综上,当 t=12 时,S(t)取最大值2 5300;当 t=100 时,S(t)取最小值 8.
答案
专题突破
-13-
考点1
考点2
考点3
考点4
解题心得在现实生活中,很多问题涉及的两个变量之间是二次函 数关系,如面积问题、利润问题、产量问题等.构建二次函数模型, 利用二次函数的图象与单调性解决.
专题突破
品的生产.
①若平均投入生产两种产品,可获得多少利润?
②问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得
最大利润?其最大利润约为多少万元?
专题突破
-15-
考点1
考点2
考点3
考点4
解: (1)设 A,B 两种产品都投资 x 万元(x≥0),所获利润分别 为 f(x)万元、g(x)万元,由题意可设 f(x)=k1x,g(x)=k2√������,
专题突破
-16-
考点1
考点2
考点3
考点4
令√������=t,t∈[0,3√2], 则 y=14(-t2+8t+18) =-14(t-4)2+127. 故当 t=4 时,ymax=127=8.5, 此时 x=16,18-x=2.
所以当 A,B 两种产品分别投入 2 万元、16 万元时,可使该企
业获得最大利润 8.5 万元.
根据图象可解得 f(x)=0.25x(x≥0),g(x)=2√������(x≥0).
(2)①由(1)得 f(9)=2.25,g(9)=2√9=6,
故总利润 y=8.25(万元).
②设 B 产品投入 x 万元,A 产品投入(18-x)万元,该企业可获
总利润为 y 万元, 则 y=14(18-x)+2√������,0≤x≤18.