高中物理竞赛-联赛公式大全
- 格式:ppt
- 大小:7.94 MB
- 文档页数:94
此文档下载后即可编辑第一章 质点运动学和牛顿运动定律1.1平均速度 v =t△△r1.2 瞬时速度 v=lim 0△t →△t△r =dt dr1. 3速度v=dt ds==→→lim lim 0△t 0△t △t △r 1.6 平均加速度a =△t△v1.7瞬时加速度(加速度)a=lim△t →△t △v =dtdv1.8瞬时加速度a=dt dv =22dtrd1.11匀速直线运动质点坐标x=x 0+vt1.12变速运动速度 v=v 0+at 1.13变速运动质点坐标x=x 0+v 0t+21at 21.14速度随坐标变化公式:v 2-v 02=2a(x-x 0)1.15自由落体运动 1.16竖直上抛运动⎪⎩⎪⎨⎧===gyv at y gt v 22122 ⎪⎪⎩⎪⎪⎨⎧-=-=-=gy v v gt t v y gt v v 221202200 1.17 抛体运动速度分量⎩⎨⎧-==gt a v v av v yx sin cos 001.18抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x1.19射程 X=g av 2sin 201.20射高Y=gav 22sin 201.21飞行时间y=xtga —ggx 21.22轨迹方程y=xtga —av gx 2202cos 21.23向心加速度 a=Rv 21.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n1.25 加速度数值 a=22n t a a +1.26 法向加速度和匀速圆周运动的向心加速度相同a n =Rv 21.27切向加速度只改变速度的大小a t =dtdv1.28 ωΦR dt d R dt ds v ===1.29角速度 dtφωd =1.30角加速度 22dt dt d d φωα== 1.31角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR RR R v ==a t =αωR dtd R dt dv ==牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
第一章 质点运动学和牛顿运动定律1.1平均速度 v =t△△r1.2 瞬时速度 v=lim 0△t →△t△r =dt dr1. 3速度v=dt ds ==→→lim lim△t 0△t △t △r1.6 平均加速度a =△t△v1.7瞬时加速度(加速度)a=lim△t →△t △v =dtdv1.8瞬时加速度a=dt dv =22dtrd1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度 v=v 0+at 1.13变速运动质点坐标x=x 0+v 0t+21at 2 1.14速度随坐标变化公式:v 2-v 02=2a(x-x 0) 1.15自由落体运动 1.16竖直上抛运动⎪⎩⎪⎨⎧===gyv at y gt v 22122 ⎪⎪⎩⎪⎪⎨⎧-=-=-=gyv v gt t v y gt v v 221202200 1.17 抛体运动速度分量⎩⎨⎧-==gt a v v av v yx sin cos 001.18 抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x1.19射程 X=gav 2sin 201.20射高Y=gav 22sin 201.21飞行时间y=xtga —g gx 21.22轨迹方程y=xtga —av gx 2202cos 2 1.23向心加速度 a=Rv 21.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n1.25 加速度数值 a=22n t a a +1.26 法向加速度和匀速圆周运动的向心加速度相同a n =Rv 21.27切向加速度只改变速度的大小a t =dtdv1.28 ωΦR dtd R dt ds v ===1.29角速度 dtφωd =1.30角加速度 22dt dtd d φωα== 1.31角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR RR R v == a t =αωR dtd R dt dv ==牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
中学物理奥赛常用数学公式一、等差、等比数列1.定义:{}1n n n a a d a +-=⇔是等差数列{}1,(0,0)n n n n a q a q a a +=≠≠⇔是等比数列,, (,)2a b a b a b +±等差中项等比中项同号2.公式(1)通项1(1)()n m a a n d a n m d =+-=+- 11n n m n m a a q a q --==(2)前n 项和 11(1)(1)()222n n n a a n n n n s n na d na d +--==+=+- 1(1)2n s d a n n =+-也是等差数列 111(1)1111n n n a a q a q q qq s na q ⎧--=≠⎪--=⎨⎪=⎩二.数列求和 (1)2222(1)(21)123...6n n n n ++++++=(2) 223332(1)12(12)4n n n n ++++=+++= 三、三角公式1、和差角公式 ()()()sin sin cos cos sin cos cos cos sin sin tan tan tan()1tan tan tan tan tan()(1tan tan )sin cos a b αβαβαβαβαβαβαβαβαβαβαβαβαααϕ±=±±=±±=±=±+=+ 2、倍角公式 万能公式22tan sin 22sin cos 1tan ααααα==+ 2222221tan cos 2cos sin 2cos 112sin 1tan ααααααα-=-=-=-=+23332tan tan 21tan sin 33sin 4sin cos 4cos 3cos ααααααααα=-=-=- 3、半角公式,升降幂公式22221cos 1cos 1cos 1cos sin sin cos tan 222221cos sin 1cos 1cos 21cos 2sin cos 221cos 2cos 1cos 2sin 22ααααααααααααααααααα-+--=±=±=±==++-+==+=-=4、积化和差,和差化积公式sin sin 2sin cos sin sin 2sin cos 2222cos cos 2cos cos cos cos 2sin cos 222211sin cos [sin()sin()]cos cos [cos()cos()]221sin sin [cos()cos()]2αβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβ+--++=-=+-+-+=-=-=++-=++-=-+--(2)正弦定理 2sin sin sin abcR A B C ===(R 是ABC ∆外接圆半径)(3)余弦定理 2222cos c a b ab C =+- 222cos 2a b c C ab +-=(4)11sin ()()()224ABC a abcS ah ab C pr p p a p b p c R ∆=====---其中2a b cp ++=为半周长四、重要不等式1.222(,0)1122a b a bab a b a b++≥≥≥>+2.22233(,,0)11133a b c a b cabc a b c a b c++++≥≥≥>++3.222(,)22a b a b ab ab a b R ++⎛⎫≤≤∈ ⎪⎝⎭3(,,0)3a b c abc a b c ++⎛⎫≤> ⎪⎝⎭五、球1、222R r d =+2、球面距离l R θ=⋅ 2222222cos 22cos R R AB R AB r r r θβ+-==+-(β是径度差) 3、24S R π=球内接长方体 222224l R a b c ==++ 侧棱两两垂直的三棱锥补形⇒长方体⇒球内接长方体4、体积 343V R π= 3S V R R S V '''==球球球球多面体内切球半径 : 3V r S =全 六、二项式定理(1)011()n n n n n n n n a b C a C a b C b -+=+++(2)22(1)11n nx nx nx c x +≈+≈++ 七、导数1.()()()00000x x f x x f x y f x lim lim x x∆→∆→+∆-∆'==∆∆ ()()00f x x f x x x ⇔==在处可导,注意:在处不可导二、运算法则:()()()()()()()21234x u U V U V UV U V UV U U V UV y y u x V V ''''''±=±=+'''-⎛⎫'''== ⎪⎝⎭ 三、导数公式(1)0C '= (2)()1n n x nx -'=(3)()x x e e '= (4)()x x a a ln a '=(5)1(ln x )x '= (6)11(log )log ln a a x e x x a'== (7)(sin )cos x x '= (8)(cos )sin x x '=-8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL中考不须要,竞赛中很明显的结论9、三角形的外心,垂心,重心在同一条直线上。
物理竞赛公式一、质点的运动(1)------直线运动1)匀变速直线运动1.平均速度V平=S/t (定义式)2.有用推论Vt2 -Vo2=2as3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at5.中间位置速度Vs/2=[(Vo2 +Vt2)/2]1/26.位移S= V平t=Vot + at2/2=Vt/2t7.加速度a=(Vt-Vo)/t 以Vo为正方向,a与Vo同向(加速)a>0;反向则a<08.实验用推论ΔS=aT2 ΔS为相邻连续相等时间(T)内位移之差9.主要物理量及单位:初速(Vo):m/s 加速度(a):m/s2 末速度(Vt):m/s时间(t):秒(s) 位移(S):米(m)路程:米速度单位换算:1m/s=3.6Km/h注:(1)平均速度是矢量。
(2)物体速度大,加速度不一定大。
(3)a=(Vt-Vo)/t 只是量度式,不是决定式。
(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/2) 自由落体1.初速度Vo=02.末速度Vt=gt3.下落高度h=gt2/2(从Vo位置向下计算)4.推论Vt2=2gh注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。
(2)a=g=9.8≈10m/s2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。
3) 竖直上抛1.位移S=Vot- gt2/22.末速度Vt= Vo- gt (g=9.8≈10m/s2 )3.有用推论Vt2 -Vo2=-2gS4.上升最大高度Hm=Vo2/2g (抛出点算起)5.往返时间t=2Vo/g (从抛出落回原位置的时间)注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。
(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动万有引力1)平抛运动1.水平方向速度Vx= Vo2.竖直方向速度Vy=gt3.水平方向位移Sx= Vot4.竖直方向位移(Sy)=gt2/25.运动时间t=(2Sy/g)1/2 (通常又表示为(2h/g)1/2)6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2合速度方向与水平夹角β: tgβ=Vy/Vx=gt/Vo7.合位移S=(Sx2+ Sy2)1/2 ,位移方向与水平夹角α: tgα=Sy/Sx=gt/2Vo注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。
第一章 质点运动学和牛顿运动定律 1.1平均速度 v =t△△r1.2 瞬时速度 v=lim△t →△t △r =dtdr1. 3速度v=dtds ==→→lim lim△t 0△t △t△r 1.6 平均加速度a =△t△v1.7瞬时加速度(加速度)a=lim 0△t →△t △v =dt dv1.8瞬时加速度a=dt dv =22dt rd1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度 v=v 0+at 1.13变速运动质点坐标x=x 0+v 0t+21at 21.14速度随坐标变化公式:v 2-v 02=2a(x-x 0) 1.15自由落体运动 1.16竖直上抛运动⎪⎩⎪⎨⎧===gy v at y gtv 22122 ⎪⎪⎩⎪⎪⎨⎧-=-=-=gy v v gt t v y gt v v 221202200 1.17 抛体运动速度分量⎩⎨⎧-==gt a v v av v yx sin cos 001.18 抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x1.19射程 X=gav 2sin 21.20射高Y=gav 22sin 201.21飞行时间y=xtga —ggx 21.22轨迹方程y=xtga —av gx 2202cos 2 1.23向心加速度 a=Rv 21.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n1.25 加速度数值 a=22n t a a +1.26 法向加速度和匀速圆周运动旳向心加速度相似a n =Rv 21.27切向加速度只变化速度旳大小a t =dtdv1.28 ωΦR dtd R dt ds v ===1.29角速度 dtφωd =1.30角加速度 22dt dtd d φωα== 1.31角加速度a 与线加速度a n 、a t 间旳关系a n =222)(ωωR RR R v == a t =αωR dtd R dt dv ==牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫变化这种状态。
高中物理奥赛常用数学公式一、等差、等比数列1.定义:{}1n n n a a d a +-=⇔是等差数列{}1,(0,0)n n n n a q a q a a +=≠≠⇔是等比数列,, (,)2a b a b a b +±等差中项等比中项同号2.公式(1)通项1(1)()n m a a n d a n m d =+-=+- 11n n m n m a a q a q --==(2)前n 项和 11(1)(1)()222n n n a a n n n n s n na d na d +--==+=+- 1(1)2n s d a n n =+-也是等差数列 111(1)1111n n n a a q a q q q q s na q ⎧--=≠⎪--=⎨⎪=⎩二.数列求和 (1)2222(1)(21)123...6n n n n ++++++=(2) 223332(1)12(12)4n n n n ++++=+++= 三、三角公式1、和差角公式()()()sin sin cos cos sin cos cos cos sin sin tan tan tan()1tan tan tan tan tan()(1tan tan )sin cos a b αβαβαβαβαβαβαβαβαβαβαβαβαααϕ±=±±=±±=±=±+=+ 2、倍角公式 万能公式22tan sin 22sin cos 1tan ααααα==+ 2222221tan cos 2cos sin 2cos 112sin 1tan ααααααα-=-=-=-=+ 23332tan tan 21tan sin 33sin 4sin cos 4cos 3cos ααααααααα=-=-=- 3、半角公式,升降幂公式22221cos sin sin cos tan 222sin 1cos 1cos 21cos 2sin cos 221cos 2cos 1cos 2sin 22ααααααααααααααα-=====+-+==+=-=4、积化和差,和差化积公式 sin sin 2sin cos sin sin 2sin cos 2222cos cos 2cos cos cos cos 2sin cos 222211sin cos [sin()sin()]cos cos [cos()cos()]221sin sin [cos()cos()]2αβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβ+--++=-=+-+-+=-=-=++-=++-=-+--(2)正弦定理 2sin sin sin a b c R A B C ===(R 是外接圆ABC ∆半径)(3)余弦定理 2222cos c a b ab C =+- 222cos 2a b c C ab +-= (4)11sin 224ABC a abc S ah ab C pr R ∆===== 其中为半周2a b c p ++=长 四、重要不等式1.2(,0)112a b a b a b+≥≥≥>+ 2.3(,,0)1113a b c a b c a b c++≥≥≥>++ 3.222(,)22a b a b ab ab a b R ++⎛⎫≤≤∈ ⎪⎝⎭ 3(,,0)3a b c abc a b c ++⎛⎫≤> ⎪⎝⎭五、球1、222R r d =+2、球面距离l R θ=⋅ 2222222cos 22cos R R AB R AB r r r θβ+-==+- (β是径度差)3、24S R π=球内接长方体 222224l R a b c ==++ 侧棱两两垂直的三棱锥补形长方体⇒⇒球内接长方体4、体积 343V R π=R R '==多面体内切球半径 : 3V r S =全六、二项式定理 (1)011()n n n n n n n n a b C a C a b C b -+=+++(2)22(1)11n n x nx nx c x +≈+≈++七、导数1.()()()00000x x f x x f x y f x lim lim x x∆→∆→+∆-∆'==∆∆ ()()00f x x f x x x ⇔==在处可导,注意:在处不可导二、运算法则:()()()()()()()21234x u U V U V UV U V UV U U V UV y y u x V V ''''''±=±=+'''-⎛⎫'''== ⎪⎝⎭ 三、导数公式(1)0C '= (2)()1n n x nx -'=(3)()x x e e '= (4)()x x a a ln a '=(5)1(ln x )x '= (6)11(log )log ln a a x e x x a'== (7)(sin )cos x x '= (8)(cos )sin x x '=-8、设三角形A B C 的外心为O ,垂心为H ,从O 向BC 边引垂线,设垂足不L ,则AH=2OL 中考不需要,竞赛中很显然的结论9、三角形的外心,垂心,重心在同一条直线上。
高中物理奥赛常用数学公式一、等差、等比数列1.定义:{}1n n n a a d a +-=⇔是等差数列{}1,(0,0)n n n n a q a q a a +=≠≠⇔是等比数列,, (,)2a b a b a b +±等差中项等比中项同号2.公式 (1)通项1(1)()n m a a n d a n m d =+-=+- 11n n m n m a a q a q --==(2)前n 项和 11(1)(1)()222n n n a a n n n n s n na d na d +--==+=+- 1(1)2n s d a n n =+-也是等差数列 111(1)1111n n n a a q a q q qq s na q ⎧--=≠⎪--=⎨⎪=⎩二.数列求和 (1)2222(1)(21)123...6n n n n ++++++=(2) 223332(1)12(12)4n n n n ++++=+++= 三、三角公式1、和差角公式()()()sin sin cos cos sin cos cos cos sin sin tan tan tan()1tan tan tan tan tan()(1tan tan )sin cos a b αβαβαβαβαβαβαβαβαβαβαβαβαααϕ±=±±=±±=±=±+=+ 2、倍角公式 万能公式22tan sin 22sin cos 1tan ααααα==+ 2222221tan cos 2cos sin 2cos 112sin 1tan ααααααα-=-=-=-=+ 23332tan tan 21tan sin 33sin 4sin cos 4cos 3cos ααααααααα=-=-=-3、半角公式,升降幂公式22221cos sin sin cos tan 222sin 1cos 1cos 21cos 2sin cos 221cos 2cos 1cos 2sin 22ααααααααααααααα-=====+-+==+=-=4、积化和差,和差化积公式sin sin 2sin cos sin sin 2sin cos 2222cos cos 2cos cos cos cos 2sin cos 222211sin cos [sin()sin()]cos cos [cos()cos()]221sin sin [cos()cos()]2αβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβ+--++=-=+-+-+=-=-=++-=++-=-+--(2)正弦定理 2sin sin sin a b c R A B C ===(R 是ABC ∆外接圆半径)(3)余弦定理 2222cos c a b ab C =+- 222cos 2a b c C ab +-=(4)11sin 224ABC a abc S ah ab C pr R ∆===== 其中2a b c p ++=为半周长 四、重要不等式2(,0)112a b a b a b+≥≥≥>+3(,,0)1113a b c a b c a b c++≥≥≥>++ 3.222(,)22a b a b ab ab a b R ++⎛⎫≤≤∈ ⎪⎝⎭ 3(,,0)3a b c abc a b c ++⎛⎫≤> ⎪⎝⎭五、球 1、222R r d =+2、球面距离l R θ=⋅ 2222222cos 22cos R R AB R AB r r r θβ+-==+- (β是径度差)3、24S R π=球内接长方体 222224l R a b c ==++ 侧棱两两垂直的三棱锥补形⇒长方体⇒球内接长方体 4、体积 343V R π=R R '== 多面体内切球半径 : 3V r S =全 六、二项式定理(1)011()n n n n n n n n a b C a C a b C b -+=+++(2)22(1)11n n x nx nx c x +≈+≈++七、导数1.()()()00000x x f x x f x y f x lim lim x x∆→∆→+∆-∆'==∆∆ ()()00f x x f x x x ⇔==在处可导,注意:在处不可导二、运算法则:()()()()()()()21234x u U V U V UV U V UV U U V UV y y u x V V ''''''±=±=+'''-⎛⎫'''== ⎪⎝⎭ 三、导数公式(1)0C '= (2)()1n n x nx -'=(3)()x x e e '= (4)()x x a a ln a '= (5)1(ln x )x '= (6)11(log )log ln a a x e x x a'== (7)(sin )cos x x '= (8)(cos )sin x x '=-8、设三角形ABC 的外心为O ,垂心为H ,从O 向BC 边引垂线,设垂足不L ,则AH=2OL 中考不需要,竞赛中很显然的结论9、三角形的外心,垂心,重心在同一条直线上。
第一章 质点运动学和牛顿运动定律1.1平均速度 v =t△△r1.2 瞬时速度 v=lim 0△t →△t △r =dt dr1. 3速度v=dtds==→→lim lim△t 0△t △t△r 1.6 平均加速度a =△t△v1.7瞬时加速度(加速度)a=lim 0△t →△t △v =dt dv1.8瞬时加速度a=dt dv =22dt rd1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度 v=v 0+at1.13变速运动质点坐标x=x 0+v 0t+21at 21.14速度随坐标变化公式:v 2-v 02=2a(x-x 0) 1.15自由落体运动 1.16竖直上抛运动⎪⎩⎪⎨⎧===gy v at y gtv 22122 ⎪⎪⎩⎪⎪⎨⎧-=-=-=gyv v gt t v y gt v v 221202200 1.17 抛体运动速度分量⎩⎨⎧-==gt a v v av v yx sin cos 001.18 抛体运动距离分量⎪⎩⎪⎨⎧-∙=∙=20021sin cos gt t a v y t a v x1.19射程 X=g av 2sin 21.20射高Y=gav 22sin 201.21飞行时间y=xtga —ggx 21.22轨迹方程y=xtga —av gx 2202cos 21.23向心加速度 a=Rv 21.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n1.25 加速度数值 a=22n t a a +1.26 法向加速度和匀速圆周运动的向心加速度相同a n =Rv 21.27切向加速度只改变速度的大小a t =dtdv1.28 ωΦR dtd R dt ds v ===1.29角速度 dtφωd =1.30角加速度 22dt dtd d φωα== 1.31角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR RR R v == a t =αωR dtd R dt dv ==牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
高中物理奥赛常用数学公式一、等差、等比数列1.定义:{}1n n n a a d a +-=⇔是等差数列{}1,(0,0)n n n n a q a q a a +=≠≠⇔是等比数列,, (,)2a b a b a b +±等差中项等比中项同号2.公式 (1)通项1(1)()n m a a n d a n m d =+-=+- 11n n m n m a a q a q --==(2)前n 项和 11(1)(1)()222n n n a a n n n n s n na d na d +--==+=+- 1(1)2n s d a n n =+-也是等差数列 111(1)1111n n n a a q a q q qq s na q ⎧--=≠⎪--=⎨⎪=⎩二.数列求和 (1)2222(1)(21)123...6n n n n ++++++=(2) 223332(1)12(12)4n n n n ++++=+++= 三、三角公式1、和差角公式()()()sin sin cos cos sin cos cos cos sin sin tan tan tan()1tan tan tan tan tan()(1tan tan )sin cos a b αβαβαβαβαβαβαβαβαβαβαβαβαααϕ±=±±=±±=±=±+=+ 2、倍角公式 万能公式22tan sin 22sin cos 1tan ααααα==+ 2222221tan cos 2cos sin 2cos 112sin 1tan ααααααα-=-=-=-=+ 23332tan tan 21tan sin 33sin 4sin cos 4cos 3cos ααααααααα=-=-=-3、半角公式,升降幂公式22221cos sin sin cos tan 222sin 1cos 1cos 21cos 2sin cos 221cos 2cos 1cos 2sin 22ααααααααααααααα-=====+-+==+=-=4、积化和差,和差化积公式sin sin 2sin cos sin sin 2sin cos 2222cos cos 2cos cos cos cos 2sin cos 222211sin cos [sin()sin()]cos cos [cos()cos()]221sin sin [cos()cos()]2αβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβ+--++=-=+-+-+=-=-=++-=++-=-+--(2)正弦定理 2sin sin sin a b c R A B C ===(R 是ABC ∆外接圆半径)(3)余弦定理 2222cos c a b ab C =+- 222cos 2a b c C ab +-=(4)11sin 224ABC a abc S ah ab C pr R ∆===== 其中2a b c p ++=为半周长 四、重要不等式2(,0)112a b a b a b+≥≥≥>+3(,,0)1113a b c a b c a b c++≥≥≥>++ 3.222(,)22a b a b ab ab a b R ++⎛⎫≤≤∈ ⎪⎝⎭ 3(,,0)3a b c abc a b c ++⎛⎫≤> ⎪⎝⎭五、球 1、222R r d =+2、球面距离l R θ=⋅ 2222222cos 22cos R R AB R AB r r r θβ+-==+- (β是径度差)3、24S R π=球内接长方体 222224l R a b c ==++ 侧棱两两垂直的三棱锥补形⇒长方体⇒球内接长方体 4、体积 343V R π=R R '== 多面体内切球半径 : 3V r S =全 六、二项式定理(1)011()n n n n n n n n a b C a C a b C b -+=+++(2)22(1)11n n x nx nx c x +≈+≈++七、导数1.()()()00000x x f x x f x y f x lim lim x x∆→∆→+∆-∆'==∆∆ ()()00f x x f x x x ⇔==在处可导,注意:在处不可导二、运算法则:()()()()()()()21234x u U V U V UV U V UV U U V UV y y u x V V ''''''±=±=+'''-⎛⎫'''== ⎪⎝⎭ 三、导数公式(1)0C '= (2)()1n n x nx -'=(3)()x x e e '= (4)()x x a a ln a '= (5)1(ln x )x '= (6)11(log )log ln a a x e x x a'== (7)(sin )cos x x '= (8)(cos )sin x x '=-8、设三角形ABC 的外心为O ,垂心为H ,从O 向BC 边引垂线,设垂足不L ,则AH=2OL 中考不需要,竞赛中很显然的结论9、三角形的外心,垂心,重心在同一条直线上。
22轨迹方程 y=xtga — 2gx22v 02 cos 2a1.25 加速度数值 a= a t 2 a n 21.26 法向加速度和匀速圆周运动的向心x v 0 cosa t1y v 0 sina t gt21.19 射程X=v0 sin2a g 1.20射高Y=v 02s 2in g 2aa t =dv R d ωR αdt dt牛顿第一定律:任何物体都保持静止 或匀速直线运动状态,除非它受到作用力 而被迫改变这种状态。
牛顿第二定律:物体受到外力作用 时,所获得的加速度 a 的大小与外力 F的 大小成正比,与物体的质量 m 成反比;加 速度的方向与外力的方向相同。
1.37 F=ma 牛顿第三定律:若物体 A 以力 F 1作用 与物体 B ,则同时物体 B 必以力 F 2作用与第一 章 质点运动 学 和牛 顿运动定 律1.21 飞行时间 y=xtga — gx g 1.2 瞬时速度 v= lim △r =dr△t =dt1.23 2向心加速度 a=vR1. 3 速度v=△rl △im t 0 △t l △im t 0 ds dt1.24 法向加速度矢量和 a=a t +a n圆周运动加速度等于切向加速度与 1.7瞬时加速度(加速度)a=lim△t 0△v △t dvdt 2加速度相同 a n =vR 1.82瞬时加速度 a=dv =d rdt dt 1.11 1.12 匀速直线运动质点坐标x=x 0+vt 变速运动速度 v=v0+at 1.13 变速运动质点坐标 x=x 0+v 0t+ 1at 22 标变化公 1.27 切向加速 度只改 变速度的 大小 dv a t =dt ds d Φ v R R ω dt dt 角速度ω d φ dt 1.28 1.29 1.14 式 :v 2-v 02=2a(x-x 0) 1.15 自由落体运动 1.17 抛 体 运速度随 1.30 1.16 动 竖直上抛运动 速度分量 角加速度 α d d ωt d 2φ dt 21.31 系 角加速度 a 与线加速度 a n 、a t 间的关 v x v 0 cosa v y v 0 sina gt a n = 1.18 抛 体 运距离分量 22v (Rω) 2 R ω RR △r 1.1 平均速度 v = △r1.22 1.6 △v 平均加速度 a =△△v t物体A;这两个力的大小相等、方向相反,而且沿同一直线。
第一章 质点运动学和牛顿运动定律1.1平均速度 v =t△△r1.2 瞬时速度 v=lim 0△t →△t △r =dt dr1. 3速度v=dtds==→→lim lim△t 0△t △t△r 1.6 平均加速度a =△t△v1.7瞬时加速度(加速度)a=lim 0△t →△t△v =dt dv1.8瞬时加速度a=dt dv =22dt rd1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度 v=v 0+at 1.13变速运动质点坐标x=x 0+v 0t+21at 21.14速度随坐标变化公式:v 2-v 02=2a(x-x 0) 1.15自由落体运动 1.16竖直上抛运动⎪⎩⎪⎨⎧===gy v at y gtv 22122 ⎪⎪⎩⎪⎪⎨⎧-=-=-=gy v v gt t v y gt v v 221202200 1.17 抛体运动速度分量⎩⎨⎧-==gt a v v av v yx sin cos 001.18 抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x1.19射程 X=g av 2sin 21.20射高Y=gav 22sin 201.21飞行时间y=xtga —ggx 21.22轨迹方程y=xtga —av gx 2202cos 2 1.23向心加速度 a=Rv 21.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n1.25 加速度数值 a=22n t a a +1.26 法向加速度和匀速圆周运动的向心加速度相同a n =Rv 21.27切向加速度只改变速度的大小a t =dtdv1.28 ωΦR dtd R dt ds v ===1.29角速度 dtφωd =1.30角加速度 22dt dtd d φωα== 1.31角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR R R R v == a t =αωR dtd R dt dv ==牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
第一章质点运动学和牛顿运动定律1.1平均速度v =t△△r1.2瞬时速度v=lim△t →△t △r =dtdr1. 3速度v=dtds==→→lim lim△t 0△t △t△r 1.6a 1.71.81.111.121.131.141.151.171.181.19射程X=g 01.20射高Y=gav 22sin 201.21飞行时间y=xtga —ggx 21.22轨迹方程y=xtga —av gx 2202cos 2 1.23向心加速度a=Rv 21.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n1.25加速度数值a=22n t a a +1.26法向加速度和匀速圆周运动的向心加速度相同a n =Rv 2dvαR = B ,的大小相等、方向相反,而且沿同一直线。
万有引力定律:自然界任何两质点间存在着相互吸引力,其大小与两质点质量的乘积成正比,与两质点间的距离的二次方成反比;引力的方向沿两质点的连线 1.39 F=G221r m m G 为万有引力称量=6.67×10-11N ∙m 2/kg 21.40重力P=mg(g 重力加速度)1.41重力P=G 2rMm1.42有上两式重力加速度g=G2rM(物体的重力加速度与物体本身的质量无关,而紧随它到地心的距离而变)1.43胡克定律F=—kx(k 是比例常数,称为弹簧的劲度系数) 1.44最大静摩擦力f 最大=μ0N (μ0静摩擦系数) 1.45滑动摩擦系数f=μN(μ滑动摩擦系数略小于μ0)第二章 守恒定律 2.1动量2.22.3动2.4⎰21t t Fdt 2.5冲量I=2.62.72.92.12—(m 1v 10+m 2v 2.13质∑∑∑===-=n i i i i n i ii ivm v m t F 111△作用在系统上的外力的总冲量等于系统总动量的增量2.14质点系的动量守恒定律(系统不受外力或外力矢量和为零)∑=n i ii v m 1=∑=ni i i vm 1=常矢量2.16mvR R p L =∙=圆周运动角动量R 为半径 2.17mvd d p L =∙=非圆周运动,d 为参考点o到p 点的垂直距离 2.18φsin mvr L =同上2.21 φsin Fr Fd M ==F 对参考点的力矩 2.22F r M ∙=力矩2.24dtdLM =作用在质点上的合外力矩等于质点角动量的时间变化率2.26⎪⎪⎬⎫==常矢量L dt dL 0如果对于某一固定参考点,质为相应2.36θcos Fr W =2.37r F W ∙=力的功等于力沿质点位移方向的分量与质点位移大小的乘积2.38ds F dr F dW W b L a b L a b L a ab θcos )()()(⎰=∙⎰=⎰=2.39n b L a b L a WW W dr F F F dr F W +++=∙++⎰=∙⎰= 2121)()()(合力的功等于各分力功的代数和2.40tWN ∆∆=功率等于功比上时间2.41dtdWt W N t =∆∆=→∆0lim2.42v F v F tsF N t ∙==∆∆=→∆θθcos cos lim 0瞬时功率等于力F 与质点瞬时速度v 的标乘积2.4320221210mv mv mvdv W v v -=⎰=功等于动能的增量2.44221mv E k =物体的动能2.450k k E E W -=合力对物体所作的功等于物体动能的增量(动能定理) 2.46)(ab h h mg W -=重力做的功 2.47ab W 2.48ab W 功2.49W ab 保2.50E p =2.51E p =2.52E p =2.53W 外2.54W 外保守内力2.55p p p E E E W ∆-=-=0保内系统中的保守内力的功等于系统势能的减少量2.56)()(00p k p k E E E E W W +-+=+非内外 2.57p k E E E +=系统的动能k 和势能p 之和称为系统的机械能2.580E E W W -=+非内外质点系在运动过程中,他的机械能增量等于外力的功和非保守内力的功的总和(功能原理)2.59常量时,有、当非内外=+===p k E E E W W 00如果在一个系统的运动过程中的任意一小段时间内,外力对系统所作总功都为零,系统内部又没有非保守内力做功,则在运动过程中系统的动能与势能之和保持不变,即系统的机械能不随时间改变,这就是机械能守恒定律。