IC设计流程以及各个阶段使用的工具
- 格式:doc
- 大小:39.50 KB
- 文档页数:2
IC设计流程⼤体是1. ⾸先是使⽤HDL语⾔进⾏电路描述,写出可综合的代码。
然后⽤仿真⼯具作前仿真,对理想状况下的功能进⾏验证。
这⼀步可以使⽤Vhdl或Verilog作为⼯作语⾔,EDA⼯具⽅⾯就我所知可以⽤Synopsys的VSS(for Vhdl)、VCS(for Verilog)Cadence的⼯具也就是著名的Verilog-XL和NC Verilog2.前仿真通过以后,可以把代码拿去综合,把语⾔描述转化成电路⽹表,并进⾏逻辑和时序电路的优化。
在这⼀步通过综合器可以引⼊门延时,关键要看使⽤了什么⼯艺的库这⼀步的输出⽂件可以有多种格式,常⽤的有EDIF格式。
综合⼯具Synopsys的Design Compiler,Cadence的Ambit3,综合后的输出⽂件,可以拿去做layout,将电路fit到可编程的⽚⼦⾥或者布到硅⽚上这要看你是做单元库的还是全定制的。
全定制的话,专门有版图⼯程师帮你画版图,Cadence的⼯具是layout editor 单元库的话,下⾯⼀步就是⾃动布局布线,auto place & route,简称apr cadence的⼯具是Silicon Ensembler,Avanti的是Apollolayout出来以后就要进⾏extract,只知道⽤Avanti的Star_rcxt,然后做后仿真如果后仿真不通过的话,只能iteration,就是回过头去改。
4,接下来就是做DRC,ERC,LVS了,如果没有什么问题的话,就tape out GDSII格式的⽂件送制版⼚做掩膜板,制作完毕上流⽔线流⽚,然后就看是不是work了做DRC,ERC,LVSAvanti的是Hercules,Venus,其它公司的你们补充好了btw:后仿真之前的输出⽂件忘记说了,应该是带有完整的延时信息的设计⽂件如:*.VHO,*.sdfRTL->SIM->DC->SIM-->PT-->DC---ASTRO--->PT----DRC,LVS--->TAPE OUT1。
数字ic设计流程数字 IC 设计流程是指通过使用数字集成电路技术进行芯片设计的一系列步骤。
这个过程包括需求分析、架构设计、电路设计、逻辑综合、布局布线、验证测试等环节。
下面将详细介绍数字 IC 设计流程。
首先是需求分析阶段。
在这个阶段,设计团队需要与客户充分沟通,了解客户的需求,并制定设计方案。
通过该阶段的分析,设计团队将明确设计的目标,包括芯片的功能、性能、功耗、面积、成本等要求。
接下来是架构设计阶段。
在这个阶段,设计团队将根据需求分析的结果,制定芯片的整体框架。
这包括选择适当的硬件和软件系统,在芯片内部实现各个功能模块,并确定各个模块之间的接口。
然后是电路设计阶段。
在这个阶段,设计团队将根据架构设计的要求,设计各个模块的电路。
这包括设计和优化模块内部的逻辑电路、时钟电路、控制电路、存储电路等。
在这个阶段,设计团队还需要进行电路仿真和验证,确保电路的功能和性能符合设计要求。
接下来是逻辑综合阶段。
在这个阶段,设计团队将设计完成的电路转化为门级电路。
通过逻辑综合工具,将电路中的逻辑元件映射为与门、或门、非门等门电路。
这个阶段还会对电路进行时序优化,以确保电路在时序上满足设计要求。
然后是布局布线阶段。
在这个阶段,设计团队将根据逻辑综合后的电路,进行布局和布线的设计。
布局设计是指将各个门电路按照规定的布局规则进行摆放;布线设计是指将各个门电路之间的连线进行规划和布线。
这个阶段还包括电磁兼容性的考虑,以及对电路面积和功耗的优化。
最后是验证测试阶段。
在这个阶段,设计团队将通过仿真和验证测试,验证设计的正确性和性能。
这包括模拟仿真、时序仿真、功耗仿真等。
在验证测试后,如果发现设计存在问题或不满足要求,设计团队需要对设计进行修改和优化,重新进行验证测试。
总结来说,数字 IC 设计流程包括需求分析、架构设计、电路设计、逻辑综合、布局布线和验证测试等环节。
不同的设计阶段需要使用不同的工具和方法,通过这些流程的严格执行,可以确保设计的芯片满足性能、功耗、面积、成本等要求。
IC设计与制造流程1.前端设计阶段:在IC设计流程的前端设计阶段,设计师根据需求和规格书制定电路架构,并进行逻辑设计。
首先,设计师分析需求和功能要求,确定所需的电路类型和规模,并使用硬件描述语言(HDL)进行逻辑设计。
在逻辑设计完成后,设计师使用设计综合工具将逻辑设计转换为等效的网表描述。
然后,在逻辑设计的基础上,设计师对电路进行逻辑综合和优化,通常使用逻辑综合工具来将逻辑描述转化为逻辑门级的描述。
在逻辑综合之后,设计师进行布线规划和时序分析,以确保电路满足性能要求。
2.物理设计阶段:物理设计阶段是将逻辑设计转化为物理实现的过程。
物理设计包括库元件的选择与配置、版图设计、布局布线等步骤。
首先,根据设计需求,设计师选择和配置合适的库元件,这些元件包括逻辑门、存储器单元和标准单元等。
库元件的选择与配置对电路的面积、功耗和性能都有着重要影响。
接下来,设计师进行版图设计。
版图设计是将逻辑电路布局在芯片表面的过程,其中包括将电路划分为不同的模块和子模块,确定它们的相对位置和连接方式。
然后,设计师进行布局布线。
布局是指将版图中的逻辑电路转换为实际的物理结构,确定每个元件的位置和大小。
布线是将元件之间的连线进行规划和优化,以满足电路的性能要求。
3.验证与测试阶段:在IC设计完成后,需要进行验证和测试,以确保电路的功能和性能符合需求。
验证过程涉及功能验证、仿真和电路级测试。
功能验证主要通过对设计规格进行一系列测试和验证,以确保设计的功能和逻辑正确。
仿真是通过使用相应的仿真工具对电路的行为进行模拟和分析,以验证设计的正确性和性能。
电路级测试是指对制造的芯片进行测试,以确保在实际使用中的性能和可靠性。
这些测试通常包括功能测试、时序测试、功耗测试等。
4.生产制造阶段:在经过验证和测试后,需要进行芯片的生产制造。
生产制造过程主要包括掩膜制作、晶圆加工、封装和测试等步骤。
首先,掩膜制作是将版图转化为掩膜,掩膜是通过使用光刻技术将电路图案转化到硅晶圆上的工具。
IC设计流程及各阶段典型软件IC设计流程是指整个集成电路设计的整体过程,包括需求分析、系统设计、电路设计、物理设计、验证与测试等阶段。
每个阶段都有其典型的软件工具用于支持设计与开发工作。
本文将详细介绍IC设计流程的各个阶段及其典型软件。
1.需求分析阶段需求分析阶段是集成电路设计的起点,主要目的是明确设计目标和规格。
在这个阶段,设计团队与客户进行沟通和讨论,确定设计的功能、性能、功耗、面积等要求。
常用软件工具有:- Microsoft Office:包括Word、Excel、PowerPoint等办公软件,用于编写设计需求文档、文档整理和汇报。
2.系统设计阶段系统设计阶段主要是将需求分析阶段得到的设计目标和规格转化为可实现的电路结构和算法设计。
常用软件工具有:- MATLAB/Simulink:用于算法设计和系统级模拟,包括信号处理、通信系统等。
- SystemVerilog:一种硬件描述语言,用于描述电路结构和行为。
- Xilinx ISE/Vivado:用于FPGA设计,进行电路逻辑设计和Verilog/VHDL代码的仿真和综合。
3.电路设计阶段电路设计阶段是将系统级设计转化为电路级设计。
常用软件工具有:- Cadence Virtuoso:用于模拟和布局设计,包括原理图设计、电路模拟和布局与布线。
- Mentor Graphics Calibre:用于DRC(Design Rule Checking)和LVS(Layout vs. Schematic)设计规则检查和布局与原理图的对比。
4.物理设计阶段物理设计阶段主要是将电路级设计转化为版图设计,并进行布局布线。
常用软件工具有:- Cadence Encounter:用于逻辑综合、布局和布线。
- Cadence Innovus:用于布局布线和时钟树设计。
- Mentor Graphics Calibre:用于DRC和LVS设计规则检查和验证。
1.1从RTL到GDSⅡ的设计流程:
这个可以理解成半定制的设计流程,一般用来设计数字电路。
整个流程如下(左侧为流程,右侧为用到的相应EDA工具):
一个完整的半定制设计流程应该是:RTL代码输入、功能仿真、逻辑综合、门级验证、时序/功耗/噪声分析,布局布线(物理综合)、版图验证。
整个完整的流程可以分为前端和后端两部分,
前端的流程图如下:
前端的主要任务是将HDL语言描述的电路进行仿真验证、综合和时序分析,最后转换成基于工艺库的门级网表。
后端的流程图如下,也就是从netlist到GDSⅡ的设计流程:
后端的主要任务是:
(1)将netlist实现成版图(自动布局布线APR)
(2)证明所实现的版图满足时序要求、符合设计规则(DRC)、layout与netlist一致(LVS)。
(3)提取版图的延时信息(RC Extract),供前端做post-layout仿真。
1.2从Schematic到GDSⅡ的设计流程:
这个可以理解成全定制的设计流程,一般用于设计模拟电路和数模混合电路。
整个流程如下(左侧为流程,右侧为用到的相应EDA工具):
一个完整的全定制设计流程应该是:电路图输入、电路仿真、版图设计、版图验证(DRC和LVS)、寄生参数提取、后仿真、流片。
半导体IC制造流程半导体IC(集成电路)制造是一个复杂的过程,包括多个步骤和工序。
本文将详细介绍半导体IC制造的各行流程管理。
1.设计阶段:在制造IC之前,首先需要进行设计阶段。
这一阶段包括集成电路的功能设计、电路模拟和验证、物理布局设计等工作。
设计团队使用EDA (电子设计自动化)软件工具来完成这些任务。
在设计完成后,需要进行设计规则检查,以确保设计符合制造工艺的要求。
2.掩膜制备:在IC制造的下一个阶段是掩膜制备。
掩膜是制造半导体晶体管的关键工具。
它是通过将光敏胶涂在光刻板上,并使用电子束或光刻技术在光敏胶上绘制模式来制备的。
每个芯片层都需要使用不同的掩模来定义其电路结构。
3.晶圆清洗:在制备掩膜之后,需要对晶圆进行清洗。
晶圆是指用于制造芯片的硅片。
由于制备过程中会产生尘埃和杂质,所以必须将其清洗干净,以确保后续步骤的正确进行。
清洗过程通常包括使用酸、碱和溶剂等化学物质来去除污染物。
4.晶圆涂覆:在晶圆清洗后,需要对其进行涂覆。
涂覆工艺的目的是在晶圆表面形成均匀的保护层,以便实施浅掺杂、沉积和刻蚀等步骤。
现代涂覆工艺通常使用化学机械抛光(CMP)技术,它可以在晶圆表面形成非常平整的薄层。
5.光刻:光刻是制造IC中最重要的步骤之一、在光刻过程中,使用之前制备的掩模将光蚀胶涂在晶圆上,并使用紫外光暴露仪将掩模上的图案投影到光蚀胶上。
接下来,经过显影等步骤,将图案转移到晶圆上,形成需要的电路结构。
6.薄膜沉积:在光刻后,需要在晶圆表面形成薄膜。
薄膜通常由金属、氮化物或氧化物等材料组成,用于电极、绝缘层和导线等部分。
薄膜沉积可以通过物理蒸发、化学气相沉积(CVD)或物理气相沉积(PVD)等方法来实现。
7.刻蚀和除膜:在薄膜沉积后,需要进行刻蚀和除膜步骤。
刻蚀是指通过化学或物理手段将不需要的材料从晶圆表面去除,以形成所需的结构。
刻蚀通常使用等离子体刻蚀技术。
而除膜是指将光蚀胶和其他保护层从晶圆表面去除。
数字IC设计数字IC设计是指采用数字电路元件和技术,在符合设定功能要求的基础上,实现指定功能的集成电路设计。
数字IC设计是集成电路设计的一个重要分支,该设计应用面广,广泛应用于通信、计算机、工业、家用电器等领域中。
本文将从数字IC设计的概念、发展历程、设计方法、常用的设计工具等方面进行探讨。
一、数字IC设计的概念数字IC设计是指使用数字电路元件及技术,在设定的功能要求的前提下,实现指定功能的集成电路的设计。
数字IC设计是由组合逻辑、时序逻辑、存储器等数字电路元件构成的。
数字IC设计的核心是实现数字电路设计的复杂性,在各种复杂的应用领域中,进行数字电路系统的快速设计和优化。
数字IC设计的关键是实现函数逻辑关系的描述和形式化,使用数字语言,对电路系统的逻辑关系进行严格的描述和方便化的实现。
数字IC设计具有复杂性、可扩展性、可靠性、精度高、功耗低等特点。
二、数字IC设计的发展历程数字IC设计发展历程从20世纪60年代开始,到今天数十年来经历了从基础到高级的一系列发展过程。
其中有一些重要的里程碑事件,大大促进了数字IC设计的发展。
早期的数字IC设计是使用硬件直接链接模拟电路实现,其设计过程比较简单,如模拟计算器。
1971年,美国Texas Instruments公司推出了世界上第一款集成电路计算器TMS0100,该计算器采用了数字IC设计技术进行实现。
在此之后,数字IC设计开始迎来了快速的发展,人们越来越依赖集成电路和数字IC设计技术带来的方便和高效性。
20世纪80年代,数字IC的设计和制造技术日趋成熟,数字IC的速度和芯片的集成度愈加高。
随着数字IC设计技术的不断提高和发展,出现了大规模集成(LSI),超大规模集成(VLSI)和超高规模集成(UHVSI)等技术,这一系列的技术标志着数字IC设计的进一步发展。
21世纪以来,数字IC设计技术与微电子技术的迅速发展,尤其是3D器件、功能扩张技术和生物微型芯片等的出现,有力地推动了数字IC设计技术向更为高级、复杂和智能方向发展,以应对日益复杂的计算和控制技术需求。
ic工艺流程及对应半导体设备?
答:IC(集成电路)工艺流程主要包括制造单晶硅片、设计IC、制作光罩、制造IC、测试IC和封装IC。
具体步骤如下:
1.制造单晶硅片:这是制造IC的第一步,单晶硅片的制造流程主要有拉晶、切割、研磨、抛光和清洗等五个步骤。
2. 设计IC:即设计ic电路,把设计好的电路转化为版图,ic设计决定了ic产品的性能和稳定性。
3.制作光罩:把设计好的ic电路版图等比例缩小转化到一块玻璃板上。
4.制造ic:在单晶硅片上制作集成电路芯片,整个过程主要有蚀刻、氧化、扩散和化学气相沉积薄膜以及金属溅镀等。
5.测试ic:为了确保ic的质量,还需要进行测试,包括功能测试和质量测试。
6.封装ic:封装ic是ic制造的最后一步流程,是指晶圆点测后对IC进行封装,主要的流程有晶圆切割,固晶、打线、塑封、切筋成形等。
而在这个工艺流程中,需要使用到的半导体设备包括但不限于光刻机、刻蚀机、薄膜沉积设备、离子注入机、化学机械抛光机、热处理设备以及测试与封装设备等。
这些设备在IC制造过程中扮演着重要的角色,它们的功能和性能直接影响到IC产品的质量和生产效率。
IC设计完整流程及工具IC的设计过程可分为两个部分,分别为:前端设计(也称逻辑设计)和后端设计(也称物理设计),这两个部分并没有统一严格的界限,凡涉及到与工艺有关的设计可称为后端设计。
前端设计的主要流程:1、规格制定芯片规格,也就像功能列表一样,是客户向芯片设计公司(称为Fabless,无晶圆设计公司)提出的设计要求,包括芯片需要达到的具体功能和性能方面的要求。
2、详细设计Fabless根据客户提出的规格要求,拿出设计解决方案和具体实现架构,划分模块功能。
3、HDL编码使用硬件描述语言(VHDL,Verilog HDL,业界公司一般都是使用后者)将模块功能以代码来描述实现,也就是将实际的硬件电路功能通过HDL语言描述出来,形成RTL(寄存器传输级)代码。
4、仿真验证仿真验证就是检验编码设计的正确性,检验的标准就是第一步制定的规格。
看设计是否精确地满足了规格中的所有要求。
规格是设计正确与否的黄金标准,一切违反,不符合规格要求的,就需要重新修改设计和编码。
设计和仿真验证是反复迭代的过程,直到验证结果显示完全符合规格标准。
仿真验证工具Mentor 公司的Modelsim,Synopsys的VCS,还有Cadence的NC-Verilog均可以对RTL 级的代码进行设计验证,该部分个人一般使用第一个-Modelsim。
该部分称为前仿真,接下来逻辑部分综合之后再一次进行的仿真可称为后仿真。
5、逻辑综合――Design Compiler仿真验证通过,进行逻辑综合。
逻辑综合的结果就是把设计实现的HDL代码翻译成门级网表netlist。
综合需要设定约束条件,就是你希望综合出来的电路在面积,时序等目标参数上达到的标准。
逻辑综合需要基于特定的综合库,不同的库中,门电路基本标准单元(standard cell)的面积,时序参数是不一样的。
所以,选用的综合库不一样,综合出来的电路在时序,面积上是有差异的。
一般来说,综合完成后需要再次做仿真验证(这个也称为后仿真,之前的称为前仿真)逻辑综合工具Synopsys的Design Compiler,仿真工具选择上面的三种仿真工具均可。
CADENCE全定制IC设计流程CADENCE是一种广泛应用于集成电路(IC)设计的软件工具。
它提供了完整的设计流程和工具,用于设计、验证和制造IC芯片。
在基于CADENCE的全定制IC设计流程中,在IC设计的每个阶段都使用到了CADENCE工具套件,包括电路和物理设计工具、模拟和数字仿真工具、布图工具以及物理验证工具等。
下面是使用CADENCE进行全定制IC设计的一般流程:1.设计需求分析:根据所需的功能和性能需求,进行设计需求分析。
这包括确定电路拓扑结构、电路规范和性能指标等。
2. 电路设计:使用CADENCE中的Schematic设计工具,绘制电路原理图。
根据设计需求,选择合适的电子元件并进行电路布线。
使用CADENCE的仿真工具,验证电路的功能和性能。
3.物理设计:将电路原理图转换为布局图。
使用CADENCE的布局工具,在设计规范的限制下进行器件布局和连线布线。
这包括选择合适的器件大小和排列方式,以优化电路性能和功耗。
4.物理验证:使用CADENCE的物理验证工具,对电路布局进行验证。
这包括电路的电性能分析、功耗分析、时序等效验证以及电磁兼容性分析等。
根据验证结果进行布局优化和改进。
5.交互测试:将设计与其他模块和子系统进行集成测试。
使用CADENCE的模拟工具和数字仿真工具,对整个系统进行功能验证和性能评估。
7.物理制造:通过CADENCE的布局生成工具,生成用于物理制造的设计数据库文件。
这包括物理制造规则检查、填充、光刻掩膜生成等。
8.物理验证:使用CADENCE的物理验证工具,对物理制造的设计进行验证。
这包括工艺模拟、功耗分析、封装和信号完整性分析等。
9.物理制造:将设计数据库文件发送给制造厂商进行实际制造。
这包括掩膜制造、芯片加工、封装和测试等。
10.性能评估:对实际制造的芯片进行性能评估和测试。
使用CADENCE的集成测试工具,进行功能测试、速度测试和功耗测试等。
11.系统集成:将IC芯片集成到目标系统中,并进行系统级测试和验证。
IC设计流程以及各个阶段使用的工具
IC设计流程
前端设计(也称逻辑设计)和后端设计(也称物理设计)并没有统一严格的界限,涉及到与工艺有关的设计就是后端设计。
1.规格制定
芯片规格,也就像功能列表一样,是客户向芯片设计公司(称为Fabless,无晶圆设计公司)提出的设计要求,包括芯片需要达到的具体功能和性能方面的要求。
2.详细设计
Fabless根据客户提出的规格要求,拿出设计解决方案和具体实现架构,划分模块功能。
3. HDL
使用硬件描述语言(VHDL,V erilog,HDL,业界公司一般都是使用后者)将模块功能以代码来描述实现,也就是将实际的硬件电路功能通过HDL语言描述出来,形成RTL(寄存器传输级)代码。
4.仿真验证
仿真验证就是检验编码设计的正确性,检验的标准就是第一步制定的规格。
看设计是否精确地满足了规格中的所有要求。
规格是设计正确与否的黄金标准,一切违反,不符合规格要求的,就需要重新修改设计和编码。
设计和仿真验证是反复迭代的过程,直到验证结果显示完全符合规格标准。
仿真验证工具Synopsys的VCS,还有Cadence的NC-V erilog。
5.逻辑综合――Design Compiler
仿真验证通过,进行逻辑综合。
逻辑综合的结果就是把设计实现的HDL代码翻译成门级网表netlist。
综合需要设定约束条件,就是你希望综合出来的电路在面积,时序等目标参数上达到的标准。
逻辑综合需要基于特定的综合库,不同的库中,门电路基本标准单元(standard cell)的面积,时序参数是不一样的。
所以,选用的综合库不一样,综合出来的电路在时序,面积上是有差异的。
一般来说,综合完成后需要再次做仿真验证(这个也称为后仿真,之前的称为前仿真),逻辑综合工具Synopsys的Design Compiler。
6.STA
Static Timing Analysis(STA),静态时序分析,这也属于验证范畴,它主要是在时序上对电路进行验证,检查电路是否存在建立时间(setup time)和保持时间(hold time)的违例(violation)。
这个是数字电路基础知识,一个寄存器出现这两个时序违例时,是没有办法正确采样数据和输出数据的,所以以寄存器为基础的数字芯片功能肯定会出现问题。
STA工具有Synopsys的Prime Time。
7. 形式验证
这也是验证范畴,它是从功能上(STA是时序上)对综合后的网表进行验证。
常用的就是等价性检查方法,以功能验证后的HDL设计为参考,对比综合后的网表功能,他们是否在功能上存在等价性。
这样做是为了保证在逻辑综合过程中没有改变原先HDL描述的电路功能。
形式验证工具有Synopsys的Formality。
前端设计的流程暂时写到这里。
从设计程度上来讲,前端设计的结果就是得到了芯片的门级网表电路。
Backend design flow :
1. DFT
Design For Test,可测性设计。
芯片内部往往都自带测试电路,DFT的目的就是在设
计的时候就考虑将来的测试。
DFT的常见方法就是,在设计中插入扫描链,将非扫描单元(如寄存器)变为扫描单元。
关于DFT,有些书上有详细介绍,对照图片就好理解一点。
DFT工具Synopsys的DFT Compiler
2. 布局规划(FloorPlan)
布局规划就是放置芯片的宏单元模块,在总体上确定各种功能电路的摆放位置,如IP模块,RAM,I/O引脚等等。
布局规划能直接影响芯片最终的面积。
工具为Synopsys的Astro
3. CTS
Clock Tree Synthesis,时钟树综合,简单点说就是时钟的布线。
由于时钟信号在数字芯片的全局指挥作用,它的分布应该是对称式的连到各个寄存器单元,从而使时钟从同一个时钟源到达各个寄存器时,时钟延迟差异最小。
这也是为什么时钟信号需要单独布线的原因。
CTS工具,Synopsys的Physical Compiler
4. 布线(Place & Route)
这里的布线就是普通信号布线了,包括各种标准单元(基本逻辑门电路)之间的走线。
比如我们平常听到的0.13um工艺,或者说90nm工艺,实际上就是这里金属布线可以达到的最小宽度,从微观上看就是MOS管的沟道长度。
工具Synopsys的Astro
5. 寄生参数提取
由于导线本身存在的电阻,相邻导线之间的互感,耦合电容在芯片内部会产生信号噪声,串扰和反射。
这些效应会产生信号完整性问题,导致信号电压波动和变化,如果严重就会导致信号失真错误。
提取寄生参数进行再次的分析验证,分析信号完整性问题是非常重要的。
工具Synopsys的Star-RCXT
6. 版图物理验证
对完成布线的物理版图进行功能和时序上的验证,验证项目很多,如LVS(Layout Vs Schematic)验证,简单说,就是版图与逻辑综合后的门级电路图的对比验证;
DRC(Design Rule Checking):设计规则检查,检查连线间距,连线宽度等是否满足工艺要求,
ERC(Electrical Rule Checking):电气规则检查,检查短路和开路等电气规则违例;等等。
工具为Synopsys的Hercules
实际的后端流程还包括电路功耗分析,以及随着制造工艺不断进步产生的DFM(可制造性设计)问题,在此不说了。
物理版图验证完成也就是整个芯片设计阶段完成,下面的就是芯片制造了。
物理版图以GDSII的文件格式交给芯片代工厂(称为Foundry)在晶圆硅片上做出实际的电路,再进行封装和测试,就得到了我们实际看见的芯片。