h 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函数()ωj e H 为式中,N 为所选窗函数()n ω的长度。
用窗函数法设计的滤波器性能取决于窗函数()n ω的()()()()--?=ππj j j d e π21e θθωθωW e X X N ()()()n n h n h d ω=()()nj N n j en h eH ωω∑-==1类型及窗口长度N的取值。
实验六窗函数及其对信号频谱的影响一. 实验目的1. 掌握几种典型窗函数的性质、特点,比较几种典型的窗函数对信号频谱的影响。
2. 通过实验认识它们在克服FFT 频谱分析的能量泄漏和栅栏效应误差中的作用,以便在实际工作中能根据具体情况正确选用窗函数二. 实验原理1. 信号的截断及能量泄漏效应数字信号处理的主要数学工具是博里叶变换.应注意到,傅里叶变换是研究整个时间域和频率域的关系。
然而,当运用计算机实现工程测试信号处理时,不可能对无限长的信号进行测量和运算,而是取其有限的时间片段进行分析。
做法是从信号中截取一个时间片段,然后用观察的信号时间片段进行周期延拓处理,得到虚拟的无限长的信号,然后就可以对信号进行傅里叶变换、相关分析等数学处理。
图6.1 信号的周期延拓周期延拓后的信号与真实信号是不同的,下面我们就从数学的角度来看这种处理带来的误差情况。
设有余弦信号x(t)在时域分布为无限长(- ∞,∞),当用矩形窗函数w(t)与其相乘时,得到截断信号xT(t) =x(t)w(t)。
根据博里叶变换关系,余弦信号的频谱X(ω)是位于ω。
处的δ函数,而矩形窗函数w(t)的谱为sinc(ω)函数,按照频域卷积定理,则截断信号xT(t) 的谱XT(ω) 应为:将截断信号的谱XT(ω)与原始信号的谱X(ω)相比较可知,它已不是原来的两条谱线,而是两段振荡的连续谱.这表明原来的信号被截断以后,其频谱发生了畸变,原来集中在f0处的能量被分散到两个较宽的频带中去了,这种现象称之为频谱能量泄漏(Leakage)。
信号截断以后产生的能量泄漏现象是必然的,因为窗函数w(t)是一个频带无限的函数,所以即使原信号x(t)是限带宽信号,而在截断以后也必然成为无限带宽的函数,即信号在频域的能量与分布被扩展了。
又从采样定理可知,无论采样频率多高,只要信号一经截断,就不可避免地引起混叠,因此信号截断必然导致一些误差,这是信号分析中不容忽视的问题。
如果增大截断长度T,即矩形窗口加宽,则窗谱W(ω)将被压缩变窄(π/T减小)。
虽然理论上讲,其频谱范围仍为无限宽,但实际上中心频率以外的频率分量衰减较快,因而泄漏误差将减小。
当窗口宽度T趋于无穷大时,则谱窗W(ω)将变为δ(ω)函数,而δ(ω)与X(ω)的卷积仍为X(ω),这说明,如果窗口无限宽,即不截断,就不存在泄漏误差。
图6.2 信号截断与能量泄露现象为了减少频谱能量泄漏,可采用不同的截取函数对信号进行截断,截断函数称为窗函数,简称为窗。
泄漏与窗函数频谱的两侧旁瓣有关,如果两侧瓣的高度趋于零,而使能量相对集中在主瓣,就可以较为接近于真实的频谱,为此,在时间域中可采用不同的窗函数来截断信号。
2. 窗函数实际应用的窗函数,可分为以下主要类型:a) 幂窗--采用时间变量某种幂次的函数,如矩形、三角形、梯形或其它时间(t)的高次幂;b) 三角函数窗--应用三角函数,即正弦或余弦函数等组合成复合函数,例如汉宁窗、海明窗等;c) 指数窗--采用指数时间函数,如形式,例如高斯窗等。
下面介绍几种常用窗函数的性质和特点。
a) 矩形窗矩形窗属于时间变量的零次幂窗,函数形式为:相应的窗谱为:矩形窗使用最多,习惯上不加窗就是使信号通过了矩形窗。
这种窗的优点是主瓣比较集中,缺点是旁瓣较高,并有负旁瓣,导致变换中带进了高频干扰和泄漏,甚至出现负谱现象。
图6.3 矩形窗的时域及频域波形b) 三角窗三角窗亦称费杰(Fejer)窗,是幂窗的一次方形式,其定义为:相应的窗谱为:三角窗与矩形窗比较,主瓣宽约等于矩形窗的两倍,但旁瓣小,而且无负旁瓣,如图6.4所示。
图6.4 三角窗的时域及频域波形c) 汉宁(Hanning)窗汉宁窗又称升余弦窗,其时域表达式为:相应的窗谱为:由此式可以看出,汉宁窗可以看作是3个矩形时间窗的频谱之和,或者说是3个sine(t)型函数之和,而括号中的两项相对于第一个谱窗向左、右各移动了π/T,从而使旁瓣互相抵消,消去高频干扰和漏能。
可以看出,汉宁窗主瓣加宽并降低,旁瓣则显著减小,从减小泄漏观点出发,汉宁窗优于矩形窗.但汉宁窗主瓣加宽,相当于分析带宽加宽,频率分辨力下降。
d) 海明(Hamming)窗海明窗也是余弦窗的一种,又称改进的升余弦窗,其时间函数表达式为:其窗谱为:海明窗与汉宁窗都是余弦窗,只是加权系数不同。
海明窗加权的系数能使旁瓣达到更小。
分析表明,海明窗的第一旁瓣衰减为一42dB.海明窗的频谱也是由3个矩形时窗的频谱合成,但其旁瓣衰减速度为20dB/(10oct),这比汉宁窗衰减速度慢。
海明窗与汉宁窗都是很有用的窗函数。
5) 高斯窗高斯窗是一种指数窗。
其时域函数为:式中a为常数,决定了函数曲线衰减的快慢。
a值如果选取适当,可以使截断点(T为有限值)处的函数值比较小,则截断造成的影响就比较小。
高斯窗谱无负的旁瓣,第一旁瓣衰减达一55dB。
高斯富谱的主瓣较宽,故而频率分辨力低.高斯窗函数常被用来截断一些非周期信号,如指数衰减信号等。
不同的窗函数对信号频谱的影响是不一样的,这主要是因为不同的窗函数,产生泄漏的大小不一样,频率分辨能力也不一样。
信号的截断产生了能量泄漏,而用FFT算法计算频谱又产生了栅栏效应,从原理上讲这两种误差都是不能消除的,但是我们可以通过选择不同的窗函数对它们的影响进行抑制。
图6.5是几种常用的窗函数的时域和频域波形,其中矩形窗主瓣窄,旁瓣大,频率识别精度最高,幅值识别精度最低;布莱克曼窗主瓣宽,旁瓣小,频率识别精度最低,但幅值识别精度最高。
我们考虑窗函数主要是以下几点:1.主瓣宽度B最小(相当于矩形窗时的4π/N,频域两个过零点间的宽度)。
2.最大边瓣峰值A最小(这样旁瓣泄露小,一些高频分量损失少了)。
3.边瓣谱峰渐近衰减速度D最大(同样是减少旁瓣泄露)。
在此,总结几种很常用的窗函数的优缺点:矩形窗:B=4π/N A=-13dB D=-6dB/oct三角窗:B=8π/N A=-27dB D=-12dB/oct汉宁窗:B=8π/N A=-32dB D=-18dB/oct海明窗:B=8π/N A=-43dB D=-6dB/oct布莱克曼窗:B=12π/N A=-58dB D=-18dB/oct可以看出,矩形窗有最窄的主瓣,但是旁瓣泄露严重。
汉宁窗和海明窗虽主瓣较宽,但是旁瓣泄露少,是常选用的窗函数。
图6.5 几种常用的窗函数的时域和频域波形对于窗函数的选择,应考虑被分析信号的性质与处理要求。
如果仅要求精确读出主瓣频率,而不考虑幅值精度,则可选用主瓣宽度比较窄而便于分辨的矩形窗,例如测量物体的自振频率等;如果分析窄带信号,且有较强的干扰噪声,则应选用旁瓣幅度小的窗函数,如汉宁窗、三角窗等;对于随时间按指数衰减的函数,可采用指数窗来提高信噪比。
三. 实验仪器和设备1. 计算机 n台2. DRVI快速可重组虚拟仪器平台 1套3. 打印机 1台四. 实验步骤及内容1. 启动服务器,运行DRVI主程序,开启DRVI数据采集仪电源,然后点击DRVI快捷工具条上的"联机注册"图标,选择其中的"DRVI采集仪主卡检测"进行服务器和数据采集仪之间的注册。
联机注册成功后,分别从DRVI工具栏和快捷工具条中启动"DRVI微型Web 服务器"和"内置的Web服务器",开始监听8500和8600端口。
2. 打开客户端计算机,启动计算机上的DRVI客户端程序,然后点击DRVI快捷工具条上的"联机注册"图标,选择其中的"DRVI局域网服务器检测",在弹出的对话框中输入服务器IP地址(例如:192.168.0.1),点击"发送"按钮,进行客户端和服务器之间的认证,认证完毕即可正常运行客户端所有功能。
3. 在DRVI软件平台的地址信息栏中输入如下信息"http://服务器IP地址:8600/gccslab/index.htm",打开WEB版实验指导书,在实验目录中选择"窗函数及其对信号频谱的影响"实验,根据实验原理和要求设计该实验。
4. 该实验首先需要设计一个一个正弦信号发生器,来提供原始信号,DRVI中提供了一个"数字信号发生器"芯片,将其中的"信号类型"设置为2就可以产生正弦信号,再用一片"启/停按钮"芯片控制信号是否产生;为了产生各种窗函数,还需要插入一片"谱窗函数"芯片,并用一片"多联开关"芯片与之联动来控制窗函数的输出类型;为了能详细观察信号加窗以后对频谱的影响,需要插入一片"频谱细化分析"芯片,来对选定的频率段进行局部放大,对于该芯片的上、下限细化频率,可以插入两片"水平推杆"芯片来调节;同时,为了观察信号加窗前后频谱的对应变化情况,还应插入两片"频谱计算"芯片来计算信号的频谱;另外选择五片"波形/频谱显示"芯片,用于显示以上处理结果;然后根据连接这些芯片所需的数组型数据线数量,插入8片"内存条"芯片,用于存储8组数组型数据;再加上一些文字显示芯片和装饰芯片,就可以搭建出一个"窗函数及其对信号频谱的影响"实验。
所需的软件芯片数量、种类、与软件总线之间的信号流动和连接关系如图6.6所示,根据实验原理设计图在DRVI软面包板上插入上述软件芯片,然后修改其属性窗中相应的连线参数就可以完成该实验的设计和搭建过程。
图6.6 窗函数及其对信号频谱的影响原理设计图5. 对于"谱窗函数"芯片,设定其"输入波形存储芯片号"为6000,"输出波形存储芯片号"为6001,使存储在"软内存芯片"6000中的数据经过加窗处理后放置在"软内存芯片"6001中,至于具体采用何种窗函数,则通过设置"窗谱类型线号"为2来和"多联开关" 联动,通过多联开关来选择具体的窗函数种类,如图6.7所示;对于"频谱细化分析"芯片;设定其"输入波形存储芯片号"为6001,"输出波形存储芯片号"分别为6002和6003,具体观察的频段范围则通过对"细化上、下限频率"的设置来调节,如第4条所述,分别设置其线号为3和4,并与"推杆"芯片的"输出显示线号"相对应,如图6.8所示。