边坡稳定分析的简化方法
- 格式:pdf
- 大小:514.94 KB
- 文档页数:19
边坡稳定性计算方法目前的边坡的侧压力理论,得出的计算结果,显然与实际情形不符。
边坡稳定性计算,有直线法和圆弧法,当然也有抛物线计算方法,这些不同的计算方法,都做了不同的假设条件。
当然这些先辈拿出这些计算方法之前,也曾经困惑,不做假设简化,基本无法计算。
而根据各种假设条件,是会得出理论上的结果,但与实际情况又不符。
倒是有些后人不管这些假设条件,直接应用其计算结果,把这些和实际不符的公式应用到现有的规范和理论中。
瑞典条分法,其中的一个假设条件破裂面为圆弧,另一个条件为假设的条间土之间,没有相互作用力,这样的话,对每一个土条在滑裂面上进行力学分解,然后求和叠加,最后选取系数最小的滑裂面。
从而得出判断结果。
其实,那两个假设条件对吗?都不对!第一、土体的实际滑动破裂面,不是圆弧。
第二、假设的条状土之间,会存在粘聚力与摩擦力。
边坡的问题看似比较简单,只有少数的几个参数,但是,这几个参数之间,并不是线性相关。
对于实际的边坡来讲,虽然用内摩擦角①和粘聚力C来表示,但对于不同的破裂面,破裂面上的作用力,摩擦力和粘聚力,都是破裂面的函数,并不能用线性的方法分别求解叠加,如果是那样,计算就简单多了。
边坡的破裂面不能用简单函数表达,但是,如果不对破裂面作假设,那又无从计算,直线和圆弧,是最简单的曲线,所以基于这两种曲线的假设,是计算的第一步,但由于这种假设与实际不符,结果肯定与实际相差甚远。
条分法的计算,是来源于微积分的数值计算方法,如果条间土之间,存在相互作用力,那对条状土的力学分解,又无法进行下去。
所以才有了圆弧破裂面的假设与忽略条间土的相互作用的假设。
其实先辈拿出这样与实际不符的理论,内心是充满着矛盾的。
实际看到的边坡的滑裂,大多是上部几乎是直线,下部是曲线形状,不能用简单函数表示,所以说,要放弃求解函数表达式的想法。
计算还是可以用条分法,但要考虑到条间土的相互作用。
用微分迭代的方法求解,能够得出近似破裂面,如果每次迭代,都趋于收敛,那收敛的曲线,就是最终的破裂面。
一、边坡稳定性计算方法在边坡稳定计算方法中,通常采用整体的极限平衡方法来进行分析。
根据边坡不同破裂面形状而有不同的分析模式。
边坡失稳的破裂面形状按土质和成因不同而不同,粗粒土或砂性土的破裂面多呈直线形;细粒土或粘性土的破裂面多为圆弧形;滑坡的滑动面为不规则的折线或圆弧状。
这里将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和方法。
(一)直线破裂面法化计算这类边坡稳定性分析采用直线破裂面法。
能形成直线破裂面的土类包括:均质砂性土坡;透水的砂、砾、碎石土;主要由内摩擦角控制强度的填土。
图 9 - 1 为一砂性边坡示意图,坡高 H ,坡角β,土的容重为γ,抗剪度指标为c、φ。
如果倾角α的平面AC面为土坡破坏时的滑动面,则可分析该滑动体的稳定性。
沿边坡长度方向截取一个单位长度作为平面问题分析。
图9-1 砂性边坡受力示意图已知滑体ABC重 W,滑面的倾角为α,显然,滑面 AC上由滑体的重量W= γ(ΔABC)产生的下滑力T和由土的抗剪强度产生的抗滑力Tˊ分别为:T=W · sina和则此时边坡的稳定程度或安全系数可用抗滑力与下滑力来表示,即为了保证土坡的稳定性,安全系数F s 值一般不小于 1.25 ,特殊情况下可允许减小到 1.15 。
对于C=0 的砂性土坡或是指边坡,其安全系数表达式则变为从上式可以看出,当α =β时,F s 值最小,说明边坡表面一层土最容易滑动,这时当 F s =1时,β=φ,表明边坡处于极限平衡状态。
此时β角称为休止角,也称安息角。
此外,山区顺层滑坡或坡积层沿着基岩面滑动现象一般也属于平面滑动类型。
这类滑坡滑动面的深度与长度之比往往很小。
当深长比小于 0.1时,可以把它当作一个无限边坡进行分析。
图 9-2表示一无限边坡示意图,滑动面位置在坡面下H深度处。
取一单位长度的滑动土条进行分析,作用在滑动面上的剪应力为,在极限平衡状态时,破坏面上的剪应力等于土的抗剪强度,即得式中N s =c/ γ H 称为稳定系数。
边坡稳定性计算⽅法⼀、边坡稳定性计算⽅法在边坡稳定计算⽅法中,通常采⽤整体的极限平衡⽅法来进⾏分析。
根据边坡不同破裂⾯形状⽽有不同的分析模式。
边坡失稳的破裂⾯形状按⼟质和成因不同⽽不同,粗粒⼟或砂性⼟的破裂⾯多呈直线形;细粒⼟或粘性⼟的破裂⾯多为圆弧形;滑坡的滑动⾯为不规则的折线或圆弧状。
这⾥将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和⽅法。
(⼀)直线破裂⾯法所谓直线破裂⾯是指边坡破坏时其破裂⾯近似平⾯,在断⾯近似直线。
为了简化计算这类边坡稳定性分析采⽤直线破裂⾯法。
能形成直线破裂⾯的⼟类包括:均质砂性⼟坡;透⽔的砂、砾、碎⽯⼟;主要由内摩擦⾓控制强度的填⼟。
图 9-1为⼀砂性边坡⽰意图,坡⾼ H ,坡⾓β,⼟的容重为γ,抗剪度指标为 c 、φ。
如果倾⾓α的平⾯ AC ⾯为⼟坡破坏时的滑动⾯,则可分析该滑动体的稳定性。
沿边坡长度⽅向截取⼀个单位长度作为平⾯问题分析。
图9-1 砂性边坡受⼒⽰意图已知滑体ABC重 W,滑⾯的倾⾓为α,显然,滑⾯ AC上由滑体的重量W= γ(ΔABC)产⽣的下滑⼒T和由⼟的抗剪强度产⽣的抗滑⼒Tˊ分别为:T=W · sina和则此时边坡的稳定程度或安全系数可⽤抗滑⼒与下滑⼒来表⽰,即为了保证⼟坡的稳定性,安全系数F s 值⼀般不⼩于 1.25 ,特殊情况下可允许减⼩到 1.15 。
对于C=0 的砂性⼟坡或是指边坡,其安全系数表达式则变为从上式可以看出,当α =β时,F s 值最⼩,说明边坡表⾯⼀层⼟最容易滑动,这时当 F s =1时,β=φ,表明边坡处于极限平衡状态。
此时β⾓称为休⽌⾓,也称安息⾓。
此外,⼭区顺层滑坡或坡积层沿着基岩⾯滑动现象⼀般也属于平⾯滑动类型。
这类滑坡滑动⾯的深度与长度之⽐往往很⼩。
当深长⽐⼩于 0.1时,可以把它当作⼀个⽆限边坡进⾏分析。
图 9-2表⽰⼀⽆限边坡⽰意图,滑动⾯位置在坡⾯下H深度处。
取⼀单位长度的滑动⼟条进⾏分析,作⽤在滑动⾯上的剪应⼒为,在极限平衡状态时,破坏⾯上的剪应⼒等于⼟的抗剪强度,即得式中N s =c/ γ H 称为稳定系数。
边坡稳定性分析方法至今为止,广大学者针对边坡稳定性的分析方法主要包括以下两个方面。
(一)定性分析方法此方法的研究对象主要包括边坡稳定性的影响因素、边坡失稳破坏时的力学作用、边坡的工程价值等,以及结合边坡的形成历史,从定性的角度解释和说明了边坡的发展方向及稳定性情况。
该方法的优势在于充分地分析了影响边坡稳定性中各个因素的相互作用关系,能够快速地评价边坡的自稳能力。
具体包括以下几个方面:(1)自然历史分析法自然历史分析法主要是通过分析边坡发育历史进程中的各种自然影响因素,包括边坡自身的变形情况、发育程度以及边坡分布区域的地貌特征、岩层性质、构造活动等,进而评价边坡的总体情况和稳定性特征,同时也可以预测将来可能导致边坡变形和失稳的触发因素。
该方法对边坡稳定性所做出的评价是从边坡的自然演化方面入手的。
(2)工程地质类比法工程地质类比法首先需要对边坡概况进行充分了解,包括组成边坡的岩体岩性、产状和结构面特征。
然后将目前已知的边坡稳定性情况和需要研究的边坡进行对比,记录两者之间的相似性与差异性,以此分析出所要研究边坡的稳定性情况和破坏模式。
为了能够准确地类比分析,就需要对现有边坡的环境地质条件进行全面的调查记录,并建立数据库。
该方法能够大致判断出研究对象的稳定性发展状况和趋势。
(3)图解法图解法通过在示意图上表示出边坡本身各类参数的组合关系来对边坡的稳定情况、破坏特征、破坏因素以及未来的发展方向进行分析。
常用的图解法包括极射赤平投影、边坡等比例投影等。
该方法的优势在于可以直观地表示影响边坡稳定性的因素。
(二)定量分析方法此方法主要通过数值法和极限平衡法等数学手段,依靠计算软件,更加精确地给出满足实际情况的边坡稳定性分析结果。
(1)极限平衡法主要是按照摩尔-库伦强度准则,通过分析作用在土体上的静力平衡条件来判断边坡的稳定性情况,最常见的极限平衡法是条分法,该方法经过100多年的发展,已经成为目前工程实践中使用最为广泛的一种方法。
边坡稳定性分析
1、边坡稳定性分析之前,应根据岩土工程地质条件对边坡的可能破坏方式及相应破坏方向、破坏范围、影响范围等作出判断。
判断边坡的可能破坏方式时应同时考虑到受岩土体强度控制的破坏和受结构面控制的破坏。
2、边坡抗滑移稳定性计算可采用刚体极限平衡法。
对结构复杂的岩质边坡,可结合采用极射赤平投影法和实体比例投影法;当边坡破坏机制复杂时,可采用数值极限分析法。
3、计算沿结构面滑动的稳定性时,应根据结构面形态采用平面或折线形滑面。
计算土质边坡、极软岩边坡、破碎或极破碎岩质边坡的稳定性时,可采用圆弧形滑面。
4、采用刚体极限平衡法计算边坡抗滑稳定性时,可根据滑面形态按本规范附录A选择具体计算方法。
5、边坡稳定性计算时,对基本烈度为7度及7度以上地区的永久性边坡应进行地震工况下边坡稳定性校核。
6、塌滑区内无重要建(构)筑物的边坡采用刚体极限平衡法和静力数值计算法计算稳定性时,滑体、条块或单元的地震作用可简化为一个作用于滑体、条块或单元重心处、指向坡外(滑动方向)的水平静力,其值应按下列公式计算:
Q e=αw G (5.2.6-1)
Q ei=αw G i (5.2.6-2)
式中:Q e、Q ei——滑体、第i计算条块或单元单位宽度地震力(kN/m);
G、G i——滑体、第i计算条块或单元单位宽度自重[含坡顶建(构)筑物作用](k N/m);
αw——边坡综合水平地震系数,由所在地区地震基本烈度按表5.2.6确定。
表5.2.6 水平地震系数
7、当边坡可能存在多个滑动面时,对各个可能的滑动面均应进行稳定性计算。