大数据应用的机会与挑战(PDF 24页)
- 格式:pdf
- 大小:2.04 MB
- 文档页数:24
数据科学与大数据技术专业调研报告大数据浪潮,汹涌来袭,与互联网的发明一样,这绝不仅仅是信息技术领域的革命,更是在全球范围加速企业创新、引领社会变革的利器。
现代关系学之父德鲁克有言,预测未来最好的方法,就是去创造未来。
而“大数据战略”,则是当下领航全球的先机。
“大数据”(Big Data)指一般的软件工具难以捕捉、管理和分析的大容量数据。
“大数据”之“大”,并不仅仅在于“容量之大”,更大的意义在于:通过对海量数据的交换、整合和分析,发现新的知识,创造新的价值,带来“大知识”、“大科技”、“大利润”和“大发展”。
“大数据”能帮助政府和企业找到一个个难题的答案,给经济社会和发展带来前所未有的机会。
“谁率先拥有、善于利用大数据,谁就能掌握主动、赢得未来。
”身处互联网的时代,面对大数据浪潮,只有不畏艰险,勇当弄潮儿,才能赢得未来。
新的领域需要专业的人才,专业的人才需要大学设置专门的学科来培养,无限的挑战和机遇更需要有胆识、有智慧、有担当的有志之士、睿智青年勇攀高峰。
一、大数据技术概述大数据是数据分析的前沿技术。
简言之,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。
最早提出“大数据”时代到来的是全球知名咨询公司麦肯锡,麦肯锡称:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。
”人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。
”“大数据”在物理学、生物学、环境生态学等领域以及军事、金融、通讯等行业存在已有时日,却因为近年来互联网和信息行业的发展而引起人们关注。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。
换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。
适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘电网、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
DCWIndustry Observation产业观察173数字通信世界2024.041 “东数西算”工程概述1.1 “东数西算”工程实施背景(1)东中西部在数据中心布局上存在明显差距。
东部地区是云计算和大数据企业集聚地,数据中心高度集中。
根据信通院《中国算力发展指数白皮书》,2020年东部地区算力增速达到60%以上,连续多年保持高速增长态势,而中西部地区算力基础设施建设相对薄弱,这不利于数字经济在全国范围的均衡发展[1]。
(2)新兴业态对数字基础设施提出更高要求。
产业互联网等快速发展,需要数字化赋能,如果完全依靠市场配置数字基础资源,将难以满足需求,因此需在国家层面统筹数字基础设施规划建设。
(3)东部地区能源供给能力面临挑战。
大量高耗能数据中心集中在东部地区,加重了当地能源供给压力。
根据国家能源局统计,2022年我国数据中心耗电量已占全社会用电量的3%以上,而西部等地正是清洁能源的主要来源,亟须提升绿色低碳发展水平。
1.2 “东数西算”工程的主要目标和任务1.2.1 “东数西算”工程的主要目标一是实现网络、能源、算力、数据和应用的“五位一体化”,加强数据中心间的网络互联,构建统一的算力服务体系,推动清洁能源消纳利用,建设数据共享平台,提供统一的公共数据服务等;二是实现核心技术自主可控,突破网络设备、运算芯片、操作系统等关键技术领域对外部的依赖;三是助力达成“双碳”目标,大力发展绿色节能技术,推动数据中心与绿色低碳产业深度融合;四是推进数字经济高质量发展,东部地区推动数据中心集约化发展,西部地区鼓励数据中心跨越式发展,为数字化发展夯实基础。
预计到2025年,数据中心绿色节能技术可节约能耗15%以上[2]。
1.2.2 “东数西算”工程的主要任务根据《关于加快构建全国一体化大数据中心协同创新体系的指导意见》,“东数西算”工程的主要任务是构建“数网”“数纽”“数链”“数脑”“数盾”五大体系。
“东数西算”工程大背景下运营商的布局与发展机遇王 静(中国移动通信集团青海有限公司,青海 西宁 810000)摘要:文章全面解析了“东数西算”工程及其在当前信息产业发展中的战略地位,“东数西算”工程的核心是适应信息技术的新动态,实现数据和计算的高效配置,从而驱动相关产业的技术创新。
安全。
为了有效保护耕地资源,我国确立了耕地尤其是永久基本农田的优先保护地位,使之成为调整经济结构、规划产业发展、推进城镇化不可逾越的耕地保护红线。
耕地保护红线的管控监测是实现耕地保护和粮食安全的重要举措。
随着社会经济快速发展,加剧的人类活动对耕地保护造成了越来越大的压力,导致局部耕地出现面积减少、质量下降、产量降低、作物结构单一、生态服务功能退化、耕地健康状况受损等问题[2-4]。
此外,气候变化也给耕地保护带来了巨大的挑战,特别是温度升高、降水变率增大伴随极端气候事件频率和强度的增加,如干旱和洪涝灾害加剧等,深刻影响着耕地的稳定性和可持续性[5]。
在人类活动和气候变化共同作用下,耕地管控状态的变化速度更快、强度更大、复杂性更高,如何对耕地管控状态进行高时效性、准确性、全面性地评估和监测已成为一个迫切需要解决的问题。
然而,传统的耕地监测方法存在着诸多不足,如周期长、时效性差、精度低、成本高等问题,难以满足及时、准确、动态的监测需求。
大数据具有海量数据处理、快速分析、智能决策等优势。
通过整合卫星影像、气象数据和土壤监测等多源数据,实现对耕地利用状态多维度的高频、高精度监测,为耕地红线管控状态的监测提供更为精准的数据支持、新的研究思路和技术手段[6],从而全面了解耕地的状态和变化趋势,为农业规划、土地管理及粮食生产等决策提供科学支持和数据基础[7]。
如谷歌基于遥感大数据和云计算构建了近实时土地覆盖制图平台(Dynamic World)[8],实现了土地覆盖制图从静态到实时动态监测的新理念的转换,这为耕地红线管控状态的监测预警提供了重要范例。
本文旨在适应大数据时代科研范式变革的要求,积极推进耕地红线监管的大数据支撑。
将从3个方面展开论述:①分析当前耕地保护红线管控监测现状;②介绍大数据技术在耕地红线监测中的应用现状和前沿技术,提出耕地红线监测的创新技术方案;③提出大数据技术在耕地红线监测中的挑战、建议和展望。
大数据应用开发(Python)职业技能等级标准(2021年1.0版)广东泰迪智能科技股份有限公司制定2021年3月发布目次前言﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍1 1范围﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2 2规范性引用文件﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2 3术语和定义﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2 4适用院校专业﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4 5面向职业岗位(群)﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5 6职业技能要求﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5参考文献﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍13前言本标准按照GB/T1.1-2020《标准化工作导则第1部分:标准化文件的结构和起草规则》的规定起草。
本标准起草单位:广东泰迪科技股份有限公司、华为技术有限公司、湖北省工业与应用数学学会、朗新科技股份有限公司、网宿科技股份有限公司、广州粤嵌通信科技股份有限公司、蓝盾信息安全技术股份有限公司、广东省人才研究会、北京四合天地科技有限公司、深圳职业技术学院、广州番禺职业技术学院、深圳信息职业技术学院、武汉职业技术学院、江苏海事职业技术学院、河南工业职业技术学院、广东轻工职业技术学院、上海电子信息职业技术学院、浙江商业职业技术学院、大连职业技术学院、西安航空职业技术学院、广东科学技术职业学院。
本标准主要起草人:郝志峰、张良均、余明辉、詹增荣、张治斌、刘彦姝、秦宗槐、王津、苏晓、万国德、张敏、王海、武春岭、施兴、赵云龙、蔡铁、陈永、杜恒、韩宝国、胡国胜、蒙飚、余爱民、史小英、沈凤池、沈洋。
声明:本标准的知识产权归属于广东泰迪智能科技股份有限公司,未经广东泰迪智能科技股份有限公司同意,不得印刷、销售。
1范围本标准规定了大数据应用开发(Python)职业技能等级对应的工作领域、工作任务及职业技能要求。
1、当前大数据技术的基础是由( C)首先提出的。
(单选题,本题2分)A:微软B:百度C:谷歌D:阿里巴巴2、大数据的起源是( C )。
(单选题,本题2分)A:金融B:电信C:互联网D:公共管理3、根据不同的业务需求来建立数据模型,抽取最有意义的向量,决定选取哪种方法的数据分析角色人员是( C)。
(单选题,本题2分)A:数据管理人员B:数据分析员C:研究科学家D:软件开发工程师4、(D )反映数据的精细化程度,越细化的数据,价值越高。
(单选题,本题2分)A:规模B:活性C:关联度D:颗粒度5、数据清洗的方法不包括( D)。
(单,本题2分)A:缺失值处理B:噪声数据清除C:一致性检查D:重复数据记录处理6、智能健康手环的应用开发,体现了( D)的数据采集技术的应用。
(单选题,本题2分)A:统计报表B:网络爬虫C:API接口D:传感器7、下列关于数据重组的说法中,错误的是( A)。
(单选题,本题2分) A:数据重组是数据的重新生产和重新采集B:数据重组能够使数据焕发新的光芒C:数据重组实现的关键在于多源数据融合和数据集成D:数据重组有利于实现新颖的数据模式创新8、智慧城市的构建,不包含( C)。
(单选题,本题2分)A:数字城市B:物联网C:联网监控D:云计算大数据的最显著特征是( A)。
(单选题,本题2分)A:数据规模大B:数据类型多样C:数据处理速度快D:数据价值密度高10、美国海军军官莫里通过对前人航海日志的分析,绘制了新的航海路线图,标明了大风与洋流可能发生的地点。
这体现了大数据分析理念中的( B )。
(单选题,本题2分)A:在数据基础上倾向于全体数据而不是抽样数据B:在分析方法上更注重相关分析而不是因果分析C:在分析效果上更追究效率而不是绝对精确D:在数据规模上强调相对数据而不是绝对数据11、下列关于舍恩伯格对大数据特点的说法中,错误的是( D )。
(单选题,本题2分)A:数据规模大B:数据类型多样C:数据处理速度快D:数据价值密度高12、当前社会中,最为突出的大数据环境是( A )。
2024年大数据应用及处理技术能力知识考试题库与答案一、单选题1.当图像通过信道传输时,噪声一般与()无关。
A、信道传输的质量B、出现的图像信号C、是否有中转信道的过程D、图像在信道前后的处理参考答案:B2.在留出法、交叉验证法和自助法三种评估方法中,()更适用于数据集较小、难以划分训练集和测试集的情况。
A、留出法B、交叉验证法C、自助法D、留一法参考答案:C3.在数据科学中,通常可以采用()方法有效避免数据加工和数据备份的偏见。
A、A/B测试B、训练集和测试集的划分C、测试集和验证集的划分D、图灵测试参考答案:A4.下列不属于深度学习内容的是(_)oA、深度置信网络B、受限玻尔兹曼机C、卷积神经网络D、贝叶斯学习参考答案:D5.在大数据项目中,哪个阶段可能涉及使用数据工程师来优化数据查询性能?A、数据采集B、数据清洗C、数据存储与管理D、数据分析与可视化参考答案:C6.假定你现在训练了一个线性SVM并推断出这个模型出现了欠拟合现象,在下一次训练时,应该采取下列什么措施()A、增加数据点B、减少数据点C、增加特征D、减少特征参考答案:C7.两个变量相关,它们的相关系数r可能为0?这句话是否正确0A、正确B、错误参考答案:A8.一幅数字图像是()。
A、一个观测系统B、一个由许多像素排列而成的实体C、一个2-D数组中的元素D、一个3-D空间中的场景参考答案:C9.以下说法正确的是:()。
一个机器学习模型,如果有较高准确率,总是说明这个分类器是好的如果增加模型复杂度,那么模型的测试错误率总是会降低如果增加模型复杂度,那么模型的训练错误率总是会降低A、1B、2C、3D、land3参考答案:c10.从网络的原理上来看,结构最复杂的神经网络是0。
A、卷积神经网络B、长短时记忆神经网络C、GRUD、BP神经网络参考答案:B11.LSTM中,(_)的作用是确定哪些新的信息留在细胞状态中,并更新细胞状态。
A、输入门B、遗忘门G输出门D、更新门参考答案:A12.Matplotiib的核心是面向()。
大数据基础(习题卷2)说明:答案和解析在试卷最后第1部分:单项选择题,共58题,每题只有一个正确答案,多选或少选均不得分。
1.[单选题]Mapreduce适用于( )A)任意应用程序B)任意可在windows servet2008 上运行的程序C)可以串行处理的应用程序D)可以并行处理的应用程序2.[单选题]建立一个模型, 通过这个模型根据已知的变量值来预测其他某个变量值属于数据挖掘的哪一类任务? ( )A)根据内容检索B)建模描述C)预测建模D)寻找模式和规则3.[单选题]在数据生命周期管理实践中,( )是执行方法。
A)数据存储和备份规范B)数据管理和维护C)数据价值发觉和利用D)数据应用开发和管理4.[单选题]新体采用的技术不包括( )。
A)数字技术B)网络技术C)移动通信技术D)碎片技术5.[单选题]大数据的起源是( )。
A)金融B)电信C)互联网D)公共管理6.[单选题]购物篮分析属于( )。
A)描述性统计B)聚类分析C)关联分析D)分类与预测C)私有化D)高可靠性8.[单选题]“最为成功的商业运作模式是价格最低的资源将会被尽可能的消耗,以此来保存最昂贵的资源”,这是下列哪个定律的内涵?A)牛顿定律B)麦特卡尔夫定律C)摩尔定律D)吉尔德定律9.[单选题]关联规则的评价指标是: ( )。
A)均方误差、均方根误差B)Kappa 统计、显著性检验C)支持度、置信度D)平均绝对误差、相对误差10.[单选题]决策树中不包含一下哪种结点 ( )A)根结点( root node)B)内部结点( internal node )C)外部结点( external node )D)叶结点( leaf node )11.[单选题]以下哪些算法是基于规则的分类器 ( )A)C4.5B)KNNC)Naive BayesD)ANN12.[单选题]一个对象的离群点得分是该对象周围密度的逆。
这是基于( )的离群点定义。