电机的四象限运行
- 格式:doc
- 大小:22.00 KB
- 文档页数:1
电机四象限运行电机四象限运行1、什么是单象限和4象限?以电动机的转速为纵座标轴,以转矩为横座标轴建立的直角坐标系,用来描述电动机的四种运转状态,即正向电动,回馈发电制动,反接制动,以及反向电动四种运转状态。
每一种状态的机械特性曲线分别在直角坐标系的四个象限。
如果装置只能满足电动机的电动运转状态,那么它就是单象限的。
如果装置驱动在电动状态时,能够从电动状态进入第二象限运行,也能从电动状态进入第四象限运行,那么装置是四象限的。
单象限装置只能正向电动,或反向电动,不能从电动运行进入再生发电运行。
2、关于控制器的象限和电机的象限:单象限:能量只能单向流动。
四象限:能量可以双向流动。
电机和变频器都有自己的象限,不要搞混了。
*电机的单象限运行,指电机电动运行。
四象限指发电运行。
*变频器的单象限运行,指能量从电网进入变频器。
四象限指能量还可以回馈电网。
可能有这种情况:a.单象限运行的变频器带四象限运行的电机。
电机发电的能量提升了母线电压,或在制动单元消耗掉。
b.单象限的直流调速换向麻烦,需要改变励磁或电枢的正负来实现反转。
四象限的直流调速有两组整流桥,输出方向相反,正转时其中一组工作,反转时另一组工作。
需要注意的主要是换向的时间问题:对于单象限的调速器,当电机需要反转时,要加时间继电器。
无论是改变励磁方向还是改变电枢方向,都必须等待一段时间,就是说不允许工作中突然换向。
因为励磁线圈和电枢线圈通的都是直流电,需要时间来释放能量,如果换向太快将会把整流桥反向击穿。
而四象限的调速器不存在此问题,因为两组整流桥方向相反,当一组停止输出时,另一组正好可以给电机释放能量。
3、关于变频器和直流调速器的互换:从理论上讲,磁场矢量控制的交流电机变频装置,完全可替代直流调速系统,当然要实现4象限运行,IGBT和整流二极管都要反并联,以实现电流的反向。
电机也要求有速度反馈,如测速发电机或者码盘等,另外还要根据负载的特性,选择电动机的恒扭矩和恒功率的调速范围。
直流电动机四象限机械特性测试一.实验目的本实验通过对直流电动机四象限机械特性的测试时学生对直流电动机的基本特性以及四象限工作状态有更深入的了解,进而掌握直流电动机的认为特性及其在调速国策和那个中的应用方式,同时锻炼学僧的分析问题解决问题能力和独立工作的能力。
二.实验内容测试直流电动机四个象限的机械特性,包括设备选择,拖动及负载电动机的选择,调速方式,参数调整,接线以及数据测试和曲线的绘制等。
三.实验要求1)第一象限固有特性电动状态测量4个稳定工作点2)第二象限回馈状态(电压可适当降低)测量4个稳定工作点3)第二象限电动势反接制动(最大电流设为1.5倍的In)测量3个工作点4)第二象限能耗制动(最大电流设1.5In)测量三个工作点,可以接反抗性负载5)第三象限反向电动状态(类同一象限)6)第四象限能耗制动测量4个稳定工作点7)第四象限倒拉反转测量4个稳定工作点8)要求写清实验步骤,并记录数据四.实验步骤1 第一象限的固有特性1.1 实验原理在电源电压U =Un,气隙磁通Ф=ФN,电枢外串电阻RΩ=0时,n =ƒ(T )的机械特性,其数学表达式为:特性表达式 T n TC C R C U n N T e a N e N ⋅-=Φ-Φ=β02机械转速N e N C U n Φ=0 斜率2N T e aC C R Φ=β空载1.2 实验步骤(1)按照实验接线图连接号电路,R1:电枢调节电阻(MEL-09)Rf :磁场调节电阻(Mel-09) M:直流并励电动机M03 G:涡流测功机U1:可调直流稳压电源 U2:直流电机励磁电源V1:可调直流稳压电源自带电压表V2:直流电压表,量程为360v档,位于MEL-6(有的时候其实不用这个表,为了 实验的安全性和调速还是加上) A:测电枢电流的安培表,mA:毫安表,位于直流电机励磁电源部(2)检查M ,G 之间是否用联轴器接好,电机导轨和MEL-13的连线是否接好,电动机励磁回路接线是否牢靠,仪表的量程,极性是否正确。
电机四象限运行1、什么是单象限和4象限?以电动机的转速为纵座标轴,以转矩为横座标轴建立的直角坐标系,用来描述电动机的四种运转状态,即正向电动,回馈发电制动,反接制动,以及反向电动四种运转状态。
每一种状态的机械特性曲线分别在直角坐标系的四个象限。
如果装置只能满足电动机的电动运转状态,那么它就是单象限的。
如果装置驱动在电动状态时,能够从电动状态进入第二象限运行,也能从电动状态进入第四象限运行,那么装置是四象限的。
单象限装置只能正向电动,或反向电动,不能从电动运行进入再生发电运行。
2、关于控制器的象限和电机的象限:单象限:能量只能单向流动。
四象限:能量可以双向流动。
电机和变频器都有自己的象限,不要搞混了。
*电机的单象限运行,指电机电动运行。
四象限指发电运行。
*变频器的单象限运行,指能量从电网进入变频器。
四象限指能量还可以回馈电网。
可能有这种情况:a.单象限运行的变频器带四象限运行的电机。
电机发电的能量提升了母线电压,或在制动单元消耗掉。
b.单象限的直流调速换向麻烦,需要改变励磁或电枢的正负来实现反转。
四象限的直流调速有两组整流桥,输出方向相反,正转时其中一组工作,反转时另一组工作。
需要注意的主要是换向的时间问题:对于单象限的调速器,当电机需要反转时,要加时间继电器。
无论是改变励磁方向还是改变电枢方向,都必须等待一段时间,就是说不允许工作中突然换向。
因为励磁线圈和电枢线圈通的都是直流电,需要时间来释放能量,如果换向太快将会把整流桥反向击穿。
而四象限的调速器不存在此问题,因为两组整流桥方向相反,当一组停止输出时,另一组正好可以给电机释放能量。
3、关于变频器和直流调速器的互换:从理论上讲,磁场矢量控制的交流电机变频装置,完全可替代直流调速系统,当然要实现4象限运行,IGBT和整流二极管都要反并联,以实现电流的反向。
电机也要求有速度反馈,如测速发电机或者码盘等,另外还要根据负载的特性,选择电动机的恒扭矩和恒功率的调速范围。
电机四象限运行1、什么是单象限和4象限?以电动机的转速为纵座标轴,以转矩为横座标轴建立的直角坐标系,用来描述电动机的四种运转状态,即正向电动,回馈发电制动,反接制动,以及反向电动四种运转状态。
每一种状态的机械特性曲线分别在直角坐标系的四个象限。
如果装置只能满足电动机的电动运转状态,那么它就是单象限的。
如果装置驱动在电动状态时,能够从电动状态进入第二象限运行,也能从电动状态进入第四象限运行,那么装置是四象限的。
单象限装置只能正向电动,或反向电动,不能从电动运行进入再生发电运行。
左半部是众所周知的可逆变频器原理图,各位同行一看便知。
而右半部分电机分别处于四象限运行的转矩方向和转速方向(也是旋转方向)图。
现简单分析如下:当电机通常是处于处于第一象限运行,我们称其为正转(顺时针反向)电动状态,电动机通过变频器以不同的转速从电网吸收电能,并将其转换为机械能。
电动机的电动转矩和旋转反向一致,也是顺时针方向。
负载机械转矩和电动机电动转矩相反,当电动转矩大于负载转矩时,电动机升速,当电动转矩等于负载转矩时,电机匀速运转。
当我们电机处于某一转速运行在第一象限运行时,当变频器的给定频率突然变小,不管变频器的减速参数如何设定,只要是频率下降减速度大于电动机带负载的惯性减速速率,那么电机由电动状态变为发电状态,它将机械动能通过逆变模块的续流二极管并由制动单元控制向制动电阻放电,将机械能通过制动电阻发热耗掉,这时电机运转方向仍为正转(顺时针),而电机的电动转矩方向和第一象限相反,也就是和转动方向相反(逆时针),电动机对机械负载起制动作用,使得电机运转减速度加快。
我们称其为发电能耗制动状态,如果具有回馈制动单元的话,它可以将机械能通过回馈制动单元向电网回馈。
第三象限和第一象限过程相同,只不过电动转矩和旋转方向分别相反。
而第四象限和第二象限过程相同,也只不过是电动转矩和旋转方向分别相反。
2、关于控制器的象限和电机的象限:单象限:能量只能单向流动。
四象限变频器1. 引言四象限变频器是一种能够控制电机转速和方向的设备,广泛应用于工业控制系统中。
它通过改变电机供电的频率和电压,实现对电机的精确控制,可以使电机在不同负载情况下高效运行。
本文将介绍四象限变频器的基本原理、工作方式以及在工业领域的应用。
2. 四象限变频器的基本原理四象限变频器基于矢量控制原理工作,通过改变电压和频率来控制电机的转速和方向。
其基本原理如下:•正向运行:当电机处于正向运行状态时,四象限变频器提供正向电压和频率给电机,使其顺时针旋转。
•反向运行:当电机需要反向运行时,四象限变频器提供反向电压和频率给电机,使其逆时针旋转。
•转速控制:通过改变输出电压和频率的比例,可以实现电机转速的精确控制。
增大频率可加快电机转速,减小频率则减慢电机转速。
•动态刹车:四象限变频器还能够提供动态刹车功能,通过改变电机的输出电压和频率,实现电机的快速停止。
3. 四象限变频器的工作方式四象限变频器通过内部的逻辑电路和控制器来实现电机的精确控制。
其工作方式如下:1.输入信号处理:四象限变频器接收来自上位机或外部控制器的命令信号,经过输入信号处理电路进行处理,得到控制电压和频率的指令。
2.电压和频率控制:根据输入信号处理模块的指令,四象限变频器能够实现对输出电压和频率的精确控制。
通过改变两者的比例关系,可以控制电机的转速。
3.电流保护:四象限变频器内置了电流保护功能,通过对电机电流的监测和限制,保护电机免受过载和短路等危害。
4.故障检测和报警:在四象限变频器工作过程中,会监测电机和变频器的运行状态,一旦检测到故障或异常情况,会及时报警并采取相应的保护措施。
4. 四象限变频器的应用四象限变频器广泛应用于各个工业领域,其主要应用包括:•汽车制造:四象限变频器是汽车生产线上的常用设备,可以提供精准的控制和调速功能,确保生产线的高效运转。
•冶金行业:铁矿石、铝合金等冶金工艺中,电机的控制和调速对产品质量有着重要影响,四象限变频器能够满足这些要求。
电机四象限电机四象限是指在电机运行过程中,根据电机的转速和负载转矩的正负关系,将电机运行状态划分为四个象限。
每个象限代表了不同的运行情况和特点,对于电机的控制和运行参数的选择具有重要意义。
第一象限:正转负载区第一象限是指电机以正转速运行,同时承受正向转矩负载的区域。
在这个区域中,电机输出功率为正,表示电机正在正常工作。
这种情况下,电机承受的负载转矩与电机输出转速呈正相关关系,负载转矩越大,电机输出转速越低。
第二象限:反转负载区第二象限是指电机以反转速运行,同时承受正向转矩负载的区域。
在这个区域中,电机输出功率为负,表示电机正在反转运行。
和第一象限类似,电机承受的负载转矩与电机输出转速呈正相关关系,负载转矩越大,电机输出转速越低。
第三象限:反转正载区第三象限是指电机以反转速运行,同时承受负向转矩负载的区域。
在这个区域中,电机输出功率为正,表示电机正在反转运行。
这种情况下,电机承受的负载转矩与电机输出转速呈负相关关系,负载转矩越大,电机输出转速越高。
第四象限:正转正载区第四象限是指电机以正转速运行,同时承受负向转矩负载的区域。
在这个区域中,电机输出功率为负,表示电机正在正常工作。
和第三象限类似,电机承受的负载转矩与电机输出转速呈负相关关系,负载转矩越大,电机输出转速越高。
电机四象限的划分对于电机的控制和运行具有重要意义。
根据不同象限的特点,可以选择合适的控制策略和运行参数,以实现电机的高效工作和稳定运行。
例如,在第一象限中,可以根据负载转矩的大小来调整电机的输出转速,以保持电机的工作在最佳点上;在第二象限中,可以通过改变电机的运行方向来满足不同的工作需求;在第三象限中,可以根据负载转矩的变化来调整电机的输出转速,以实现精确的运动控制;在第四象限中,可以通过改变电机的运行方向和负载转矩的大小来实现不同的工作任务。
电机四象限是电机运行状态的划分,代表了不同的运行情况和特点。
了解和理解电机四象限的意义,可以帮助我们选择合适的控制策略和运行参数,以实现电机的高效工作和稳定运行。
1、什么是四象限运行?
2、我们把电机的运行速度方向用一条数轴Y来表示,数轴的正方向代表正转的转数,反方向表示反转的转速;
3、我们把电机的电磁转矩方向用一条数轴X来表示,数轴的正方向代表电磁转矩的正向和运动方向相同即电动状态,反方向表示电磁转矩的反向和运动方向相反即发电状态;
4、将上面提到的2、3构成一个平面坐标系XOY,那么抽油机的电动机正常电动状态处在第一象限(正转、电动),发电制动运行在第二象限(正转、发电);
5、当然到底在第几象限,与2、3规定定义有关;
6、电梯电动机由于正常状态就不断正、反转,上、下都有可能电动或发电,处于四象限运行状态,各个状态能量转换方向不同,控制方向不同;
7、用四象限来描述电机运行状态,是一种方法;不具有其它任何意义;
8、不用四象限的方法描述,而用大家熟悉的正、反转,电动、发电描述是一样,你习惯用什么方法描述都一样;并没有先进、落后的差别,只是方法不同而已!
===================================================================== ==========
单独对于电机来说,所谓四象限是指其运行机械特性曲线在数学轴上的四个象限都可运行。
第一象限正转电动状态,第二象限回馈制动状态,第三象限反转电动状态,第四象限反接制动状态。
能够具有使得电机工作在四象限的变频器才称得上四象限变频器。
在上个世纪80年代末,交流变频调速逐渐登上了工业传动调速方式的历史舞台。
变频调速在调速范围、调速精度、控制灵活、工作效率、使用方便等方面都有很大的优点,使变频调速成为最有发展前途的一种交流调速方式。
普通的变频器大都采用二极管整流桥将交流电转化成直流,然后采用IGBT 逆变技术将直流转化成电压频率皆可调整的交流电控制交流电动机。
这种变频器只能工作在电动状态,所以称之为两象限变频器。
由于两象限变频器采用二极管整流桥,无法实现能量的双向流动,所以没有办法将电机回馈系统的能量送回电网。
在一些电动机要回馈能量的应用中,比如电梯,提升,离心机系统,只能在两象限变频器上增加电阻制动单元。
将电动机回馈的能量消耗掉。
另外,在一些大功率的应用中,二极管整流桥对电网产生严重的谐波污染。
IGBT功率模块可以实现能量的双向流动,如果采用IGBT做整流桥,用高速度、高运算能力的DSP产生PWM控制脉冲。
一方面可以调整输入的功率因数,消除对电网的谐波污染,让变频器真正成为“绿色产品”。
另一方面可以将电动机回馈产生的能量反送到电网,达到彻底的节能效果。
四象限变频器的典型应用是具有位势负载特性的场合,例如提升机,机车牵引,油田磕头机,离心机等。
在一些大功率的应用中,也需要四象限变频器以减小对电网的谐波污染。
以提升机的应用为例,当提升重物时,四象限变频器拖动电机克服重力做工,电动机处于电动状态。
当下放重物时,逆变侧产生励磁电流,重力牵引电机发电,电动机处于发电状态。
势能转化为电能通过整流侧回馈的电网。