矿井通风设备选型
- 格式:doc
- 大小:149.50 KB
- 文档页数:7
简述矿井通风设备的选型与计算【摘要】我国各类矿藏资源丰富,随着我国社会经济的发展,城市化的推进,对于各类矿藏资源,特别是煤炭类资源的需求一直居高不下。
我国煤炭行业的矿藏挖掘工作和技术较国外相对落后,其中矿井的通风设备是保障矿井安全、操作人员人身生命安全的基础。
本文试对矿井通风设备的选型与计算作简单论述,希望能对矿井通风设备的实际选型应用有借鉴作用。
【关键词】矿井通风设备;选型;计算矿井通风设备是向矿井下输送空气的重要设备,是保障人员生命安全的关键设备。
矿井通风设备的选型,关系着整个矿井的电力能耗、成本等各方面,要求矿井通风设备具备可靠、运行效率高、节能等特点。
0.概述在地下开采矿藏,伴随着的通常是大量有毒气体的逸出,煤炭类矿藏更是会喷发易爆的煤尘,对操作人员及矿井的安全都有重大威胁。
为了保证安全,我国严格且详细规定了井下有毒气体浓度、矿井所需要的通风量、井中最高风速、采掘环境的最高温度等数据。
按照我国有关规定,为了保证清洁空气的充足,必须按照井下作业人员的最多人数计算,每分钟每人供风量不少于4立方米,井下采掘工作地点进风体积计算含氧不少于20%,二氧化碳不得超过0.5%,要求其他有毒气体必须达到无危险程度,工作面风速低于每秒4米,工作温度低于26度,否则将影响到井下采掘作业。
井下采掘生产,就要求矿井通风设备不间断工作,由于矿井通风设备电力耗能巨大。
结合现场实际情况,选择经济型、可靠的通风机的型号,对保证正常通风有着重要意义。
1.矿井通风基本任务和工作方式其基本任务是要保证井下作业面空气质量能符合国家相关安全与卫生规范、标准,确保作业人员生存一直有足够的氧气,稀释、排除井下有毒气体和易爆粉尘,调节气温,提供良好的作业环境,保障井下各类设备正常的运行、井下作业人员生命安全,达到安全生产的目标。
1.1矿井自然通风矿井自然的通风是指利用矿井内外温度差;出、进风口高差而形成的压力差,使空气自然流动。
自动通风风压较小,并受到季节、气候等各类自然因素影响较大,无法保证井下作业时所需要的风压、风量。
第三章矿井通风设备选型设计第一节矿井通风设备选型设计概要一、矿井通风设备选型设计根本原则矿井通风机选型设计的主要任务是合理选择通风机的型式、型号(叶轮直径),确定电动机的容量、型号及传动方式,确定通风机的运转工况点。
矿井通风设备能否连续正常运转,关系着煤矿的安全生产,运转效率的凹凸影响着矿井的电力消耗及生产本钱。
因此,矿井通风机选型设计中的根本原则,就是保证通风机运转的牢靠性及经济技术合理性。
依据这个原则,在矿井通风机选型设计中,应充分考虑以下问题:1保证安全运转矿井通风机的安设地点、配置方式、备用台数,必需符合《煤矿安全规程》规定,优先考虑选择运行牢靠,便于维护检修的产品做为矿井通风机,以保证其能不连续地向井下供给足够数量的颖空气,满足安全、生产的需要.2设备性能符合矿井的需要通常状况,矿井投产初期产量较低,巷道较短,因之需要的风量较小,通风的阻力较小,随着矿井生产的进展,其需要的风量及通风的阻力也将渐渐增加。
为了保证通风机的经济运转,在选型设计时,既要考虑到初期的需要,也要考虑到矿井的进展,使其整个效劳期间风量、负(正)压均能满足矿井通风的需要,在比较高效的工作区运转。
3经济合理选择通风机时,不但要考虑其设备、安装及土建工程费用,而且要考虑其运转、维护费用,要把初期的建设投资和投入使用后的运转、维护费用结合一起进展比照选择,以保证通风机在整个效劳期间的经济合理性。
4噪声符合规定选择通风机时,应使其噪声符合环境保护的规定。
假设达不到规定要求时,应考虑消声措施。
二、矿井通风设备选型设计的根本要求1应满足第一水平各个时期的负压变化,并适当照看下一水平的通风要求,当负压变化较大时,可考虑分期选择电动机,但初装电动机的使用年限不宜少于10 年;2应留有肯定的余量,轴流式通风机在最大设计负压和风量时,轮叶安装角度一般至少比允许围小 50;离心式通风机的设计转速,一般不大于允许最大转速的90%,3通风设备(包括风道,风门)的漏风损失,当风井不作提升用时,按风量的 10~15%计算,当为箕斗井时,按15~20%计算,罐笼井时,按25~30%计算,但罐笼井一般不应作为出风井。
可编辑修改精选全文完整版前言井田概述一井田境界:煤层走向长约1200m,倾斜长约800m,地表平坦,标高+35m。
井田内有二个煤层,3号煤层厚度为2.3m,5号煤层厚度为2.5m,煤层露头为-100m。
煤层倾角12º。
各煤层厚度、间距及顶、底板情况见下表:地质构造简单,无断层,m,m2顶板岩性为细砂岩,顶板中等稳定,各煤层的容重γ=1.5t/m3。
,煤层无自燃倾向,表土内有流砂。
二矿井采区储量:井田采用一对立井开拓,井筒位置布置在井田走向中央和倾斜中部。
井田划分为三个阶段,每个阶段垂高200m,由于倾角较大均采用上山开采,一水平运输大巷布置在-200m 水平,大巷沿m3煤层底板开拓,位置距m3煤层垂直距离25m,回风大巷布置在+0m标高,距m3煤层的距离与运输大巷相同,矿井设计能力为年产60万t。
主井采用箕斗提升,副井采用罐笼提升。
井底车场选用立井刀式环形车场,大巷运输采用600mm轨距架线式电机车运输,矿车选用1t固定式U型矿车。
采区工作制度规定如下:年工作日数:330天。
每日工作班数:3班。
每班工作时数:8h。
第一章选择矿井通风系统通风系统选择的原则:要求要符合安全可靠、技术先进合理、经济、投产快等。
矿井通风系统是向矿井各作业地点供给新鲜空气、排出污浊空气的进、回风井的布置方式,主要通风机的工作方法,通风网络和风流控制设施的总称。
按进、回风在井田内的位置不同,通风系统可分为中央式、对角式、区域式及混合式。
由于煤层倾角较小,埋藏较浅,井田走向长度不大等条件,故确定为中央边界式通风系统。
采区通风系统:采区共设3条上山,1条轨道上山和2条回风上山。
根据《煤矿开采安全规程》规定,再结合矿井的实际情况,本矿井采用抽出式通风方式。
第二章计算和分配矿井总风量矿井需风量,按下列要求分别计算,并采取其中最大值。
(一) 按井下同时工作的最多人数计算,每人每分钟供风量不小于4m3。
(二) 按采煤、掘进、硐室及其他实际需要风量的总合进行计算。
矿井最新通风规范标准一、总则1. 矿井通风系统的设计应遵循安全、高效、节能的原则,确保矿井内部空气质量满足矿工呼吸需求。
2. 通风设施的建设和维护应符合国家相关安全生产法规和标准。
二、通风系统设计1. 矿井应根据地质条件、生产规模和矿工人数合理设计通风系统。
2. 通风系统应包括主通风道、分支通风道和局部通风设施。
3. 主通风道应设置在矿井的中心或主要生产区域,以保证通风效果。
三、通风设备要求1. 通风设备应选用高效、低噪音、节能型产品。
2. 通风机应定期进行维护和检查,确保其正常运行。
四、通风效果监测1. 矿井应建立通风效果监测系统,实时监测空气质量和通风效率。
2. 监测数据应定期记录并存档,以备检查和分析。
五、通风安全措施1. 矿井应设置通风安全警示标志,提醒矿工注意通风情况。
2. 在通风不良区域,应设置局部通风设施,确保矿工安全。
六、应急预案1. 矿井应制定通风故障应急预案,包括通风中断、通风设备故障等情况的应对措施。
2. 应急预案应定期演练,确保矿工熟悉应急流程。
七、培训与教育1. 矿井应定期对矿工进行通风安全知识培训,提高矿工的安全意识。
2. 培训内容应包括通风系统操作、通风故障处理等。
八、监督与检查1. 矿井应建立通风安全监督机制,定期对通风系统进行检查和评估。
2. 发现问题应及时整改,确保通风系统安全可靠。
九、附则1. 本规范标准自发布之日起实施。
2. 对于特殊情况,矿井可根据实际情况调整通风规范,但不得低于本规范标准的要求。
以上内容为矿井最新通风规范标准的概述,具体的实施细则和操作流程应根据矿井实际情况和国家相关法规进行调整和完善。
矿井通风安全装备标准——煤矿企业通风、防尘及排水标准MT/T 5016—961 总则1.0.1 为进一步贯彻执行煤炭工业有关安全法规、指令和方针、政策、推广应用先进可靠的煤矿安全技术和设备,规范矿井通风安全装备设计,保证矿井合理的安全装备水平,提高设计效率和设计质量,制订本标准。
1.0.2 本标准适用于新建、改扩建矿井,生产矿井可参照执行。
本标准不适用于乡镇(个体)煤矿。
1.0.3 矿井安全装备设计中,首先应根据矿井条件按有关要求酌情建立矿井集中安全监测及生产监控系统。
在此基础上,根据本标准对其他通风安全设备器材进行合理配备。
通风安全装备应从国情及矿井具体条件出发,因地制宜地采用新技术、新设备、新材料,不断淘汰落后设备。
1.0.4 矿井通风安全装备,除应遵守本标准的有关规定外,尚应符合国家现行有关标准和规范的要求。
2 矿井通风安全基本装备2.1 矿井通风检测2.1.1 矿井必须配备有足够数量的风表、干湿温度计、空盒气压计、U型倾斜压差计、皮托管及矿井通风多参数检测仪等通风检测仪器仪表。
其数量应能满足矿井通风日常管理、瓦斯(含二氧化碳)等级鉴定、反风演习工作的需要,并按矿井测风或通风阻力测定同时工作的组数配备。
2.1.2 矿务局应装备风速表校验装置和主扇性能测定仪。
根据所属矿井的风表数量,可配备1~2台风速表校验装置,并根据所属矿井或分区主扇的数目,配备1台主扇性能测定仪。
2.2 矿井气体检测及其它2.2.1 矿井必须配备足够数量的光学瓦斯检定器和适量的高浓度瓦斯检定器、便携式瓦斯检测报警仪,并应配有瓦斯报警矿灯。
其配备范围和数量应符合下列规定:a)矿通风科专职干部、专职瓦检员必须配备光学瓦斯检定器。
b)高浓度(CH40%~100%)瓦斯检定器,其数量可按矿井的采区数目配备。
c)便携式瓦斯检测报警仪、瓦斯报警矿灯的配备,应符合现行的《矿井通风安全监测装置使用管理规定》的有关规定。
2.2.2 矿井必须配备必要的瓦斯、氧气检测仪和一氧化碳检定器,并应符合下列规定:a)瓦斯、氧气检测仪可按中、小型矿井5~10台,大型矿井20~45台配备。
矿井通风设计目录(一)、矿井概况(二)、拟定矿井通风系统(三)、矿井总风量计算与分配1、矿井需风量计算原则2、矿井需风量计算方法3、矿井总风量的分配(四)、矿井通风总阻力计算1、矿井通风总阻力计算的原则2、矿井通风总阻力的计算方法3、绘制矿井通风网络图(五)、选择矿井通风设备1、选择矿井通风设备的要求2、主要通风机的选择(一)矿井基本概况1、煤层地质概况单一煤层,倾角25°,煤层厚4m,相对瓦斯涌出量为13m3/t,煤尘有爆炸危险。
2、井田范围设计第一水平深度240m,走向长度7200m,双翼开采,每翼长3600m。
3、矿井生产任务设计年产量为0.6Mt,矿井第一水平服务年限为23a。
4、矿井开拓与开采用竖井主要石门开拓,在底板开围岩平巷,其开拓系统如图1-1所示。
拟采用两翼对角式通风,在7、8两采区中央上部边界开回风井,其采区划分见图1-2。
采区巷道布置见图1-3。
全矿井有2个采区同时生产,分上、下分层开采,共有4个采煤工作面,1个备用工作面。
为准备采煤有4条煤巷掘进,采用4台局部通风机通风,不与采煤工作面串联。
井下同时工作的最多人数为380人。
回采工作面最多人数为38人,温度t=20℃,瓦斯绝对涌出量为3.2m3/min,放炮破煤,一次爆破最大炸药量为2.4kg。
有1个大型火药库,独立回风。
5、开拓系统图、采区布置图、巷道布置图、以及井巷尺寸。
附表1-1 井巷尺寸及其支护情况区段井巷名称井巷特征及支护情况巷长(m)断面积(m2)主斜井主运大巷副斜井辅运大巷总回风巷风井中央水泵房中央变电所(二)拟定矿井通风系统矿井开拓采用立井开拓方式,矿井通风采用两翼对角式通风方式。
矿井主要进风井为位于井田中央的副井,矿井主要回风井位于第七采区和第八采区的上部边界。
矿井主要通风机采用抽出式通风方式。
大巷位置位于负240米处石门揭煤地带的岩石巷道中。
在第一采区有一个备用工作面,一个采煤工作面,两个掘进工作面,在第二采区有两个采煤工作面,两个掘进工作面所以矿井总共有4个采煤工作面,4个掘进工作面。
矿井通风阻力及风机静压负压全压及矿井主扇风机选型计算矿井通风是矿山安全生产的重要任务之一,而矿井通风阻力及风机选型是矿井通风系统设计的核心内容。
本文将从通风阻力、风机静压、负压和全压以及矿井主扇风机选型计算等方面进行详细介绍。
1.通风阻力计算通风阻力是指矿井通风过程中空气流动所受到的阻碍力,其大小直接影响风机的工作情况和通风系统的运行效果。
通风阻力的计算依据是矿井通风管道的布置、风速、管道长度、管道截面积、矿井皮摩阻、局部阻力等因素。
通风阻力的计算公式为:ΣPi=Σρi*Li/ηi+ΣK其中,ΣPi表示总阻力,Σρi表示各段通风管道的阻力,Li表示各段管道长度,ηi表示各段电气动力的效率,ΣK表示其他的局部阻力等。
2.风机静压、负压和全压计算风机静压、负压和全压是矿井通风过程中的重要参数,用来衡量风机的出风压力和系统的阻力。
风机静压是指风机入口处的压力,其公式为:Ps=Pd+ΔPm其中,Ps表示风机静压,Pd表示大气压力,ΔPm表示气流动能损失压力。
负压是指矿井中低气压的情况,其公式为:Pn=Pd-ΔPm全压是指通风系统中的总压力,其公式为:Pt=Ps-Pn矿井主扇风机是矿井通风系统中的核心设备,其选型计算包括风机功率、扬程、风量等参数的确定。
风机功率的计算公式为:P=Q*Pt/102*η其中,P表示风机功率,Q表示风机的风量,Pt表示通风系统的全压,η表示风机的效率。
扬程的计算公式为:H=Pt/ρg其中,H表示风机的扬程,ρ表示空气的密度,g表示重力加速度。
风量的计算公式为:Q=n*V其中,Q表示风机的风量,n表示风机的转速,V表示风机的容积。
综上所述,通风阻力及风机静压、负压、全压以及矿井主扇风机选型计算是矿井通风系统设计的重要内容。
通过合理计算和选型,可以确保矿井通风系统的稳定运行和高效工作,保障矿山的安全生产。
矿井通风设备选型
一、通风方式和通风系统
(一)通风方式
本矿井通风方法为机械抽出式。
矿井采用中央并列式通风。
(二)通风系统
进风井为主斜井、副斜井,回风井为回风斜井。
投产期通风系统:主斜井、副斜井进风,回风斜井回风,新鲜风流从主斜井、和副斜井进入,经运输暗斜井、轨道暗斜井、运输大巷、轨道大巷、运输下山、轨道下山、运输石门、采面运输巷至10701采面,乏风经回风斜巷进入回风斜井,然后排至地面。
本矿按煤与瓦斯突出矿井进行设计。
在风井场地设通风机,通风方式为并列式。
选用型高效节能防爆对旋轴流通风机;当矿井初期风量和负压较小时,可调节风机叶片安装角度和采用变频方式改变风机的转速来满足矿井通风要求。
反风方式,采用风机反转反风。
二、回风斜井通风设备选型
㈠计依据:
容易时期风量:73m³/s;负压:860.6Pa
困难时期风量:73m³/s;负压:1174.6Pa
回风井的井口海拔标高为+1316m,当地大气密度ρ1=1.03kg/m³。
㈡通风设备选型:
根据矿井通风资料,经多方案比较筛选后可供选择的方案列于表7-2-1。
表7-2-1 回风斜井通风机选型比较表
由表7-2-2可知GAF型轴流通风机,投资高、占地面积大、土建费用高、土建施工工期长。
而FBCDZ风型风机具有投资低,占地面积小,土建费用低,安装、维护简单等优点。
故推荐方案一。
经技术经济比较,回风井选用风机FBCDZ-8-No21B型,740 r/min,一台工作,一台备用。
配套电机为防爆电动机(660V,132kW,740r/min),每台风机额定风量为48~107m³/s,额定风压为670~2600Pa。
风机特性曲线参见图7-2-2。
根据本矿井前后期负压变化较大的特点,在调整好需要的叶片角度后,通过变频调速达到实际所需风量,可实现风机前后期均处于较佳的工况点运行。
风机订货前应由厂家针对本矿井风量、负压情况对风机选型进行校验,设计
出最佳的风机特性曲线。
㈢选型方案的详细计算
1、通风机需要产生的风量: 容易时期:Q 1=K L •Q K1=76.7m³/s 困难时期:Q 2=K L •Q K2=76.7m³/s
2、通风机需要产生的负压
容易时负压:H 1=H K1+h 1+Σh 1=816.6,考虑海拔高度的影响, H 1=816.6×ρ0/ρ1=816.6×1.19/1.03=943.5 困难时期负压:H 2=H K2+h 2+Σh 2=1518.6
H 2=1518.6×ρ0/ρ1=1518.6×1.19/1.03=1754.5
式中:按《煤矿安全规程》的规定取通风设备的漏风系数 K L =1.05 Q K —矿井需要风量 m ³/s H K —矿井通风阻力
h —矿井自然通风的压差(根据“科马洛夫”经验公式) ①容易时期; H 易自=
)
)((1000012111g o H
T T R H P +- =)
)(()(10000
5331298128812878.95338.913.6650.38+-⨯⨯⨯⨯ =194(Pa )
式中:Po —当地大气压力,Pa (当地海拔标高为+1316m ,Po=650.38mmHg );
H —矿井开采深度(本矿容易时期和困难时期相同),533m ; T 1—进风侧平均温度,取288K ; T 2—回风侧平均温度,取298K ;
R —矿井干空气常数,j/kg.K R=287; ②困难时期;
H 困自==)
)(()(10000
533
1298128812878.95338.913.6650.38+-⨯⨯⨯⨯ =194(Pa )
Σh —通风设备的阻力损失,取150Pa (包括引风道、排风道及反风装置阻
力损失)
3、通风机的工况点 管网阻力系数 R 1=H 1/Q 2=0.1604 R 2=H 2/Q 2=0.2982 管网性能曲线方程 H ’1 = R 1 Q 12 =0.1604 Q 2 H ’2 = R 2 Q 22 =0.2982Q 2
风机运行工况点参数见表7-2-3。
表7-2-3 风机运行工况点参数表
4、电动机选型计算 轴功率计算 容易时期功率:N Φ1=
c H Q ηη11
11000 =109.8kW
困难时期功率:N Φ2=c
H Q ηη22
21000=169.5kW
电动机功率的计算
容易时期功率:N c1=K N Φ1 =137.3kW 困难时期功率: N c2=K N Φ2 =211.8kW 式中:电机能力备用系数K 取1.25 机械传动效率ηC 取0.98
选用YBFe355S 2-8防爆电动机(660V 、132kW 、740r/min ),每台风机配二台电动机。
图7-2-2 FBCDZ-8-No22B风机性能曲线图
5、电耗的计算
由于通风网路阻力系数随着开采工作的推移而变化,工况点和电耗也随之而变,因此难以非常准确的计算平均年电耗,一般用下式近似计算:E=4380(N1+ N2)/(ηdηLηt ) =138.4587×104(kW·h)/a
式中E—通风机平均年电耗(kW·h)/a;
N1—通风容易时期通风机输入功率kW;
N2—通风困难时期通风机输入功率kW;
ηd—电动机的效率,取0.93;
ηL—电网效率,取0.95;
ηt—传动效率,直接传动时取1;
6、kW·h/106·m3·Pa的计算
容易时期:
⑴ 井主通风机消耗的功率: N =
m
i H
Q ηη⋅⋅∙1000=109.8(kW )
式中 Q -通风机工况点风量, m 3
/s ;
H -通风机工况点风压, Pa ;
i η -传动效率;m η-通风机工况点效率;
⑵百万立方米·帕所需的时间: T =
H
Q ⋅⋅36001000000=0.0037974h/(106·m 3
·Pa )
⑵ 通风机电耗:
W = N ·T =0.381 ( kW ·h/106·m 3
·Pa )
电耗为0.381kW ·h/106·m ³·Pa 小于其规定值0.40 kW ·h/106·m ³·Pa 。
困难时期:
⑴ 井主通风机消耗的功率: N =
m
i H
Q ηη⋅⋅∙1000=169.5(kW )
式中 Q -通风机工况点风量, m 3/s ;
H -通风机工况点风压, Pa ;
i η -传动效率;m η-通风机工况点效率;
⑵百万立方米·帕所需的时间: T =
H
Q ⋅⋅36001000000=0.0020404 h/(106·m 3
·Pa )
⑵ 通风机电耗:
W = N ·T =0.346 ( kW ·h/106·m 3
·Pa )
电耗为0.346kW ·h/106·m ³·Pa 小于其规定值0.4 kW ·h/106·m ³·Pa 。
另外还可改变通风机叶轮叶片角,使其满足运转工况,并始终在高效区运行以利节能。
㈣供电及控制方式
通风机采用双回路供电,通风机房二回低压电源均引自工业场地10kV 变电所低压不同母线段,一回工作一回备用。
设计使用变频调速装置(由厂家配套),以提高矿井通风机运行效率,从而更加满足节能要求。
㈤反风方式措施
反风方式采用风机反转进行反风,无须返风道。
生产矿井主要通风机必须装有反风设施,并能在10min内改变巷道中风流方向,当风流方向改变后,主要通风机的供风量不应小于正常供风量的40%。
每季至少检查1次反风设施,每年进行1次反风演习,矿井通风系统有较大变化时,应进行1次反风演习。
㈥通风机监控装置选型
采用风机性能在线监测系统一套,可通过计算机随时显示通风机的各项性能指标,如:风机风量、静压、风速、风门开度、电源、轴承温度、风压等状态和参数等,并能配合风门进行风机性能曲线测定。
本系统还可与全矿安全生产监控系统联网,进行数据传输与分析存储。
当超过允许值时应能够发出报警信号或实现故障停机,信号应为声光兼备。
另外还有一套继电器式的控制系统。
操作方式应有半自动、紧急手动、就地检修三种方式。
通风机的控制监测系统应满足远距离起动和停止通风机,需要反风时能远距离控制反风的要求。