如何自学数据分析方法介绍
- 格式:docx
- 大小:15.78 KB
- 文档页数:5
数据分析思维的原理和方法
数据分析思维的原理和方法主要有以下几点:
1. 目标明确:在进行数据分析之前需要明确分析的目标和问题,以确保分析过程是有针对性和有效性的。
2. 数据收集:要进行数据分析,首先要收集相关数据。
数据的收集可以通过调查、采样、实验等方式进行。
3. 数据整理:在数据分析之前需要进行数据整理,包括数据清洗、数据重构等步骤,以确保数据的准确性和一致性。
4. 数据可视化:数据可以通过图表、图形等方式进行可视化展示,便于分析和沟通交流。
5. 数据分析:在进行数据分析的过程中,需要运用统计学、机器学习、数据挖掘等技术进行有效的分析,并进行假设检验、相关性分析、回归分析等工具的运用。
6. 发现结论:通过对数据的分析,需要进行结论的提炼,以回答我们预设的问题或达成分析的目标。
7. 报告和决策:对于数据分析结果的报告和决策,需要考虑数据分析的客观性、应用性和可视化,以便于业务部门和决策者进行参考和决策。
面板数据分析方法步骤全解面板数据的分析方法或许我们已经了解许多了,但是到底有没有一个基本的步骤呢?那些步骤是必须的?这些都是我们在研究的过程中需要考虑的,而且又是很实在的问题。
面板单位根检验如何进行?协整检验呢?什么情况下要进行模型的修正?面板模型回归形式的选择?如何更有效的进行回归?诸如此类的问题我们应该如何去分析并一一解决?以下是我近期对面板数据研究后做出的一个简要总结,和大家分享一下,也希望大家都进来讨论讨论。
步骤一:分析数据的平稳性(单位根检验)按照正规程序,面板数据模型在回归前需检验数据的平稳性。
李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的 R 平方,但其结果是没有任何实际意义的。
这种情况称为称为虚假回归或伪回归(spurious regression)。
他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。
因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。
因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。
而检验数据平稳性最常用的办法就是单位根检验。
首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。
单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin and Lin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。
后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC法。
Levin et al.(2002)指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250之间,截面数介于10~250之间)的面板单位根检验。
数据分析步骤数据分析是指通过对收集到的数据进行处理、分析和解释,以发现其中的规律、趋势和关联性,从而为决策提供科学依据的过程。
数据分析步骤是指在进行数据分析时,按照一定的顺序和方法进行操作的过程。
下面将详细介绍数据分析的六个主要步骤。
1. 确定分析目标:在进行数据分析之前,首先需要明确分析的目标是什么。
明确分析目标有助于确定需要收集和分析的数据类型,以及选择合适的分析方法。
例如,如果目标是了解销售额的变化趋势,那么需要收集和分析与销售额相关的数据,如销售额、时间等。
2. 数据收集:数据收集是指获取和整理数据的过程。
数据可以来自多个渠道,如数据库、问卷调查、传感器等。
在进行数据收集时,需要注意数据的准确性和完整性,确保数据的质量。
此外,还需要对数据进行清洗和整理,去除重复值、缺失值和异常值,以便后续的分析。
3. 数据预处理:数据预处理是指在进行数据分析之前,对数据进行处理和转换的过程。
数据预处理的目的是消除数据中的噪声和冗余信息,以提高数据的质量和可用性。
常见的数据预处理方法包括数据平滑、数据聚合、数据变换等。
例如,可以对时间序列数据进行平滑处理,以去除季节性和趋势性的影响。
4. 数据分析:数据分析是指对已经预处理的数据进行分析和探索的过程。
数据分析可以采用多种方法,如统计分析、机器学习、数据挖掘等。
根据分析目标的不同,可以选择合适的分析方法。
例如,如果要分析销售额与其他变量之间的关系,可以使用回归分析或相关分析。
5. 结果解释:在完成数据分析后,需要对分析结果进行解释和解读。
结果解释是将分析结果与分析目标联系起来,解释其意义和影响。
解释分析结果时,需要考虑数据的可靠性和有效性,以及可能存在的误差和偏差。
解释结果可以通过可视化手段,如图表、图像等,以便更直观地传达分析结果。
6. 结论和建议:根据数据分析的结果和解释,可以得出结论和提出相应的建议。
结论是对分析结果的总结和概括,可以回答分析目标所提出的问题。
数据分析需要学哪些?数据分析的三大方法数据分析是当今信息时代的核心力量之一,它通过收集、整理、分析和解释数据,为决策供应有力支持。
在各行各业中,数据分析已经成为一项必备技能。
然而,对于初学者来说,数据分析好像是一个浩大而简单的领域,需要学习和把握很多方法和技巧。
那么,数据分析需要学哪些?本文将介绍数据分析的三大方法,关心读者了解数据分析的基本原理和应用。
描述性统计分析描述性统计分析是数据分析的基础,它通过对数据进行整理、总结和描述,揭示数据的基本特征和规律。
描述性统计分析主要包括以下几个方面:1、数据的集中趋势:通过计算平均值、中位数和众数等指标,了解数据的集中趋势,即数据的平均水平。
2、数据的离散程度:通过计算标准差、方差和极差等指标,了解数据的离散程度,即数据的变异程度。
3、数据的分布形态:通过绘制直方图、箱线图和正态概率图等图表,了解数据的分布形态,即数据的偏态和峰态。
4、数据的相关性:通过计算相关系数和绘制散点图等方法,了解数据之间的相关性,即数据的相关程度。
描述性统计分析可以关心我们对数据进行初步的了解和把握,为后续的推断性统计分析和猜测性分析供应基础。
推断性统计分析推断性统计分析是在样本数据的基础上,通过统计方法对总体进行推断和估量。
推断性统计分析主要包括以下几个方面:1、参数估量:通过样本数据对总体参数进行估量,如平均值、比例和方差等。
2、假设检验:通过样本数据对总体参数的假设进行检验,推断样本数据是否支持或拒绝假设。
3、方差分析:通过对不同组别的样本数据进行方差分析,推断组别之间是否存在显著差异。
4、回归分析:通过对自变量和因变量之间的关系进行建模和分析,猜测和解释因变量的变化。
推断性统计分析可以关心我们从样本数据中推断总体的特征和规律,供应决策的依据和支持。
猜测性分析猜测性分析是基于历史数据和模型,对将来大事和趋势进行猜测和模拟。
猜测性分析主要包括以下几个方面:1、时间序列分析:通过对时间序列数据进行建模和分析,猜测将来的趋势和周期性变化。
数据分析的步骤和流程数据分析是指通过对收集到的数据进行整理、分析、解释和展示,从中获取有价值的信息和见解的过程。
它在各个领域中都扮演着重要的角色,帮助人们做出决策、发现问题并提供解决方案。
本文将介绍数据分析的一般步骤和流程。
一、明确问题和目标在进行数据分析之前,首先需要明确问题和目标。
这可以通过与相关利益相关者进行沟通和交流来完成。
明确问题和目标有助于指导数据分析的方向和方法选择。
二、数据收集和整理数据收集是数据分析的第一步。
它涉及到从各种来源获取相关数据。
数据可以是结构化的(如数据库或电子表格中的数据),也可以是非结构化的(如文本数据或社交媒体上的数据)。
在收集数据之后,需要对其进行整理和清理,以确保数据的准确性和一致性。
三、探索性数据分析探索性数据分析是对数据进行初步分析和探索的过程。
它包括计算数据的基本统计量,如平均值、中位数、标准差等,以及绘制图表和可视化数据。
通过探索性数据分析,可以对数据的分布情况、异常值和相关性等进行初步了解。
四、假设检验和推断统计假设检验和推断统计是用来验证和推断数据之间的差异或联系是否具有统计学意义的方法。
它包括选择适当的统计检验方法,设置假设和显著性水平,计算统计指标,以及解读和推断结果。
通过假设检验和推断统计,可以对数据中的差异进行验证,并进行科学的推断。
五、建立预测模型建立预测模型是对数据进行预测和模拟的过程。
它基于历史数据和变量之间的关系,通过建立数学或统计模型来进行预测。
常见的预测模型包括回归分析、时间序列分析和机器学习等。
通过建立预测模型,可以对未来的趋势进行预测,并进行决策支持。
六、结果呈现和解释结果呈现和解释是将数据分析结果以清晰和易懂的方式呈现给相关利益相关者的过程。
它可以通过制作图表、编写报告和进行演示等方式来完成。
结果呈现和解释的目的是让相关利益相关者能够理解和使用数据分析的结果,从而做出相应的决策。
七、反思和改进数据分析的最后一步是反思和改进。
数据分析的基本方法数据分析是一种通过收集、处理和解释数据,以获取洞察力并做出决策的过程。
以下是数据分析的基本方法:1. 定义问题和目标在进行任何数据分析之前,我们需要明确问题和目标。
这意味着要清楚地了解我们想要回答的问题或实现的目标,并确保数据分析能够有助于达到这些目标。
2. 收集数据收集相关数据是进行数据分析的第一步。
可以通过不同渠道获取数据,如调查问卷、数据库、网络爬取等。
确保收集到的数据具有足够的准确性和可靠性。
3. 数据清洗与预处理在进行实际的数据分析之前,需要对原始数据进行清洗和预处理。
这包括去除重复值、处理缺失值、解决异常值等。
此外,还可能需要将不同格式的数据统一化,并进行必要的转换和归一化操作。
4. 探索性分析探索性分析是对收集到的数据进行统计描述和可视化展示,以发现隐藏在其中的模式、关联和趋势。
使用图表、图形和统计指标等工具来帮助理解数据集,并从中提取信息。
5. 构建模型根据问题和目标,选择适合的数据建模技术。
例如,可以使用回归分析、聚类分析、决策树等方法来构建预测模型或分类模型。
通过对数据进行训练和验证,生成能够解释数据以及做出推断和预测的模型。
6. 解释与演绎在完成数据分析后,将结果呈现给相关利益相关者,并对其进行解释和阐述。
通过可视化图表、报告撰写等方式将分析结果清晰地传达给他人,并提供基于数据的有意义的见解和建议。
7. 结论与决策支持基于数据分析的结果,形成最终结论并为决策提供支持。
数据分析能够帮助做出基于事实的决策,并减少主观性的影响。
以上是进行数据分析时常用的基本方法。
当然,在实际应用中可能会根据具体情况有所调整或细化。
但这些步骤提供了一个基本框架,可以指导我们有效地处理和利用大量的数据来获取洞察力并做出明智的决策。
16种常用数据分析方法数据分析是利用统计学和计算机科学等方法对数据进行处理、分析和解释的过程。
在实际应用中,有多种常用的数据分析方法,下面介绍其中的16种方法。
1.描述统计学:描述统计学是通过统计指标(如平均数、中位数、标准差等)和图表来总结和呈现数据的概括性方法。
2.相关分析:相关分析用于确定两个或多个变量之间的线性关系。
通过计算相关系数,可以衡量变量之间的相关程度。
3.回归分析:回归分析用于研究因变量与一个或多个自变量之间的关系。
可以通过回归方程来预测因变量的数值。
4.方差分析:方差分析用于比较两个或多个组之间的差异性。
可以检验不同组之间的均值是否存在显著差异。
5.T检验:T检验用于比较两个样本均值之间的差异是否显著。
适用于总体方差未知的情况。
6. 方差齐性检验:方差齐性检验用于检验不同组之间的方差是否相等。
通常使用Bartlett检验或Levene检验来进行检验。
7.卡方检验:卡方检验用于比较实际频数与期望频数之间的差异是否显著。
适用于分类变量之间的比较。
8.生存分析:生存分析用于研究事件发生的时间和概率。
适用于疾病生存率、产品寿命等领域。
9.聚类分析:聚类分析用于将相似样本划分为不同的群组。
可以帮助识别数据中的模式和结构。
10.主成分分析:主成分分析用于降维数据,减少数据维度。
可以将大量变量转化为少数几个主成分。
11.判别分析:判别分析用于确定分类变量与一组预测变量之间的关系。
可以进行分类和预测。
12.因子分析:因子分析用于确定一组变量之间的潜在因素。
可以帮助理解变量之间的关系。
13.时间序列分析:时间序列分析用于研究时间上的变化和趋势。
可以帮助预测未来的趋势。
14.关联规则挖掘:关联规则挖掘用于发现数据中的关联规则。
可以帮助发现市场中的交叉销售。
15.分类与回归树:分类与回归树用于构建预测模型,并生成简单的决策规则。
适用于分类和回归问题。
16.神经网络:神经网络是一种模拟生物神经系统的计算模型。
数据分析常用方法数据分析是一种通过收集、整理、分析和解释数据来获取有益信息的方法。
它在各个领域都得到了广泛的应用,包括商业、科学、医学等等。
在这篇文章中,我将介绍一些常用的数据分析方法,以便读者们能够更好地了解和运用它们。
1. 描述性统计分析描述性统计分析是数据分析的第一步。
它的目的是通过使用各种统计量和图表来描述样本数据的基本特征。
描述性统计分析可以帮助我们了解数据的分布、中心趋势、离散程度等等。
2. 探索性数据分析(EDA)探索性数据分析是一种通过可视化和统计方法探索数据的分析技术。
它可以帮助我们发现数据之间的关系、异常值、缺失值等等。
EDA常常使用直方图、散点图、箱线图等图表来展现数据的分布和关系。
3. 相关性分析相关性分析是一种统计方法,用于评估两个变量之间的关系强度和方向。
它可以告诉我们两个变量是否呈现正向关系、负向关系或者无关系。
相关性分析常用的方法有皮尔逊相关系数、斯皮尔曼等级相关系数等。
4. 回归分析回归分析是一种用于研究变量之间关系的统计方法。
通过回归分析,我们可以建立一个数学模型,用于预测或解释因变量和自变量之间的关系。
常用的回归方法有线性回归、多项式回归、逻辑回归等。
5. 聚类分析聚类分析是一种将样本分成不同组的方法。
聚类分析的目标是使得同一组内的样本之间的相似度尽可能高,而不同组之间的相似度尽可能低。
聚类分析可以帮助我们发现数据中的隐藏模式和结构。
6. 时间序列分析时间序列分析是一种分析时间上的数据变化趋势的方法。
通过时间序列分析,我们可以发现时间上的周期性、趋势和季节性等。
常用的时间序列分析技术包括平均法、指数平滑法、ARIMA模型等。
7. 假设检验假设检验是一种用于验证关于样本总体的假设的统计方法。
通过假设检验,我们可以判断样本数据和我们所提出的假设之间是否存在显著差异。
常用的假设检验方法有t检验、方差分析、卡方检验等。
8. 数据挖掘数据挖掘是一种发现模式和关联规则的技术。
16种常用的数据分析方法数据分析是指对收集到的数据进行处理、解析和统计,以发现其中的规律、趋势和关联性,并根据分析结果做出决策或预测。
在实际应用中,有许多常用的数据分析方法可以帮助分析师更好地理解数据。
下面将介绍16种常用的数据分析方法。
1.描述性统计分析:通过计算和展示数据的中心趋势(如平均值、中位数)和分散程度(如标准差、范围)来描述数据的特征。
2.相关性分析:通过计算相关系数来衡量两个变量之间的相关性。
常用的相关系数包括皮尔逊相关系数和斯皮尔曼相关系数。
3.回归分析:分析自变量与因变量之间的关系,并通过拟合回归模型预测因变量的值。
常用的回归分析方法包括线性回归、多元回归和逻辑回归。
4.频率分析:统计数据中各个值出现的频率,用于了解数据的分布情况。
常用的频率分析方法包括直方图、饼图和柱状图。
5.假设检验:通过对样本数据进行假设检验,判断总体是否存在显著差异。
常用的假设检验方法包括t检验、方差分析和卡方检验。
6.分类与预测:通过构建分类模型或预测模型来对数据进行分类和预测。
常用的分类与预测方法包括决策树、朴素贝叶斯和支持向量机。
7. 聚类分析:根据数据中的相似性或距离,将数据分为不同的群组或类别。
常用的聚类分析方法包括K-means聚类和层次聚类。
8.时间序列分析:通过对时间序列数据的分析,揭示数据的趋势、季节性和周期性等特征。
常用的时间序列分析方法包括移动平均法和指数平滑法。
9.因子分析:通过对多个变量的分析,提取出隐藏在数据中的共同因素,并将变量进行降维或分类。
常用的因子分析方法包括主成分分析和因子旋转分析。
10.空间分析:通过对地理数据的分析,揭示地理空间内的分布规律和关联性。
常用的空间分析方法包括地理加权回归和地理聚类分析。
11.决策树算法:通过构建一棵决策树,并根据不同的条件来进行决策。
常用的决策树算法包括ID3算法和CART算法。
12. 关联规则挖掘:通过寻找数据中的频繁项集和关联规则,揭示不同项之间的关联性。
数据分析的应用技巧与方法数据分析是一种通过收集、整理、解释和呈现数据来揭示信息和洞察的过程。
在当今信息爆炸的时代,数据分析已经成为各个领域中不可或缺的工具。
本文将介绍一些数据分析的应用技巧和方法,帮助读者更好地理解和运用数据分析。
一、数据收集与整理数据分析的第一步是收集和整理数据。
数据可以来自各种渠道,例如调查问卷、传感器、社交媒体等。
在收集数据时,需要保证数据的准确性和完整性。
同时,数据的格式也需要统一,以便后续的分析工作。
在整理数据时,可以使用Excel等工具进行数据清洗和转换,以满足分析的需求。
二、数据可视化数据可视化是将数据以图表或图形的形式展示出来,以便更好地理解和解释数据。
通过数据可视化,可以直观地看到数据之间的关系和趋势。
常用的数据可视化工具包括Tableau、Power BI等。
在进行数据可视化时,需要选择适当的图表类型,例如柱状图、折线图、散点图等,以展示不同类型的数据。
三、数据挖掘与模型建立数据挖掘是通过分析大量数据来发现隐藏在数据中的模式和规律。
数据挖掘可以帮助企业发现潜在的商机,改善业务流程,提高效率。
在进行数据挖掘时,可以使用机器学习算法来建立预测模型。
常用的机器学习算法包括决策树、支持向量机、神经网络等。
通过训练模型,可以预测未来的趋势和结果。
四、数据分析工具数据分析工具是进行数据分析的必备工具。
常用的数据分析工具包括Python、R、SQL等。
Python和R是两种常用的编程语言,具有强大的数据分析和可视化功能。
SQL是一种用于管理和分析数据库的语言,可以进行数据查询和操作。
选择合适的数据分析工具可以提高分析的效率和准确性。
五、数据驱动决策数据驱动决策是指通过数据分析来指导决策和行动。
在做出决策时,可以依据数据分析的结果来评估不同方案的优劣,并选择最佳的决策。
数据驱动决策可以减少主观因素的干扰,提高决策的科学性和准确性。
同时,数据驱动决策也需要考虑数据的可靠性和局限性,以避免错误的决策。
如何自学数据分析方法介绍
如何自学数据分析方法介绍
想要成为数据分析师,最快需要七周?七周信不信?
这是一份数据分析师的入门指南,它包含七周的内容,Excel、
数据可视化、数据分析思维、数据库、统计学、业务、以及Python。
每一周的内容,都有两到三篇文章细致讲解,帮助新人们快速掌握。
这七周的内容刚好涵盖了一位数据分析师需要掌握的基础体系,也是一位新人从零迈入数据大门的知识手册。
第一周:Excel
每一位数据分析师都脱离不开Excel。
Excel的学习分为两个部分。
掌握各类功能强大的函数,函数是一种负责输入和输出的神秘盒子。
把各类数据输入,经过计算和转换输出我们想要的结果。
在SQL,Python以及R中,函数依旧是主角。
掌握Excel的函数有助于后续的学习,因为你几乎在编程中能找到名字一样或者相近
的函数。
在「数据分析:常见的Excel函数全部涵盖在这里了」中,介绍了常用的Excel函数。
清洗处理类:trim、concatenate、replace、substitute、
left/right/mid、len/lenb、find、search、text
关联匹配类:lookup、vlookup、index、match、row、column、offset
逻辑运算类:if、and、or、is系列
计算统计类:sum/sumif/sumifs、sumproduct、
count/countif/countifs、max、min、rank、rand/randbetween、averagea、quartile、stdev、substotal、int/round
时间序列类:year、month、weekday、weeknum、day、date、now、today、datedif
搜索能力是掌握Excel的不二窍门,工作中的任何问题都是可以找到答案。
第二部分是Excel中的工具。
在「数据分析:Excel技巧大揭秘」教程,介绍了Excel最具性
价比的几个技巧。
包括数据透视表、格式转换、数组、条件格式、
自定义下拉菜单等。
正是这些工具,才让Excel在分析领域经久不衰。
在大数据量的处理上,微软提供了Power系列,它和Excel嵌套,能应付百万级别的数据处理,弥补了Excel的不足。
Excel需要反复练习,实战教程「数据分析:手把手教你Excel
实战」,它通过网络上抓取的数据分析师薪资数据作为练习,总结
各类函数的使用。
除了上述要点,下面是附加的知识点,铺平数据分析师以后的道路。
了解单元格格式,数据分析师会和各种数据类型打交道,包括各类timestamp,date,string,int,bigint,char,factor,
float等。
了解数组,以及相关应用(excel的数组挺难用),Python和R也会涉及到list,是核心概念之一。
了解函数,深入理解各种参数的作用。
它会在学习Python中帮
助到你。
了解中文编码,UTF8、GBK、ASCII,这是数据分析师的坑点之一。
第二周:数据可视化
数据分析界有一句经典名言,字不如表,表不如图。
数据可视化是分析的常用技巧之一,不少数据分析师的工作就是通过图表观察和监控数据。
首先了解常用的图表:
Excel的图表可以100%绘制上面的图形,但这只是基础。
在「数据可视化:你想知道的经典图表全在这」中介绍了各类数据分析的经典图表,除了趋势图、直方图,还包括桑基图、空间图、热力图等额外的类型。
数据可视化不是图表的美化,而是呈现数据的逻辑之美,是揭示数据的内在关联。
了解图表的维度和适用场景,比好看更重要。
比
如桑吉图就是我一直推崇的图表,它并不知名,但是它能清晰的揭
露数据内在状态的变化和流向。
案例是用户活跃状态的趋势。
Excel的图表操作很傻瓜化,其依旧能打造出一份功能强大的可
视化报表。
「数据可视化:教你打造升职加薪的报表」教给大家常
用的Excel绘图技巧,包括配色选取,无用元素的剔除、辅助线的
设立、复合图表等方法。
Excel图表的创造力是由人决定的,对数据的理解,观察和认知,以及对可视化的应用,这是一条很长的道路。
图表是单一的,当面板上绘制了多张图表,并且互相间有关联,我们常称之为Dashboard仪表盘。
上图就是用分析师薪资数据为数据源绘制的Dashboard,比单元
格直观不少。
我们常常把绘制这类Dashboard的工具叫做BI。
BI(商业智能)主要有两种用途。
一种是利用BI制作自动化报表,数据类工作每天都会接触大量数据,并且需要整理汇总,这是一块
很大的工作量。
这部分工作完全可以交给BI自动化完成,从数据规整、建模到下载。
另外一种是使用其可视化功能进行分析,它提供比Excel更丰富的交互功能,操作简单,而且美观,如果大家每天作图需要两小时,BI能缩短大半。
在「数据可视化:手把手打造BI」教程中,以微软的PowerBI
举例,教大家如何读取数据,规整和清洗数据,绘制图表以及建立Dashboard。
最后的成果就是上文列举的分析师案例。
BI还有几个核心概念,包括OLAP,数据的联动,钻取,切片等,都是多维分析的技巧,也是分析的核心方法之一。
后续的进阶可视化,将和编程配合。
因为编程能够提供更高效率和灵活的应用。
而BI也是技术方向的工具,了解技术知识对应用大
有帮助。
第三周:数据分析思维数据分析能力的高低,不以工具和技巧决定,而以分析思维决定。
分析思维决定一场「数据战争」中的冲锋方向。
只有先养成正确的分析思维,才能使用好数据。
麦肯锡是其中领域的佼佼者,创建了一系列分析框架和思维工具。
最典型地莫过于金字塔思维。
这篇文章简述了该思维的应用,「快速掌握麦肯锡的分析思维」。
你能学会结构化思考,MECE原则,假设先行,关键驱动等方法论。
除此以外,还有SMART、5W2H、SWOT、4P4C、六顶思考帽等,这
些都是不同领域的框架。
框架的经典在于,短时间内指导新人如何
去思考,它未必是最好的,但一定是性价比最优的。
数据分析思维,是分析思维的引申应用。
再优秀的思考方式,都需要佐证和证明,
数据就是派这个用处的,「不是我觉得,而是数据证明」。
现代管理学之父彼得·德鲁克说过一句很经典的话:如果你不能衡量它,那么你就不能有效增长它。
如果把它应用在数据领域,就是:如果你不能用指标描述业务,那么你就无法有效增长它。
每一
位数据分析师都要有指标体系的概念,报表也好,BI也好,即使机
器学习,也是围绕指标体系建立的。
下图就是一个典型的指标体系,描述了用户从关注产品、下载、乃至最后离开的整个环节。
每一个环节,都有数据及指标以查询监控。
数据分析不是一个结果,而是一个过程。
几乎所有的`分析,最终目的都是增长业务。
所以比分析思维更重要的是驱动思维落地,把它转化为成果。
数据分析思维是常年累月养成的习惯,一周时间很难训练出来,但这里有一个缩短时间的日常习惯。
以生活中的问题出发做练习。
这家商场的人流量是多少?怎么预估?
上海地区的共享单车投放量是多少?怎么预估?
街边口的水果店,每天的销量和利润是多少?怎么预估?
这些开放性问题起源于咨询公司的训练方法,通过不断地练习,肯定能有效提高分析思维。
另外就是刷各种CaseBook。
优秀的数据分析师会拷问别人的数据,而他本身的分析也经得起拷问。