线性方程组基础训练
- 格式:doc
- 大小:533.00 KB
- 文档页数:8
解线性方程组专项练习及测试(含专练60
道)
解线性方程组专项练及测试(含专练60道)
简介
本文档旨在提供一套解线性方程组的专项练及测试,包含60
道题目。
通过这些练和测试,你将能够加深对线性方程组的理解,
熟练掌握解决线性方程组的方法和技巧。
练题目
以下是60道解线性方程组的练题目,请你根据题目要求解答。
1. 题目1
2. 题目2
3. ...
...
60. 题目60
说明
首先,根据题目给出的线性方程组,你可以使用多种方法求解,包括代入法、减法法、矩阵法等。
请根据实际情况选择合适的方法
进行求解。
其次,每道题目都有唯一的解或无穷多解。
请根据题目给出的
信息判断线性方程组的解的情况,并给出解的形式。
最后,当你完成所有题目时,请仔细检查答案,并核对解的正
确性。
如果有任何疑问或不明确的地方,请不要犹豫,随时向老师
或同学寻求帮助。
重要提示
请注意,本文档中的题目仅供练和测试使用,不作为正式考试
的题目。
完成这些题目将有助于你巩固知识点和提高解决线性方程
组问题的能力。
祝你考试顺利,取得好成绩!
参考答案
以下是练题目的参考答案,供你参考。
1. 答案1
2. 答案2
3. ...
...
60. 答案60。
线性方程组练习题及解析线性方程组是数学中的重要概念,在各个领域都有广泛的应用。
解线性方程组需要掌握一定的求解方法和技巧。
本文将提供一些线性方程组的练习题,并给出详细解析,帮助读者更好地理解和应用线性方程组的知识。
练习题一:解下列线性方程组:1) 2x + y = 83x - y = 42) -3x + 4y = 72x - y = -33) x + 2y = 53x - y = 10解析一:1) 首先,将方程组进行消元,将y消去。
将第一个方程乘以3,得到6x + 3y = 24。
与第二个方程相加,得到9x = 28。
解得x = 28/9。
将x的值代入第一个方程,解得y = 16/9。
因此,该方程组的解为x = 28/9,y = 16/9。
2) 将第一个方程乘以2,得到-6x + 8y = 14。
与第二个方程相加,得到7y = 11。
解得y = 11/7。
将y的值代入第一个方程,解得x = 1/7。
因此,该方程组的解为x = 1/7,y = 11/7。
3) 将第一个方程乘以3,得到3x + 6y = 15。
与第二个方程相加,得到6x + 5y = 25。
解得x = 25/6。
将x的值代入第一个方程,解得y =5/6。
因此,该方程组的解为x = 25/6,y = 5/6。
练习题二:解下列线性方程组:1) x + 2y - z = 52x - y + 3z = 23x + y - 2z = 12) 2x - y + z = 4x + 3y - z = -33x - y + 2z = 73) x - 2y + z = 12x - y + 3z = -33x + y + 2z = 2解析二:1) 首先,将方程组进行消元,将y和z消去。
将第一个方程乘以2,得到2x + 4y - 2z = 10。
与第三个方程相加,得到5x + 3y = 11。
将第一个方程乘以3,得到3x + 6y - 3z = 15。
与第二个方程相加,得到5x +3z = 17。
线性方程组题目及答案第一、填空题10章线性方程组1.线性方程组AX=b的增广矩阵A化成阶梯形矩阵后为−11d+1⎤⎦⎥则当d=2时,方程组AX=b有解,且有无穷多解。
2.当λ=1时,齐次方程组x1−x2=0x1+λx2=0有唯一解。
3.若线性方程组AX=b(b≠0)有唯一解,则AX=b的秩为n。
二、单项选择题1.线性方程组x1+x2=1x3+x4=0的解的情况是(B)只有解。
2.线性方程组AX=b只有解,则AX=b(b≠0)的解的情况是(B)可能无解。
3.当秩(A)=秩(AB)=n时,线性方程组AX=b(b≠0)有唯一解,其中n是未知量的个数。
答案为(C)秩(A)=秩(AB)=n。
三、解答题1.求解线性方程组x1−x2+3x3−x4=02x1−x2−x3+4x4=04x3+5x4=1解:因为系数矩阵A=[1 -1 3 -1.2 -1 -1 4.-4 0 5 0] 的秩为3,而增广矩阵1 -1 3 -1 0.2 -1 -1 4 0.-4 0 5 0 1] 化为阶梯形矩阵1 -1 3 -1 0.0 1 -7 6 0.0 0 1 -4 1] 所以,一般解为:x1=3x3-15x4-4x2x2=x4-3x3x3,x4是自由未知量)2.求解线性方程组x1+x2-2x3-x4=12x1+x2-2x3-3x4=2x1+3x2+ax3=b解:因为增广矩阵1 1 -2 -1 1.2 1 -2 -3 2.1 3 a b]化为阶梯形矩阵1 1 -2 -1 1.0 -1 2 -1 0.0 0 2a-3b 2b-a-3.0 0 0 0 0]当2a-3b≠0时,方程组无解。
当2a-3b=0时,方程组有解,且有无穷多解,此时一般解为:x1=1-3x3+x4x2=x3+x4x3自由,x4=(b-a)/6.3.就a,b的取值,讨论线性方程组x1+2x2+3x3=1x1+3x2+6x3=22x1+3x2+ax3=b解的情况。
解:因为系数矩阵A=[1 2 3.1 3 6.2 3 a]的秩为2,而增广矩阵1 2 3 1.1 3 6 2.2 3 a b]化为阶梯形矩阵1 2 3 1.0 1 3 1.0 0 a-6 b-4a]当a≠6时,方程组有唯一解。
1.讨论a ,b 取什么值时,下面方程组有解,对有解的情形,求出一般解。
1234123423412341322235433x x x x x x x x a x x x x x x x b+++=⎧⎪+++=⎪⎨++=⎪⎪+++=⎩。
答案:a =0,b =2有解;其他无解。
(-2,3,0,0)’+k1(1,2,1,0)’+k2(1,1,0,1)’2.设A 是数域F 上的m ×n 矩阵,b 是F 上m 维非零列向量,η是线性方程组AX b =的一个解,12,,,s ξξξ是对应的齐次线性方程组0AX =的一个根底解系。
求证:12,,,,s ηηξηξηξ+++线性无关。
2‘.设*η是非齐次线性方程组AX b =的一个解,,,,12n r ξξξ-是对应的齐次线性方程组的一个根底解系,证明:〔1〕*η,,,,12n r ξξξ-线性无关,〔2〕*η,***,,12n rξηξηξη+++-线性无关, 〔3〕非齐次线性方程组AX b =的任一个解可表示为*1122x k k kk n r n r ηηηη=+++--〔其中1η=*1ξη+,,*n r n rηξη=+--且112k k k n r ++=-〕。
3.设向量组123,,ααα线性无关,向量1β可由123,,ααα线性表示,而向量2β不能由123,,ααα线性表示,则对于任意常数k ,必有〔 〕A(A) 12312,,,k αααββ+线性无关; 〔B 〕12312,,,k αααββ+线性相关; ( C) 12312,,,k αααββ+线性无关; (D) 12312,,,k αααββ+线性相关4.12,ββ是非齐次线性方程组Axb =的两个不同的解,12,αα是0Ax =的根底解系,12,k k 为任意常数,则方程组Ax b =的通解必是〔 B 〕〔A 〕1211212();2k k ββααα-+++〔B 〕1211212();2k k ββααα+++- (C)1211212();2k k ββαββ-+++ (D)1211212().2k k ββαββ+++-5.设线性方程组(Ⅰ)的导出组(Ⅱ)必有下面 (A)(A) 当(Ⅰ)只有唯一解,则(Ⅱ)只有零解(B) (Ⅰ)有解B 的充分必要是(Ⅱ)有解(C) (Ⅰ)有非零解,则(Ⅱ)有无穷多解(D) (Ⅱ)有非零解,则(Ⅰ)有无穷多解6.试就k 的取值情况讨论以下线性方程组的解,并在有无穷的解时求出通解:⎪⎩⎪⎨⎧=+-=++=++251823532321321x x k kx x x x x kx1〕k 不为0且 不等于2时,有唯一解。
线性代数基础练习(简单)1. 向量和矩阵向量与矩阵定义向量是有序数组,矩阵是由向量组成的二维数组。
向量可以表示为列向量或行向量。
向量的运算向量可以进行加法、减法、标量乘法和点积运算。
加法和减法是逐个元素相加或相减;标量乘法是将向量中的每个元素乘以一个常数;点积是将两个向量对应位置的元素相乘后相加。
矩阵的运算矩阵可以进行加法、减法、标量乘法和矩阵乘法运算。
加法和减法是逐个元素相加或相减;标量乘法是将矩阵中的每个元素乘以一个常数;矩阵乘法是将一个矩阵的行与另一个矩阵的列进行点积运算后求和。
2. 线性方程组线性方程组的基本概念线性方程组是由一组线性方程组成的方程组。
线性方程组的解是满足所有方程的变量取值。
线性方程组的解法线性方程组可以通过消元法、矩阵求逆以及矩阵的行列式等方法求解。
其中,消元法是通过将线性方程组化为阶梯形或最简形进行求解;矩阵求逆是通过求解矩阵的逆矩阵来求解线性方程组;矩阵的行列式可以用于判断线性方程组是否有解。
3. 特征值和特征向量特征值和特征向量的定义对于一个n阶矩阵A,如果存在一个非零向量x和一个常数λ,使得Ax = λx成立,则λ称为A的特征值,x称为对应于特征值λ的特征向量。
特征值和特征向量的计算计算特征值和特征向量需要解决特征方程det(A - λI) = 0,其中A是一个n阶矩阵,I是单位矩阵。
4. 矩阵的特征分解矩阵的特征分解定义对于一个n阶可对角化矩阵A,可以分解为A = PDP^(-1),其中P是由A的特征向量组成的矩阵,D是由A的特征值组成的对角阵。
矩阵的特征分解的使用矩阵的特征分解可以简化矩阵的计算和分析,将复杂的矩阵运算转化为简单的对角阵操作。
5. 线性相关和线性无关线性相关和线性无关的定义对于一组向量,如果存在一个向量能够表示成其他向量的线性组合,则称这组向量线性相关;如果不存在这样的向量,则称这组向量线性无关。
线性相关和线性无关的判定判断一组向量是否线性相关可以将向量组成矩阵,然后对矩阵进行行变换,判断矩阵的行最简形是否有解。
考研数学之线性代数第四章线性方程组基础与强化训练题(含答案,强烈推荐)习题部分一.填空(每题2分)1.设方程组22112122x x kx x kx x 有非零解,则k。
2.线性方程组960654032321321321x x x x x x x x x 有非零解,则。
3.方程组211111111321x x x aa a有无穷多解,则a。
4.非齐次线性方程组b AX(A 为m n 矩阵)有惟一解的的充分必要条件是____________。
5.设A 是n 阶方阵,21,是齐次线性方程组O AX 的两个不同的解向量,则A。
6.设A 为三阶方阵,秩2A r ,321,,是线性方程组b b AX 的解,已知10131321,,则线性方程组b AX 的通解为。
7.三元线性方程组b AX的系数矩阵的秩2A r ,已知该方程组的两个解分别为1111,1112,则b AX 的全部解可表为。
8.设1686493436227521a A,欲使线性齐次方程组O AX 的基础解系有两个解向量,则a =。
9.当a时,线性方程组233321321321321x ax x ax x x x x x 无解。
10.方程组321011032x x x =0的基础解系所含向量个数是___ ______。
11.若5元线性方程组b AX的基础解系中含有2个线性无关的解向量,则Ar 。
12.设线性方程组414343232121a x x a x x a x x a x x 有解,则4321a ,a ,a ,a 应满足条件。
13.设齐次线性方程组为021nx x x ,则它的基础解系中所包含的向量个数为。
14.设21,是非齐次线性方程组b AX 的解向量,则21是方程组的解向量.15.设s,,,21为非齐次线性方程组b AX 的一组解,如果ssc c c 2211也是该方程组的一个解,则sc c c 21。
16.设矩阵1111110A ,则齐次线性方程组O X A E 的一个基础解系为。
线性方程组 练习题一、选择题.1.若齐次线性方程组⎪⎩⎪⎨⎧=λ++=+λ+=++λ000321321321x x x x x x x x x 有非零解,则=λ( ).A.1或2B. -1或-2C.1或-2D.-1或2.2. 设A 是s n ⨯矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是( ).A.A 的行向量组线性无关B.A 的列向量组线性无关C.A 的行向量组线性相关D.A 的列向量组线性相关3.设12m α,α,,α均为n 维向量,则下列结论中正确的是( ).AA.若对任一组不全为零的数m k k k ,,,21 ,都有11220m m k k k +++≠ααα,则12m α,α,,α线性无关 .B.若12m α,α,,α线性相关,则对任意一组不全为零的数m k k k ,,,21 ,都有11220m m k k k +++=ααα . C.若11220m m k k k +++=ααα,则12m α,α,,α线性相关 .D.若向量组12m α,α,,α()3≥m 中任意两个向量都不成比例,则12m α,α,,α线性无关.4.向量[]11,1,1T α=-,[]22,,0T k α=,[]3,2,1Tk α=,k 为( )时,向量组1α,2α,3α线性相关.DA.3k ≠且2k ≠-B. 2k ≠-C.3k ≠D.3k =或2k =-5. 向量组s ααα 21,(2≥s )线性无关的充分必要条件是( ).(D ) A.s ααα 21,均不为零向量 B. s ααα 21,中任意两个不成比例 C.s ααα 21,中任意1-s 个向量线性无关D.s ααα 21,中任意一个向量均不能用其余1-s 个向量线性表示6.齐次线性方程组355⨯⨯1=A x 0解的情况是( ).A.无解B.仅有零解C.必有非零解D.可能有非零解,也可能没有非零解.7.设n 元齐次线性方程组的系数矩阵的秩()3R n =-A ,且123,,ξξξ为此方程组的三个线性无关的解,则此方程组的基础解系是( ). A. 12312,2,32+- -ξξξξξ B. 122331,,+-+ ξξξξξξ C.122132-2,-2,32+-+ ξξξξξξ D. 12231324,2+,++ - ξξξξξξ8.要使T 1(1,0,2)=ξ,T 2(0,1,1)=-ξ都是线性方程组=Ax 0的解,只要A 为( ).A. (211)-;B. 201011⎛⎫ ⎪⎝⎭;C. 102011-⎛⎫ ⎪-⎝⎭;D. 011422011-⎛⎫ ⎪-- ⎪ ⎪⎝⎭. 9.已知12,ββ是=Ax b 的两个不同的解,12,αα是相应的齐次方程组=Ax 0的基础解系,12,k k 为任意常数,则=Ax b 的通解是( ). A. 12()k k 12112-+++2ββααα B. 12()k k 12112++-+2ββαααC.12()k k 12112-+-+2ββαββD. 12()k k 12112++-+2ββαββ10.设n 阶矩阵A 的伴随矩阵*≠A 0 若1234,,,ξξξξ是非齐次线性方程组Ax =b 的互不相等的解,则对应的齐次线性方程组Ax =0的基础解系是( ). A.不存在 B.仅含一个非零解向量 C.含有两个线性无关的解向量; D.含有三个线性无关的解向量11.设有齐次线性方程组Ax =0和Bx =0,其中A ,B 均为m n ⨯矩阵,现有4个命题:① 若Ax =0的解均是Bx =0的解,则()()R R ≥A B ② 若()()R R ≥A B ,则Ax =0的解均是Bx =0的解 ③ 若Ax =0与Bx =0同解,则()()R R =A B ④ 若()()R R =A B ,则Ax =0与Bx =0同解 以上命题正确的是( ).A. ①,②B. ①,③C.②,④D.③,④12.设A 是m n ⨯矩阵,B 是n m ⨯矩阵,则线性方程组()=AB x 0( ). A.当n m >时仅有零解 B. 当n m >时必有非零解 C.当m n >时仅有零解 D.当m n >时必有非零解13.设A 是n 阶矩阵,α是n 维列向量. 若秩T0⎛⎫= ⎪⎝⎭αAα秩()A ,则线性方程组( ).A.=αAx 必有无穷多解B.=αAx 必有惟一解C.T0y ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭αAαx 0仅有零解 D.T0y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭αAαx0必有非零解14.已知34⨯矩阵A 的列向量组线性无关,则=)(T A r ( ). A.1 B.2 C.3 D.415.设321,,ααα为齐次线性方程组0=Ax 的一个基础解系,则下列可作为该方程组基础解系的是( ).A.2121,,αααα+B. 133221,,αααααα+++C.2121,,αααα-D. 133221,,αααααα---16.已知3×4矩阵A 的行向量组线性无关,则秩(A T )等于( ). A. 1 B. 2 C. 3 D. 417.设两个向量组α1,α2,…,αs 和β1,β2,…,βs 均线性相关,则( ). A.有不全为0的数λ1,λ2,…,λs 使λ1α1+λ2α2+…+λs αs =0和λ1β1+λ2β2+…λs βs =0B.有不全为0的数λ1,λ2,…,λs 使λ1(α1+β1)+λ2(α2+β2)+…+λs (αs+βs )=0C.有不全为0的数λ1,λ2,…,λs 使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs -βs )=0D.有不全为0的数λ1,λ2,…,λs 和不全为0的数μ1,μ2,…,μs 使λ1α1+λ2α2+…+λs αs =0和μ1β1+μ2β2+…+μs βs =018..设矩阵A 的秩为r ,则A 中( ). A.所有r -1阶子式都不为0B.所有r -1阶子式全为0C.至少有一个r 阶子式不等于0D.所有r 阶子式都不为019.设Ax=b 是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是( ).A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b 的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b 的一个解20.设n 阶方阵A 不可逆,则必有( ).A.秩(A)<nB.秩(A)=n -1C.A=0D.方程组Ax=0只有零解21.设n 维向量12,αα线性相关,则必定( ).A. 12,αα中有一零向量B. 矩阵12=(,)A αα的秩r A =1C. 12,αα的对应元素成比例D.1α不可由2α线性表示22.设A 为m n ⨯阶矩阵,非齐次线性方程组AX=b 对应的导出组AX=0,如果m n <,则( ).A.AX=b 必有无穷解B.AX=b 必有惟一解C.AX=0必有非零解D.AX=0必有惟一解23.n 元线性方程组AX=0有非零解的充要条件为( ).A.()R A n =B. 0A ≠C.0A =D.以上都不对24.线性方程组AX B =有解的充要条件是( ).A.()r A >0B. ()()r A r A =C. ()()r A r AB ≠D.()r A n =25.n 元线性方程组AX=b 有解的充要条件为( ). A.()(,)R A R A b = B. ()(,)R A R A b n == C.()(,)R A R A b n =< D.()(,)R A R A b n =≤26.向量组T T )0,1,0(,)0,0,1(21==αα,下列向量中可以由21,αα线性表出的是( ).A .T )3,2,1(B .T )3,2,0(C .T )3,0,1(D .T )0,2,1(27.设向量组A 能由向量组B 线性表示,则( ).A .)()(A RB R ≤ B .)()(A R B R <C .)()(A R B R =D .)()(A R B R ≥28.设A 为n m ⨯矩阵,则有( ). A .若n m <,则b Ax =有无穷多解B .若n m <,则0=Ax 有非零解,且基础解系含有m n -个线性无关解向量C .若A 有n 阶子式不为零,则b Ax =有唯一解D .若A 有n 阶子式不为零,则0=Ax 仅有零解29.设1α、2α是对应非齐次方程组Ax =b 的解,β是对应齐次方程组的解,则b Ax =一定有一个解是( ).A.1α+2αB.1α-2αC.β+1α+2αD.121233+-ααβ30.21γγ,是n 元非齐次方程组b Ax =的两个不同的解,且1)(-=n A r ,则 0=Ax 的通解为( ).A. )(1R k k ∈γB. )(2R k k ∈γC. )()(21R k k ∈+γγD. )()(21R k k ∈-γγ二、填空题.1. 设向量α=(1, 2, 0, 4)T , β=(3,1,-1,7)T ,向量γ满足2α-γ=β, 则γ=____________.2.已知向量α=(1, 2, 4, 0)T , β=(-3,2,6,2)T ,向量γ满足3α+2γ=β, 则γ= .3.向量组α=(1, -2, 3)T , β=(2,-4,a)T 线性相关,则=a .4.向量组()12341,0,1,(2,1,0),(0,1,1),(1,1,1)TT T T αααα====则向量线性 .5.当______=t 时,向量组)2,1,3(),3,2,1(),,3,2(-t 线性相关.6.设向量组T T T a )1,1,2(,),2,1(,)3,1,1(321-==-=ααα线性相关,则=a .7.设向量组T )0,0,1(1=α,T )0,1,0(2=α,则向量组21,αα的秩是 .8.矩阵⎪⎪⎭⎫⎝⎛-----100110111的秩等于__________.9.若R )(1234,,,4αααα=,则向量组123,,ααα是线性________.10.已知矩阵⎪⎪⎪⎭⎫⎝⎛--=a A 00011002011的秩)(A r =2,则=a ______.11.已知矩阵⎪⎪⎪⎭⎫ ⎝⎛---=a a A 10012002011的秩)(A r =2,则=a ______.12.若齐次线性方程组1212 3 060x x x x λ-=⎧⎨-+=⎩有非零解,则λ= .13.当_________时候,n 元线性方程组0=Ax 有非零解,这里A 是n 阶方阵.14.设21ξξ,是非齐次线性方程组b Ax =的解向量,则21ξξ-是方程组______的解向量.15.方程组⎩⎨⎧=-=-003221x x x x 的基础解系是 .16.设齐次线性方程组⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛000111111321x x x a a a 的基础解系含有2个解向量,则=a .17.设向量(2,-3,5)与向量(-4,6,a )线性相关,则a= .18.设A 是3×4矩阵,其秩为3,若η1,η2为非齐次线性方程组Ax=b 的2个不同的解,则它的通解为 .19. 设A 是m ×n 矩阵,A 的秩为r(<n),则齐次线性方程组Ax=0的一个基础解系中含有解的个数为 .20.设齐次线性方程组01443=⨯⨯X A ,其系数矩阵的秩)(A r =2,则方程组的基础解系包含______个线性无关的解向量.21.有三维列向两组1α=()100T,()2110αT=,()3111αT=,()123βT=,且有112233βχαχαχα++=,123χχχ=_____ ,=_____,=_____22.若n 个 n 维列向量线性无关,则由此n 个向量构成的矩阵必是______ 矩阵.23.若向量组)()()()(12341,1,3,2,4,5,1,1,0,2,2,6,αααα===-=则此向量组的秩是______,一个极大无关组是______.24.已知向量组()()()1231,2,1,1,2,0,,0,0,4,5,2t ααα=-==--的秩为2,则t =____.25.当方程的个数等于未知数的个数时,=Ax b 有惟一解的充分必要条件是 .26.线性方程组121232343414,,,x x a x x a x x a x x a +=⎧⎪+=⎪⎨+=⎪⎪+=⎩有解的充分必要条件是 .27.设n 阶方阵A 的各行元素之和均为零,且()1R n =-A ,则线性方程组=Ax 0的通解为 .28.设A 为n 阶方阵,||0=A ,且kj a 的代数余子式0kj A ≠(其中,1k n ≤≤;1,2,,j n =),则=Ax 0的通解 .29.设11222221231111211111,,11n nn n n n n x a a a x a a a x a a a x ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A x b ,其中,(;,1,2,,)i j a a i j i j n ≠≠=,则非齐次线性方程组T =A x b 的解是=x .30.设方程123111111112a x a x a x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭有无穷多个解,则a = .三、判断题.1.零向量一定可以表示成任意一组向量的线性组合. ( )2. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关.( ) 3.若=0时,,则向量组线性无关.( )4.若向量组与均线性无关,则,线性无关.( )5.方程个数小于未知量个数的线性方程组必有无穷解.( )6.同秩的两个向量组未必等价. ( )7.向量组中某向量能被其余向量表示,则去掉它不影响它的秩. ( )8.向量组中某向量不能被其余向量表示,则去掉它后向量组的秩必改变. ( )9.3个未知量,5个方程组成的方程组中,必有一个方程能被其余的方程线性表示. ( )10.不同秩的两个向量组必不等价. ( ) 11.向量组的向量各加一个分量,其秩不变. ( ) 12.方程组中自由未知量是唯一确定的.( ) 13.向量组12121,,,,,,s s a a a a a a -与等价,则向量组12,,,s a a a 线性相关.( ) 14.设12,ηη是齐次线性方程组AX=0的基础解系,则1212,3ηηηη--+也是AX=0的基础解.( )15.用列初等变换可以求解线性方程组,也可以用行初等变换求解线性方程组.( ).16.若A 为6阶方阵,齐次线性方程组AX =0的基础解系中解向量的个数为2,则R(A)=2.( )17.若n 维向量12,αα线性相关,则必定12,αα的对应元素成比例.( ) 18.设A 是m n ⨯矩阵,如果A 的m 个行向量线性无关,则()r m A =.( ) 19.设A 是m n ⨯矩阵,如果A 的m 个行向量线性无关,则()r m <A .( ) 20.设21,αα是齐次线性方程组0=AX 的解,那么12αα+也是该方程组0=AX 的解.( )21.设21,αα是非齐次线性方程组=AX b 的解,那么12αα+也是该方程组=AX b 的解.( )22.对于任意的矩阵A ,一定有T r r =()()A A .( )23.向量组123,,ααα中,任意两个向量均线性无关,则123,,ααα线性无关.( )24.设A 是m n ⨯矩阵,如果A 的n 个列向量线性无关,则()r A n =.( ) 25,设12,αα是n 维向量,且112212312,2,35βααβααβαα=-=+=+,则123,,βββ 必线性相关.( )26.设0Ax =是Ax b =的导出组,其中A 是m n ⨯矩阵,若()r A m =, 则Ax b =有解.( )请举例说明下面(27-30题)各命题是错误的.27.若向量组m a a a ,,,21 是线性相关的,则1a 可由,,2m a a 线性表示.28.若有不全为0的数m λλλ,,,21 使01111=+++++m m m m b b a a λλλλ成立,则m a a ,,1 线性相关, m b b ,,1 亦线性相关.29.若只有当m λλλ,,,21 全为0时,等式01111=+++++m m m m b b a a λλλλ才能成立,则m a a ,,1 线性无关, m b b ,,1 亦线性无关.30.若m a a ,,1 线性相关, m b b ,,1 亦线性相关,则有不全为0的数,m λλλ,,,21 使0,01111=++=++m m m m b b a a λλλλ 同时成立.四、解答题.1.求下列矩阵的秩,并求一个最高阶非零子式.(1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013; (2)⎪⎪⎪⎭⎫⎝⎛-------815073131213123; (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---02301085235703273812.2.把下列矩阵化为行最简形矩阵.(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫ ⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.3.利用初等行变换求下列矩阵的列向量组的一个最大无关组.(1) ⎪⎪⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125; (2) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---14011313021512012211.4.求下列向量组的秩,并求一个最大无关组.(1) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=41211a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=41010092a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=82423a ; (2))3,1,2,1(1=T a ,)6,5,1,4(2---=T a ,)7,4,3,1(3---=Ta .5.求解下列齐次线性方程组.(1) ⎪⎩⎪⎨⎧=+++=-++=-++;0222,02,02432143214321x x x x x x x x x x x x (2)⎪⎩⎪⎨⎧=-++=--+=-++;05105,0363,02432143214321x x x x x x x x x x x x(3) ⎪⎪⎩⎪⎪⎨⎧=-+-=+-+=-++=+-+;0742,0634,0723,05324321432143214321x x x x x x x x x x x x x x x x (4)⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+.0327,01613114,02332,075434321432143214321x x x x x x x x x x x x x x x x6.求解下列非齐次线性方程组.(1) ⎪⎩⎪⎨⎧=+=+-=-+;8311,10213,22421321321x x x x x x x x (2) ⎪⎪⎩⎪⎪⎨⎧-=+-=-+-=+-=++;694,13283,542,432z y x z y x z y x z y x(3) ⎪⎩⎪⎨⎧=--+=+-+=+-+;12,2224,12w z y x w z y x w z y x (4) ⎪⎩⎪⎨⎧-=+-+=-+-=+-+;2534,4323,12w z y x w z y x w z y x7.λ取何值时,非齐次线性方程组⎪⎩⎪⎨⎧=++=++=++2321321321,,1λλλλλx x x x x x x x x (1)有唯一解;(2)无解;(3)有无穷多个解?8.非齐次线性方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212,2,22λλx x x x x x x x x ,当λ取何值时有解?并求出它的解.9.设⎪⎩⎪⎨⎧--=-+--=--+=-+-,1)5(42,24)5(2,122)2(321321321λλλλx x x x x x x x x问λ为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解 时求解.10.讨论b a ,取何值时,非齐次线性方程组123123123213322--=⎧⎪--=⎨⎪++=⎩x x x x x x x x ax b(1)有唯一解;(2)有无穷多解;(3)无解.11.求下列齐次线性方程组的基础解系.(1)⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x (2)⎪⎩⎪⎨⎧=-++=-++=+--03678024530232432143214321x x x x x x x x x x x x(3)02)1(121=++-+-n n x x x n nx .12.设⎪⎪⎭⎫⎝⎛--=82593122A ,求一个24⨯矩阵B ,使0=AB ,且2)(=B R .13.求一个齐次线性方程组,使它的基础解系为:T T )0,1,2,3(,)3,2,1,0(11==ξξ.14.设四元非齐次线性方程组的系数矩阵的秩为3,已知321,,ηηη是它 的三个解向量.且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54321η,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+432132ηη,求该方程组的通解.15.求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系.(1) ⎪⎩⎪⎨⎧=+++=+++=+;32235,122,54321432121x x x x x x x x x x (2)⎪⎩⎪⎨⎧-=+++-=-++=-+-.6242,1635,11325432143214321x x x x x x x x x x x x五、证明题.1.设144433322211,,,a a b a a b a a b a a b +=+=+=+=,证明向量组4321,,,b b b b 线性相关.2.设r r a a a b a a b a b +++=+== 2121211,,,,且向量组r a a a ,,,21 线性无关,证明向量组r b b b ,,,21 线性无关.3.设*η是非齐次线性方程组b Ax=的一个解,r n -ξξ,,1 是对应的齐次线性方程组的一个基础解系,证明: (1)r n -*ξξη,,,1 线性无关;(2) r n -***++ξηξηη,,,1 线性无关.4. 设s ηη,,1 是非齐次线性方程组b Ax =的s 个解,s k k ,,1 为实数,满足121=+++s k k k .试证明s s k k k x ηηη+++= 2211也是它的解.5.设非齐次线性方程组b Ax =的系数矩阵的秩为r ,11,,+-r n ηη 是它的1+-r n 个线性无关的解(由题24知它确有1+-r n 个线性无关的解).试证它的任一解可表示为112211+-+-+++=r n r n k k k x ηηη (其中111=+++-r n k k ).第三章 线性方程组一、选择题.1.C2.D3.A4.D5.D6.C7.A8.A9.B 10.B 11.B 12.D 13.D 14.C 15.B. 16.C 17.D 18.C 19.A 20.A 21.C 22.C 23.B 24.B 25.A 26.D 27.D 28.D 29.D 30.D二、填空题.1. (-1,3,1,1)T2.(-3,-2,-3,1)T3. 64.相关5. 56.-47.28.39.无关 10.0 11.212.2 13. 0A = 14.0=Ax 15.⎪⎪⎪⎭⎫ ⎝⎛111 16.1 17.-1018.η1+c(η2-η1)(或η2+c(η2-η1)),c 为任意常数 19.n-r 20. 2 21.-1,-1,3 22.可逆 23.1,233;,ααα 24.3 25.||0≠A 26.43210a a a a -+-=.27.T 11(1,1,,1)1k k ⎛⎫⎪⎪== ⎪ ⎪ ⎪⎝⎭x ,k 为任意常数.28.()T12,,,k k kn c A A A =x ,其中c 为任意常数.29.T (1,0,0,,0)=x . 30.-2部分题详解:25.解 因为()()R R n ==A A b 是=Ax b 有惟一解的充要条件.故由()R n =A 可得||0≠A .26.解 对方程组的增广矩阵施行初等行变换()12341100011000111001a a a a ⎛⎫ ⎪⎪== ⎪ ⎪ ⎪⎝⎭B A b 12341231100011000110000a a a a a a a ⎛⎫⎪ ⎪→ ⎪ ⎪⎪-+-⎝⎭. 所以方程组有解的充要条件是()()R R =A B ,即43210a a a a -+-=.27.解 令111⎛⎫⎪⎪= ⎪ ⎪⎝⎭x ,显然x 满足方程组,又因为()1R n =-A ,所以()1n R -=A ,即方程组的基础解系中有一个向量,通解为T 11(1,1,,1)1k k ⎛⎫ ⎪⎪== ⎪ ⎪ ⎪⎝⎭x ,k 为任意常数.28.解 因为0=A ,又0kj A ≠,所以()1R n =-A ,并且有11220, ;||0, i k i k in kn i k a A a A a A i k ≠⎧+++=⎨==⎩.A所以()T12,,,k k kn A A A 是方程组的解,又因为()1R n =-A ,可知方程组的通解为()T12,,,k k kn c A A A =x ,其中c 为任意常数.29.解 T (1,0,0,,0)=x . 30. -2三、判断题.1.√2. √3. √ 4.× 5.×6. ×7.×8. √9.√ 10.× 11.×12.√ 13.√ 14.√ 15.× 16.×17.√ 18.√ 19.× 20.√ 21.×22.√ 23.× 24.√ 25.√26.√请举例说明下面(27-30题)各命题是错误的.27.若向量组m a a a ,,,21 是线性相关的,则1a 可由,,2m a a 线性表示.28.若有不全为0的数m λλλ,,,21 使01111=+++++m m m m b b a a λλλλ成立,则m a a ,,1 线性相关, m b b ,,1 亦线性相关.29.若只有当m λλλ,,,21 全为0时,等式01111=+++++m m m m b b a a λλλλ才能成立,则m a a ,,1 线性无关, m b b ,,1 亦线性无关.30.若m a a ,,1 线性相关, m b b ,,1 亦线性相关,则有不全为0的数,m λλλ,,,21 使0,01111=++=++m m m m b b a a λλλλ同时成立. 解 (1) 设)0,,0,0,1(11==e a032====m a a a满足m a a a ,,,21 线性相关,但1a 不能由,,,2m a a 线性表示.(2) 有不全为零的数m λλλ,,,21 使 01111=+++++m m m m b b a a λλλλ 原式可化为0)()(111=++++m m m b a b a λλ取m m m b e a b e a b e a -==-==-==,,,222111其中m e e ,,1 为单位向量,则上式成立,而 m a a ,,1 ,m b b ,,1 均线性相关.(3) 由01111=+++++m m m m b b a a λλλλ (仅当01===m λλ )m m b a b a b a +++⇒,,,2211 线性无关取021====m a a a取m b b ,,1 为线性无关组满足以上条件,但不能说是m a a a ,,,21 线性无关的. (4) T a )0,1(1= T a )0,2(2= T b )3,0(1= T b )4,0(2=⎪⎭⎪⎬⎫-=⇒=+-=⇒=+21221121221143020λλλλλλλλb b a a 021==⇒λλ与题设矛盾.四、解答题.1.求下列矩阵的秩,并求一个最高阶非零子式.(1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013; (2)⎪⎪⎪⎭⎫ ⎝⎛-------815073131213123; (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---02301085235703273812.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013r r 21~↔⎪⎪⎪⎭⎫ ⎝⎛---443120131211⎪⎪⎪⎭⎫⎝⎛------564056401211~12133r r r r 2000056401211~23秩为⎪⎪⎪⎭⎫⎝⎛----r r 二阶子式41113-=-.(2) ⎪⎪⎪⎭⎫ ⎝⎛-------815073*********⎪⎪⎪⎭⎫ ⎝⎛---------15273321059117014431~27122113r r r r r r200000591170144313~23秩为⎪⎪⎪⎭⎫⎝⎛-----r r . 二阶子式71223-=-.(3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---02301085235703273812434241322~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------02301024205363071210 131223~r r r r ++⎪⎪⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210344314211614~r r r r r r r r -÷÷↔↔⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000100007121002301秩为3 三阶子式07023855023085570≠=-=-.2.把下列矩阵化为行最简形矩阵.(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫ ⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解: (1) ⎪⎪⎪⎭⎫ ⎝⎛--3403130212011312)3()2(~r r r r -+-+⎪⎪⎪⎭⎫⎝⎛---020********* )2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫ ⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-100001001201 3121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----174034301320 1312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫⎝⎛---310031001320 21233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010 (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311 )5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----221002210022*******12423213~rr r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110 141312782~r r r r r r --+⎪⎪⎪⎪⎪⎭⎫⎝⎛--4100041000202011111034221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102020132~r r +⎪⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202013. 利用初等行变换求下列矩阵的列向量组的一个最大无关组.(1) ⎪⎪⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125; (2) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---14011313021512012211.解 (1) ⎪⎪⎪⎪⎪⎭⎫⎝⎛482032251345494751325394754317312514131233~r r r r r r --- ⎪⎪⎪⎪⎪⎭⎫⎝⎛53105310321043173125 2334~r r r r --⎪⎪⎪⎪⎪⎭⎫⎝⎛00003100321043173125 所以第1、2、3列构成一个最大无关组.(2) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---1401131302151201221114132~r r rr --⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------222001512015120122114323~r r r r ↔+⎪⎪⎪⎪⎪⎭⎫⎝⎛---00000222001512012211, 所以第1、2、3列构成一个最大无关组.4.求下列向量组的秩,并求一个最大无关组.(1) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=41211a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=41010092a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=82423a ; (2))3,1,2,1(1=T a ,)6,5,1,4(2---=T a ,)7,4,3,1(3---=Ta .解 (1)3131,2a a a a ⇒=-线性相关.由⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛824241010094121321T T T a a a ⎪⎪⎪⎭⎫ ⎝⎛--000032198204121~ 秩为2,一组最大线性无关组为21,a a .(2) ⎪⎪⎪⎭⎫ ⎝⎛------=⎪⎪⎪⎭⎫ ⎝⎛743165143121321T T T a a a ⎪⎪⎪⎭⎫⎝⎛------10550189903121~⎪⎪⎪⎭⎫ ⎝⎛---0000189903121~秩为2,最大线性无关组为T Ta a 21,.5.求解下列齐次线性方程组.(1) ⎪⎩⎪⎨⎧=+++=-++=-++;0222,02,02432143214321x x x x x x x x x x x x (2)⎪⎩⎪⎨⎧=-++=--+=-++;05105,0363,02432143214321x x x x x x x x x x x x (3) ⎪⎪⎩⎪⎪⎨⎧=-+-=+-+=-++=+-+;0742,0634,0723,05324321432143214321x x x x x x x x x x x x x x x x (4)⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+.0327,01613114,02332,075434321432143214321x x x x x x x x x x x x x x x x解 (1)对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛--212211121211⎪⎪⎪⎪⎭⎫⎝⎛---3410013100101~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==4443424134334x x x x x x x x 故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x(2)对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛----5110531631121⎪⎪⎪⎭⎫ ⎝⎛-000001001021~ 即得⎪⎪⎩⎪⎪⎨⎧===+-=4432242102x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10010*********k k x x x x(3)对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132⎪⎪⎪⎪⎪⎭⎫⎝⎛1000010000100001~即得⎪⎪⎩⎪⎪⎨⎧====00004321x x x x 故方程组的解为⎪⎪⎩⎪⎪⎨⎧====00004321x x x x(4)对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----3127161311423327543⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--000000001720171910171317301~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛1017201713011719173214321k k x x x x6.求解下列非齐次线性方程组.(1) ⎪⎩⎪⎨⎧=+=+-=-+;8311,10213,22421321321x x x x x x x x (2) ⎪⎪⎩⎪⎪⎨⎧-=+-=-+-=+-=++;694,13283,542,432z y x z y x z y x z y x(3) ⎪⎩⎪⎨⎧=--+=+-+=+-+;12,2224,12w z y x w z y x w z y x (4) ⎪⎩⎪⎨⎧-=+-+=-+-=+-+;2534,4323,12w z y x w z y x w z y x解 (1)对系数的增广矩阵施行行变换,有⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛--60003411100833180311102132124~2)(=A R 而3)(=B R ,故方程组无解.(2)对系数的增广矩阵施行行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132⎪⎪⎪⎪⎪⎭⎫⎝⎛--0000000021101201~ 即得⎪⎩⎪⎨⎧=+=--=zz z y z x 212亦即⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛021112k z y x(3)对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫ ⎝⎛----111122122411112⎪⎪⎪⎭⎫ ⎝⎛-000000100011112~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧===++-=0212121w z z y y z y x 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00021010210012121k k w z y x(4)对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛-----000007579751025341253414312311112~⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----000007579751076717101~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==--=++=w w z z w z y w z x 757975767171 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00757610797101757121k k w z y x7.λ取何值时,非齐次线性方程组⎪⎩⎪⎨⎧=++=++=++2321321321,,1λλλλλx x x x x x x x x (1)有唯一解;(2)无解;(3)有无穷多个解?解 (1)0111111≠λλλ,即2,1-≠λ时方程组有唯一解.(2))()(B R A R <⎪⎪⎪⎭⎫ ⎝⎛=21111111λλλλλB ⎪⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011~λλλλλλλλλλ由0)1)(1(,0)2)(1(2≠+-=+-λλλλ得2-=λ时,方程组无解.(3) 3)()(<=B R A R ,由0)1)(1()2)(1(2=+-=+-λλλλ,得1=λ时,方程组有无穷多个解.8.非齐次线性方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212,2,22λλx x x x x x x x x 当λ取何值时有解?并求出它的解.解 ⎪⎪⎪⎪⎭⎫ ⎝⎛+-----⎪⎪⎪⎭⎫ ⎝⎛----=)2)(1(000)1(321101212111212112~2λλλλλλB方程组有解,须0)2)(1(=+-λλ得2,1-==λλ当1=λ时,方程组解为⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001111321k x x x当2-=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛022111321k x x x9.设⎪⎩⎪⎨⎧--=-+--=--+=-+-,1)5(42,24)5(2,122)2(321321321λλλλx x x x x x x x x问λ为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解 时求解.解 ⎪⎪⎪⎭⎫⎝⎛---------154224521222λλλλ 初等行变换~⎪⎪⎪⎪⎪⎭⎫⎝⎛---------2)4)(1(2)10)(1(00111012251λλλλλλλλ 当0≠A ,即02)10()1(2≠--λλ 1≠∴λ且10≠λ时,有唯一解. 当02)10)(1(=--λλ且02)4)(1(≠--λλ,即10=λ时,无解. 当02)10)(1(=--λλ且02)4)(1(=--λλ,即1=λ时,有无穷多解. 此时,增广矩阵为⎪⎪⎪⎭⎫⎝⎛-000000001221原方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛00110201221321k k x x x (R k k ∈21,)10.讨论b a ,取何值时,非齐次线性方程组123123123213322--=⎧⎪--=⎨⎪++=⎩x x x x x x x x ax b(1)有唯一解;(2)有无穷多解;(3)无解.解⎪⎪⎪⎭⎫ ⎝⎛-+---⎪⎪⎪⎭⎫ ⎝⎛-+---⎪⎪⎪⎭⎫ ⎝⎛----=---120010501121~225010501121~122313112123131223b a b a b a A r r r r r r(1)当2,02-≠≠+a a 即时,3)()(==A r A r ,方程组解唯一; (2)当12,01,02=-==-=+b a b a ,即时,32)()(<==A r A r ,方程组解有无穷多解; (3)当12,01,02≠-=≠-=+b a b a ,即时,3)(2)(=<=A r A r ,方程组无解.11.求下列齐次线性方程组的基础解系.(1)⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x (2)⎪⎩⎪⎨⎧=-++=-++=+--03678024530232432143214321x x x x x x x x x x x x(3)02)1(121=++-+-n n x x x n nx .解 (1)⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=000041431004012683154221081~初等行变换A所以原方程组等价于⎪⎩⎪⎨⎧+=-=4323141434x x x x x取3,143-==x x 得0,421=-=x x 取4,043==x x 得1,021==x x因此基础解系为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=4010,310421ξξ(2) ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛----=000019719141019119201~367824531232初等行变换A所以原方程组等价于⎪⎪⎩⎪⎪⎨⎧+-=+-=4324311971914191192x x x x x x取2,143==x x 得0,021==x x 取19,043==x x 得7,121==x x因此基础解系为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=19071,210021ξξ(3)原方程组即为1212)1(------=n n x x n nx x取0,11321=====-n x x x x 得n x n -=取0,114312======-n x x x x x 得1)1(+-=--=n n x n取0,12211=====--n n x x x x 得2-=n x所以基础解系为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-+--=-21100010001),,,(121n n n ξξξ12.设⎪⎪⎭⎫⎝⎛--=82593122A ,求一个24⨯矩阵B ,使0=AB ,且2)(=B R .解:由于2)(=B R ,所以可设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=43211001x x x x B 则由⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--=00001001825931224321x x x xAB 可得 ⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛592280200802301003014321x x x x ,解此非齐次线性方程组可得唯一解 ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛2125212114321x x x x ,故所求矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=2125212111001B .13.求一个齐次线性方程组,使它的基础解系为T T )0,1,2,3(,)3,2,1,0(11==ξξ.解:显然原方程组的通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛01233210214321k k x x x x ,(R k k ∈21,)即⎪⎪⎩⎪⎪⎨⎧=+=+==14213212213223k x k k x k k x k x 消去21,k k 得⎩⎨⎧=+-=+-023032431421x x x x x x 此即所求的齐次线性方程组.14.设四元非齐次线性方程组的系数矩阵的秩为3,已知321,,ηηη是它 的三个解向量.且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54321η,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+432132ηη,求该方程组的通解.解:由于矩阵的秩为3,134=-=-r n ,一维.故其对应的齐次线性方程组的基础解系含有一个向量,且由于321,,ηηη均为方程组的解,由 非齐次线性方程组解的结构性质得:齐次解齐次解齐次解=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-+-=+-6543)()()()()(22121321ηηηηηηη为其基础解系向量,故此方程组的通解:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54326543k x ,)(R k ∈15.求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系.(1) ⎪⎩⎪⎨⎧=+++=+++=+;32235,122,54321432121x x x x x x x x x x (2)⎪⎩⎪⎨⎧-=+++-=-++=-+-.6242,1635,11325432143214321x x x x x x x x x x x x解:(1)⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛=2100013011080101322351211250011~初等行变换B⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=∴0111,20138ξη(2) ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-----=00000221711012179016124211635113251~初等行变换B ⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=∴2011,0719,002121ξξη五、证明题.1.设144433322211,,,a a b a a b a a b a a b +=+=+=+=,证明向量组4321,,,b b b b 线性相关.证明:设有4321,,,x x x x 使得044332211=+++b x b x b x b x 则0)()()()(144433322211=+++++++a a x a a x a a x a a x 0)()()()(443332221141=+++++++a x x a x x a x x a x x(1) 若4321,,,a a a a 线性相关,则存在不全为零的数4321,,,k k k k ,411x x k +=;212x x k +=;323x x k +=;434x x k +=;由4321,,,k k k k 不全为零,知4321,,,x x x x 不全为零,即4321,,,b b b b 线性相关.(2) 若4321,,,a a a a 线性无关,则⎪⎪⎩⎪⎪⎨⎧=+=+=+=+000043322141x x x x x x x x 011000110001110014321=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⇒x x x x 由01100011000111001=知此齐次方程存在非零解,则4321,,,b b b b 线性相关. 综合得证. 2.设r r a a a b a a b a b +++=+== 2121211,,,,且向量组r a a a ,,,21 线性无关,证明向量组r b b b ,,,21 线性无关.证明: 设02211=+++r r b k b k b k 则++++++++++p r p r r a k k a k k a k k )()()(2211 0=+r r a k因向量组r a a a ,,,21 线性无关,故⎪⎪⎩⎪⎪⎨⎧==++=+++000221rr r k k k k k k ⇔⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0001001101121 r k k k 因为0110011011≠= 故方程组只有零解,则021====r k k k 所以r b b b ,,,21 线性无关.3.设*η是非齐次线性方程组b Ax=的一个解,r n -ξξ,,1 是对应的齐次线性方程组的一个基础解系,证明: (1)r n -*ξξη,,,1 线性无关;(2) r n -***++ξηξηη,,,1 线性无关.证明: (1)反证法,假设r n -*ξξη,,,1 线性相关,则存在着不全为0的数r n C C C -,,,10 使得下式成立:0110=+++--*r n r n C C C ξξη (1)其中,00≠C 否则,r n -ξξ,,1 线性相关,而与基础解系不是线性相关的产生矛盾。
(精心整理)线性方程组练习题一、单一线性方程组1. 求解下列线性方程组:(1)$$x-2y=3$$(2)$$2x+3y=4$$2. 求解下列线性方程组:(1)$$2x-3y+4z=1$$(2)$$3x-4y+5z=2$$(3)$$-x+y-2z=-3$$3. 求解下列线性方程组:(1)$$x-y+z=1$$(2)$$2x-3y-4z=-1$$(3)$$3x-4y+z=3$$二、多元线性方程组1. 求解下列多元线性方程组:(1)$$2x+y=3$$$$x-y=1$$2. 求解下列多元线性方程组:(1)$$x+2y+3z=4$$$$2x+y-3z=0$$$$3x-2y+5z=6$$3. 求解下列多元线性方程组:(1)$$x+y+z=1$$$$2x+y+3z=4$$$$x+3y+2z=3$$三、应用题1. 某商场一天销售了商品A、B两种,A、B两种商品单价分别为x元和y元,已知销售了x件A商品和y件B商品,总价为500元,且已知销售了10件A商品和5件B商品,总价为185元,求解方程组,并给出A商品和B商品的单价。
2. 某超市投放了两种品牌的巧克力A、B,其中A品牌单价为x元,B品牌单价为y元,已知某顾客购买了x份A品牌巧克力和y份B品牌巧克力,所付的总价为15元,且已知该顾客购买了两份A品牌巧克力和一份B品牌巧克力,所付的总价为6元,求解方程组,并给出A品牌和B品牌巧克力的单价。
四、挑战题1. 求解下列多元线性方程组:(1)$$2x-3y+4z=1$$$$x-2y+3z=0$$$$4x-3y+2z=-3$$2. 求解下列多元线性方程组:(1)$$2x+3y-z=1$$$$3x+4y-2z=2$$$$4x+5y-3z=4$$$$x-2y+z=3$$以上是一些关于线性方程组的练习题,希望能对你的学习有所帮助。
线性方程组测试题在代数学中,线性方程组是由多个线性方程组成的一组方程。
解线性方程组意味着找到满足所有方程的变量值。
本文将提供一套线性方程组测试题,旨在帮助读者巩固对线性方程组求解的理解与应用。
1. 题目一解下列线性方程组:2x + 3y = 74x - y = 112. 题目二求解下列线性方程组:x + y + z = 62x - y + z = 1x + 2y - z = 33. 题目三给定以下线性方程组:3x - 4y = 1-2x + 5y = -3求该线性方程组的解。
4. 题目四考虑以下线性方程组:2x - y + 3z = 2-x + 2y - z = -4x + y + 2z = 5求解该线性方程组并判断解的类型。
5. 题目五解下列线性方程组:x + y = 52x - y = 1如果有解,请求解,并给出解的几何解释;如果无解,请说明原因。
6. 题目六给定以下线性方程组:x + 2y = 73x + 4y = 182x - y = 4通过矩阵的方法求解该线性方程组。
7. 题目七确定以下线性方程组的解集并解释几何意义: x + y + z = 0x - y + z = 2x + y - z = -28. 题目八解下列线性方程组,并判断解的类型:x + y - z = 22x - y + z = 1x + 2y = 5如果有解,请求解;如果无解,请说明原因。
9. 题目九给定以下线性方程组:x + 2y + 3z = 12x - y + z = 6x + 5y - z = 3通过高斯消元法求解该线性方程组。
10. 题目十解下列线性方程组:x + y + z = 22x + y - z = -13x - y + 3z = 10并判断解的类型。
通过完成以上线性方程组测试题,相信读者对线性方程组的求解已经有了一定的掌握。
在实际应用中,线性方程组是十分常见的数学工具,它能够描述和解决许多实际问题。
第一章 练习题一、选择题1、向量组r ααα,,,21 线性相关,且秩为s ,则( )A.s r = B .s r ≤ C.r s ≤ D .r s <2、设A 为m ×n 矩阵,齐次线性方程组0=Ax 有非零解的充分必要条件是( )A .A 的列向量组线性相关B .A 的列向量组线性无关C .A 的行向量组线性相关D .A 的行向量组线性无关3、设3元非齐次线性方程组b Ax =的两个解为T T )3,1,1(,)2,0,1(-=β=α,且系数矩 阵A 的秩2)(=A r ,则对于任意常数21,,k k k ,方程组的通解可表为( )A .T 2T 1)3,1,1()2,0,1(-+k kB .T T )3,1,1()2,0,1(-+kC .T T )1,1,0()2,0,1(-+kD .T T )5,1,2()2,0,1(-+k 4、设矩阵)2,1(=A ,⎪⎪⎭⎫⎝⎛=4321B ,⎪⎪⎭⎫ ⎝⎛=654321C 则下列矩阵运算中有意义的是( )A .ACB B .ABC C .BACD .CBA 5、r ααα,,,21 线性无关⇔( )A.存在全为零的实数r k k k ,,,21 ,使得02211=α++α+αr r k k k .B.存在不全为零的实数r k k k ,,,21 ,使得02211≠α++α+αr r k k k .C.每个i α都不能用其他向量线性表示.D.有线性无关的部分组.6、设向量组321,,ααα线性无关,421,,ααα线性相关,则( )A. 1α必可由432,,ααα线性表示B.2α必不可由431,,ααα线性表示C. 4α必可由321,,ααα线性表示D.4α必不可由321,,ααα线性表示7、设4321,,,αααα是三维实向量,则( )A.4321,,,αααα一定线性无关B.1α一定可由432,,ααα线性表出C.4321,,,αααα一定线性相关D.321,,ααα一定线性无关8、设A 是4×6矩阵,2)(=A r ,则齐次线性方程组0=Ax 的基础解系中所含向量的个数是( )A.1B.2C.3D.49、下列命题中错误的是( )A.只含有一个零向量的向量组线性相关B.由3个2维向量组成的向量组线性相关C.由一个非零向量组成的向量组线性相关D.两个成比例的向量组成的向量组线性相关10、已知向量T T )0,3,4,1(23,)1,2,2,1(2--=β+α---=β+α,则=β+α( )A .T )1,1,2,0(--B .T )1,1,0,2(--C .T )0,2,1,1(--D .T )1,5,6,2(--- 二、填空题1、设,,a a b b a a b b -⎛⎫⎛⎫== ⎪ ⎪---⎝⎭⎝⎭A B 则=AB __________. 2、设A 是4×3矩阵,若齐次线性方程组0=Ax 只有零解,则矩阵A 的秩._____)(=A r3、已知某个3元非齐次线性方程组b Ax =的增广矩阵~A 经初等行变换化为: ⎪⎪⎪⎭⎫ ⎝⎛-----→121)1(00120321~a a a A ,若方程组无解,则a 的取值为____________.4、向量组T 3T 2T 1)5,1,1,2(,)1,3,1,1(,)2,1,0,1(+-=α=α=αa 线性相关,则.____=a5、向量组T 3T 2T 1)2,5,1,1(,)1,,1,2(,)0,3,1,1(--=α-=α-=αa 的秩为2,则.____=a 6、若T)0,3,1(=β不能由T 3T 2T 1)2,2,1(,),3,2(,)1,2,1(-+=α=α=αa a 线性表示,则.____=a7、任意3维向量 都可用T3T 2T 1)2,1,(,)3,2,1(,)1,0,1(a =α-=α=α线性表示,则.____=a8、齐次线性方程组⎩⎨⎧=+-=++0320321321x x x x x x 的基础解系所含解向量的个数为________________.9、已知向量组T 3T 2T 1)5,0,0,6(,)1,1,0,2(,)4,3,2,1(=α-=α=α,则该向量组的秩为_______,一个极大线性无关组是_______.10、设矩阵111111111111k k A k k ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,且()3r A =,则k =. 三、计算题 1、求齐次线性方程组⎪⎩⎪⎨⎧=++=-+=++000543321521x x x x x x x x x 的解.2、设向量T 4T 3T 2T 1)4,0,3,0(,)1,6,0,3(,)2,4,2,2(,)1,2,1,1(-=α-=α--=α-=α,(1)求向量组的一个极大线性无关组;(2)将其余向量表为该极大线性无关组的线性组合.3、求非齐次线性方程组⎪⎩⎪⎨⎧=--+=+--=--+0895443313432143214321x x x x x x x x x x x x 的通解.4、问a 为何值时,线性方程组⎪⎩⎪⎨⎧=++=+=++63222243232132321x x x ax x x x x 有惟一解?有无穷多解?并在有解时求出其解(在有无穷多解时,要求用一个特解和导出组的基础解系表示全部解)。
第三章 线性方程组基础训练在以下, 我们总假设非齐次线性方程组为⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++sn sn s s n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111 , (1) 其导出组或齐次线性方程组为⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111n sn s s n n n n x a x a x a x a x a x a x a x a x a . (2) 1.设A 为n 阶方阵,且()n r A R <=,则A 中( ).A .必有r 个列向量线性无关;B .任意r 个列向量线性无关;C .任意r 个行向量构成一个极大无关组;D .任意一个行向量都能被其他r 个行向量线性表示2. 若( ),则n 元齐次线性方程组(2)有非零解.A . s n <B .A 的秩等于nC .s n >D .A 的秩等于s.3.齐次线性方程组(2)仅有零解的充分必要条件是( ).A . A 的行向量组线性相关B .A 的行向量组线性无关C .A 的列向量组线性相关D .A 的列向量组线性无关4. 对于非齐次线性方程组(1),当s=n, 即系数矩阵是n n ⨯矩阵, 如下结论正确的是( ). A .若方程组无解,则系数行列式0=A ;B .若方程组有解,则系数行列式0≠A 。
C .若方程组有解,则有惟一解,或者有无穷多解;D .系数行列式0≠A 是方程组有惟一解的充分必要条件5. 设线性方程组的增广矩阵是10721012110242200015⎡⎤⎢⎥-⎢⎥⎢⎥---⎢⎥⎣⎦,则这个方程组解的情况是( ). A .有唯一解 B .无解 C .有四个解 D .有无穷多个解6. 当λ=( )时,方程组1231231222x x x x x x λ++=⎧⎨++=⎩,有无穷多解。
A .1 B .2 C .3 D .47.设线性方程组(1)及其导出的齐次线性方程组(2),则下列命题成立的是( )。
A .0AX =只有零解时,AX b =有唯一解;B .0AX =有非零解时,AX b =有无穷多个解;C .AX b =有唯一解时,0AX =只有零解;D . AX b =无解时,0AX =也无解8. 设n 元齐次线性方程组(2)的系数矩阵A 的秩为r ,则(2)有非零解的充分必要条件是( ).A .r n =B .r n <C .r n ≥D .r n >9. n 维向量组s ααα,,,21 )3(n s ≤≤线性无关的充分必要条件是( ). A .存在一组不全为零的数s k k k ,,,21 ,使02211≠++s s k k k αααB .s ααα,,,21 中任意两个向量组都线性无关C .s ααα,,,21 中存在一个向量,它不能用其余向量线性表示D .s ααα,,,21 中任意一个向量都不能由其余向量线性表示10. 若向量组中含有零向量,则此向量组( )A .线性相关;B . 线性无关;C .线性相关或线性无关;D .不一定11.设α为任意非零向量,则α( )。
A .线性相关;B .线性无关;C . 线性相关或线性无关;D .不一定12. n 维向量组12,,...s ααα线性无关,β为一n 维向量,则( ).A .12,,...,s ααα,β线性相关;B .β一定能被12,,...,s ααα线性表出;C .β一定不能被12,,...,s ααα线性表出;D .当s n =时,β一定能被12,,...,s ααα线性表出13. (1)若两个向量组等价,则它们所含向量的个数相同;(2)若向量组}{21r ααα,,, 线性无关,1+r α可由r ααα ,21,线性表出,则向量组}{121+r ααα,,, 也线性无关;(3)设}{21r ααα,,, 线性无关,则}{121-r ααα,,, 也线性无关;(4)}{21r ααα,,, 线性相关,则r α一定可由121,-r ααα ,线性表出; 以上说法正确的有( )个。
A .1 个B .2 个C .3 个D .4个14.(1)n 维向量空间V 的任意n 个线性无关的向量都可构成V 的一个基;(2)设n ααα ,21,是向量空间V 中的n 个向量,且V 中的每个向量都可由之线性表示,则n ααα ,21,是V 的一个基;(3)设},{21n ααα ,是向量空间V 的一个基,如果}{21n βββ ,,与},{21n ααα ,等价,则}{21n βββ ,,也是V 的一个基;(4)n 维向量空间V 的任意1+n 个向量线性相关;以上说法中正确的有( )个。
A .1 个 B .2 个 C .3 个 D .4个15. 设向量组321,,ααα线性无关。
421,,ααα线性相关,则( )。
A .4321,,αααα必可由线性表示;B .3214,,αααα必可由线性表示;C .324,ααα必可由线性表示;D .3214,,αααα必不可由线性表示16.设向量组Ⅰ(r ααα ,,21),Ⅱ(s r r ααααα,,,,,121 +)则必须有( )。
A .Ⅰ无关⇒Ⅱ无关; B . Ⅱ无关⇒Ⅰ无关;C .Ⅰ无关⇒Ⅱ相关;D .Ⅱ相关⇒Ⅰ相关17.向量组A :12,,,n ααα与B :12,,,m βββ等价的充要条件为( ). A .()()R A R B =; B .()R A n =且()R B m =;C .()()(,)R A R B R A B ==;D .m n = 18.向量组12,,,r ααα线性无关⇔( ) 。
A . 不含零向量;B . 存在向量不能由其余向量线性表出;C .每个向量均不能由其余向量表出;D .与单位向量等价19.设η1,η2,…,ηk 为某齐次线性方程组的一个基础解系,α是该方程组的任一个解,则下列向量组中,______也是该方程组的基础解系。
(多选)A) η2,η1+η2,…, ηk +η2; B) η1+η2,η2+η3,…,ηk +η1;C) η1+η2,η2-η3,η3+η4…,ηk +(-1)k η1 ;D) -η1,-η2,…,-ηk ; E) α-η1,α-η2,…, α-ηk 。
20. 设η1,η2,…,ηs 为某非齐次线性方程组的导出组的一个基础解系,γ是该方程组的任一个解,则下列向量组中,______也是该方程组的解。
(多选)。
A) γ+η1; B) γ+k (η1+η2+…+ηs ); C) k 1η1+k 2η2+…+k s ηs ;D) k 0γ+k 1η1+k 2η2+…+k s ηs ; E) γ+(k 1η1+k 2η2+…+k s ηs ).二. 填空题1. 对于线性方程组(2), 若其系数矩阵的秩r A R =)(, 则它有( )个自由未知量.2. 对于线性方程组(2), 若其系数矩阵的秩r A R =)(, 则它的一个基础解系含有( )个向量.3. 对于齐次线性方程组(2), 若则它的一个基础解系含有3个向量, 则其系数矩阵的秩是( ).4. 设321,,ααα是齐次线性方程组(2)的基础解系, 则232221,,αααααα+++(是, 不是)(2)的基础解系.5. 设4321,,,αααα是齐次线性方程组(2)的基础解系, 则14433221,,,αααααααα++++( 是, 不是 )(2)的基础解系.6. 设α是(1)的解, 21,ββ的(2)的解, 则2143ββα++是( )的解.7. 已知5元非齐次线性方程组的系数矩阵的秩是2,4321,,,ββββ是该方程组的4个线性无关的解, 则其导出组的基础解系为( ). 8. 已知4元非齐次线性方程组的解,,,γβα 其系数矩阵的秩为2, 且),2,1,1,2(=+βα ),1,2,1,2(=+γβ ),1,1,2,2(=+αγ则其导出组的基础解系为( ).三. 求下列线性方程组的一般解.54321x x x x x ====+1四. 证明题设齐次线性方程组的系数矩阵A 为n n ⨯矩阵, R(A)=n -1, A 的元素32a 的代数余子式032≠A , 证明),...,,(33231n A A A 是该齐次线性方程组的基础解系.第三章 线性方程组基础训练答案在以下, 我们总假设非齐次线性方程组为⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++sn sn s s n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111 , (1) 其导出组或齐次线性方程组为⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111n sn s s n n n n x a x a x a x a x a x a x a x a x a . (2) 一. 选择题1.设A 为n 阶方阵,且()n r A R <=,则A 中( A ).A .必有r 个列向量线性无关;B .任意r 个列向量线性无关;C .任意r 个行向量构成一个极大无关组;D . 任意一个行向量都能被其他r 个行向量线性表示2. 若( A ),则n 元齐次线性方程组(2)有非零解.A . s n <B .A 的秩等于nC .s n >D .A 的秩等于s.3.齐次线性方程组(2)仅有零解的充分必要条件是( D ).A . A 的行向量组线性相关B .A 的行向量组线性无关C .A 的列向量组线性相关D .A 的列向量组线性无关4. 对于非齐次线性方程组(1),当s=n, 即系数矩阵是n n ⨯矩阵, 如下结论不正确的是(C,D). A .若方程组无解,则系数行列式0=A ;B .若方程组有解,则系数行列式0≠A 。
C .若方程组有解,则有惟一解,或者有无穷多解;D .系数行列式0≠A 是方程组有惟一解的充分必要条件5. 设线性方程组的增广矩阵是10721012110242200015⎡⎤⎢⎥-⎢⎥⎢⎥---⎢⎥⎣⎦,则这个方程组解的情况是(D). A .有唯一解 B .无解 C .有四个解 D .有无穷多个解6. 当λ=( B )时,方程组1231231222x x x x x x λ++=⎧⎨++=⎩,有无穷多解。
A .1 B .2 C .3 D .47. 设线性方程组04321=+++x x x x ,则它的一个基础解系含有( )个向量.A .1B .2C .3D .48.设线性方程组(1)及其导出的齐次线性方程组(2),则下列命题成立的是(C).A .0AX =只有零解时,AX b =有唯一解;B .0AX =有非零解时,AX b =有无穷多个解;C .AX b =有唯一解时,0AX =只有零解;D . AX b =无解时,0AX =也无解9. 设n 元齐次线性方程组(2)的系数矩阵A 的秩为r ,则(2)有非零解的充分必要条件是( ).A .r n =B .r n <C .r n ≥D .r n >10. n 维向量组s ααα,,,21 )3(n s ≤≤线性无关的充分必要条件是( D ). A .存在一组不全为零的数s k k k ,,,21 ,使02211≠++s s k k k αααB .s ααα,,,21 中任意两个向量组都线性无关C .s ααα,,,21 中存在一个向量,它不能用其余向量线性表示D .s ααα,,,21 中任意一个向量都不能由其余向量线性表示11. 若向量组中含有零向量,则此向量组( A )A .线性相关;B . 线性无关;C .线性相关或线性无关;D .不一定12.设α为任意非零向量,则α( B )。