五年级奥数竞赛班-[第16讲]定义新运算
- 格式:doc
- 大小:110.00 KB
- 文档页数:2
2.定义新运算2023.10.29 教学目标:1.会理解特定的运算规则,会通过表达式寻找到运算规则。
2.培养学生自主思考,解题的能力。
感受到数学思维的逻辑性,唯美性。
教学重点:会通过表达式寻找到运算规则。
教学难点:特殊情况的表达式的理解。
教学准备:课件教学过程:一、导入1.揭示课题。
(1)加、减、乘、除这四种运算的意义和运算法则我们都很熟悉。
除了这四种运算之外,我们还可以人为的规定一些其他运算,并给出特定的运算规则。
这样的运算形式我们一般称之为定义新运算。
(2)定义新运算通常运用某种特殊符号来表示一种运算。
其运算规则中运用的计算方法与我们所学的四则运算方法相同。
解题的关键是通过表达式寻找到运算规则。
2.运算律。
新定义的运算中如果有括号,要先算括号里面的,但它在没有转化前是不适合用各种运算定律的。
二、新授1.例1如果2※3=2+3+4=9,5※4=5+6+7+8=26。
求:(1)9※5的值是多少?(2)解方程x※3=15。
(1)信号表示求连续自然数的和信号前面的数表示第一个数(首项)。
星号后面的数表示连续自然数的个数(项数)。
(2)9※5=9+10+11+12+13=55x※3=x+(x+1)+(x+2)=3x+33x+3=15,x=42.例2定义两种运算“©”“¤”,对于任意两个整数a、b。
都有:a©b=a+b-1,a¤b=a×b-1.若x©(x¤4)=33,求x的值。
(1)在有括号时,要先算括号内的,再算括号外的。
同时还要注意有两种运算。
(2)此题的运算方法是:先根据符号©所表示的意义。
将小括号里的式子改写成x×4-1。
再根据符号¤所表示的意义,将x©(x×4-1)改写成x+(x×4-1)-1,即原方程可变为x×5-2=33。
然后再求出未知数。
3.例3定义一种运算“*”,它的意义是a*b=a+aa+aaa+…+aaa…a(a,b都是非0自然数)。
五年级奥数定义新运算练习题知识要点:定义新运算,是指用某些特殊的符号,表示特定的意义,从而解答某些特殊的算式的一种运算。
定义新运算中运算符号有:#、*、※、▽等,有时借用一些已有的运算符号“+、-、×、÷”,但与四则中的运算符号是有区别的。
解答定义新运算,必须先理解新定义的含义,遵循新定义的关系式,把问题转化为一般四则运算。
例题解答例1:已知a※b=a÷b×2+3×a-b,计算169※13例2:对于整数a,b,规定运算如下:a⊙b=a×b-a-b+1,求⊙2练习1、规定a⊕b=×b,求⊕52、对于任意整数a和b,规定a▲b=3a+2b-2,求11▲10的值。
3、已知a#b=a÷b×2+3,若256#a=19,求a定义新运算测试题1、假设x△y=÷4,求13△17的值;2△的值;求a△16=10中a的值。
2、已知P※Q=3、如果A⊙B=P?Q,求3※的值。
A?B,照这样的规则:3⊙[6⊙]的结果是多少?4、如果a□b表示a×b+a+b,那么□1=29,a是多少?5、如果a※b表示a×b+a,那么当x※5比5※x大100时,x是多少?6、若A☆B=A++++??+,那么X☆10=65中X的值是多少?7、令A#B=4A+3B,那么,#的结果是多少?五年级奥数专题三:定义新运算关键词:运算四则四则运算定义奥数符号意义这些表示年级我们已经学习过加、减、乘、除运算,这些运算,即四则运算是数学中最基本的运算,它们的意义、符号及运算律已被同学们熟知。
除此之外,还会有什么别的运算吗?这两讲我们就来研究这个问题。
这些新的运算及其符号,在中、小学课本中没有统一的定义及运算符号,但学习讨论这些新运算,对于开拓思路及今后的学习都大有益处。
例 1 对于任意数a,b,定义运算“*”:a*b=a×b-a-b。
定义新运算知识与方法:对于常用的加、减、乘、除等运算,我们已经熟知它们的运算法则和计算方法,如6+2=8,6×2=12等。
都是2和6,为什么运算结果不同呢?主要是运算方式不同,实质上是对应法则不同。
由此可见,一种运算实际就是两个数与一个数的一种对应方法。
对应法则不同就是不同的运算。
当然,这个对应法则应该是对应任意两个数。
通过这个法则都有一个唯一确定的数与它们对应。
这节课,我们将定义一些新的运算形式,它们与我们常用的加、减、乘、除运算是不相同的。
解决定义新运算这类题的关键:是抓住定义的本质——借用“+、-、×、÷”四则运算进行的,解答时要弄清新运算与四则运算的关系。
特别注意运算顺序,每个新定义的运算符号只能在本题中使用,新运算不一定符合运算定律。
例1:设a、b都表示数,规定:a△b =3×a-2×b。
试计算:(1)3△2;(2)2△3。
练习1:1.设a、b都表示数,规定:a○b=5×a-2×b。
试计算3○4。
2.设a、b都表示数,规定:a*b=3×a+2×b。
试计算:5*6例2:对于两个数a与b,规定a△b=3a+2a,试计算2△(3△5)。
练习2:1.对于两个数a与b,规定:a○b=a+3b,试计算4○5○6。
2.对于两个数A与B,规定:A△B=2×A-B,试计算5△6△7。
例3:对于两个数a,b,规定:a⊕b=a×b+a+b,试计算:9⊕。
练习3:1.对于两个数a,b,规定:a⊕b=a×b-(a+b),试计算:6⊕7.2..对于两个数A与B,规定:AθB=A×B÷2,试计算:8θ9。
例4:如果2△3=2+3+4,5△4=5+6+7+8,那么按此规律计算:(1)3△5;(2)8△3。
练习4:1.如果4△2=4×5,2△3=2×3×4,那么按此规律计算:5△4。
定义新运算知识与方法:对于常用的加、减、乘、除等运算,我们已经熟知它们的运算法则和计算方法,如6+ 2=8, 6X2=12等。
都是2和6,为什么运算结果不同呢?主要是运算方式不同,实质上是对应法则不同。
由此可见,一种运算实际就是两个数与一个数的一种对应方法。
对应法则不同就是不同的运算。
当然,这个对应法则应该是对应任意两个数。
通过这个法则都有一个唯一确定的数与它们对应。
这节课,我们将定义一些新的运算形式,它们与我们常用的加、减、乘、除运算是不相同的。
解决定义新运算这类题的关键:是抓住定义的本质借用“ +、一、X、十”四则运算进行的,解答时要弄活新运算与四则运算的关系。
特别注意运算顺序,每个新定义的运算符号只能在本题中使用,新运算不一定符合运算定律。
例1:设a、b都表示数,规定:aAb =3X a— 2X b。
试计算:(1) 3A2; (2) 2A3。
练习1:1. 设a b都表示数,规定:a。
b=5X a— 2X b。
试计算3042. 设a b都表示数,规定:a*b=3x a+ 2X b。
试计算:5*6例2:对于两个数a与b,规定b=3a+ 2a,试计算( 3^5)练习2:1.对于两个数a与b,规定:aOb=a+3b,试计算405062.对于两个数A与B,规定:A△ B=2X A — B,试计算5A6A7例3:对于两个数a, b,规定:a金b=ax b+ a+ b,试计算:9 ®练习3:1.对于两个数a, b,规定:a$b=ax b— ( a+ b),试计算:6 ® 7.2..对于两个数A与B,规定:A GB=A X B-2,试计算:8 99例4:如果2、3=2 + 3 + 4, 5A4=5+ 6+ 7+ 8,那么按此规律计算:(1) 3A5;(2) 8A3。
练习4:1.如果4A2=4X 5, 2A3=2X 3X 4,那么按此规律计算:5A4。
2.如果24=24- (2+ 4), 3V6=36- (3 + 6), 6V3=63- (6+ 3),那么按此规律计算:7V2.例5:对于两个数a与b,规定aDb=a(a+1)+(a+2)+・・・(a+b— 1)。
经典奥数:定义新运算(专项试题)一.选择题(共6小题)1.对于两个数a、b.定义一种运算“*”,a*b=3a+2b.则3*5=()A.19B.15C.6D.52.假设a#g=(a+g)÷(a÷g),如果x#(5#1)=6,那么x是()A.0.1B.0.2C.0.3D.0.43.假设A※B表示A的3倍减去B的2倍,即A※B=3A﹣2B.已知x※(4※1)=7,那么x※4=()A.7B.9C.19D.364.如果规定符号“☆”为选择两数中的较大数,“△”为选择两数中的较小数,例如:4☆6=6,4△6=4,那么[(8△4)☆6]×(4☆8)=()A.48B.24C.325.将2020年2月2日记成20200202,这个数字从左往右、从右往左读都样,我们称这样的数为“世纪吉祥数”。
从2000年到2099年这样的“世纪吉祥数”有()个。
A.15B.12C.9D.36.如果:a*b=a×(b+3),则5*2=5×(2+3)=25.同理可得:4*8=()A.32B.56C.44二.填空题(共6小题)7.如果规定:符号*表示选择两个数中较大的数,#表示选择两个数中较小的数,例如3*8=8,3#8=3,则4.5#5.4=,(3.6*15.6)÷(1.2#1.8)=。
8.根据运算定律,填一填。
78.6×※+☆×2.4=78.6×10,※=,☆=。
9.如果A△B表示3×A+B,例如2△4表示3×2+4=10,那么,5△2=。
10.规定A△B=5A﹣B,如果X△(5△2)=1;那X=。
11.如果1*3=1+11+111=123,2*4=2+22+222+2222=2468,3*3=3+33+333=369,那么5*4=.12.有这样两种运算◆和■:规定a◆b=a×b﹣a,a■b=a÷b+a.则(6◆5)■4=.三.解答题(共9小题)13.为确保信息安全,信息需要加密传输,发送方由明文→密文(加密),按收方由密文→明文(解密),已知加密规则为明文a,b,c对应的密文a+1,2b+4,3c+9,例如明文1,2,3对应的密文为2,8,18,如果接收的密文7,18,15,则解密得到的明文是什么?14.对于实数x、y,定义一种新的运算*,x*y=ax+by,其中a、b为常数,等式的右边是通常的加法与乘法运算,已知3*2=7,2*3=8,则1*1是多少?15.定义一种新运算:a*b=3a+5ab+kb,其中a和b为任意两个不为0的数,k为常数.比如:2*7=3×2+5×2×7+7k(1)如果5*2=7*3,8*5与5*8的值相等吗?请说明理由(2)当k取什么值时,对于任何不同的a和b,都有a*b与b*a,即新运算“*”符合交换律?16.1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么(1)7*4=?(2)210*2=?17.a和b都是正整数,设a※b表示从a起b个连续正整数的和。
第一讲定义新运算一、学习目标1. 了解新运算的定义并学会按新运算的要求进行计算。
2. 学习观察、比较、判断和推理的数学方法。
二、内容提要与方法点拨1.要熟练掌握四则运算的法则及运算定律。
2. 定义新运算是指用某种特定的符号表示特定意义的运算。
解答这类题目时,首先要弄清新定义的运算的特定含义,也就是弄清它所表示的通常意义下是什么运算,然后转化为通常意义下的四则运算来进行解答。
在没有特别说明的情况下,一些基本的四则运算法则如从左往右计算、有括号时先算括号里面的等在新定义的运算中也是适用的。
但是,在新定义的运算中,不一定都适合交换律或结合律。
三、例题选讲例1如果a▽b表示a×b+a-b,试计算:(7▽4)▽5。
解:式子a▽b表示两个数的积加上第一个数后再减去第二个数。
在式子(7▽4)▽5中,要先算小括号里面的。
(7▽4)=7×4+7-4=31而31▽5=31×5+31-5=181,所以,(7▽4)▽5=181。
例2规定a☆b表示a的4倍减去b的3倍,即a☆b=4a-3b,试计算:(1)5☆6 ;(2)6☆5。
解:(1)根据a☆b=4a-3b,所以,5☆6=4×5-3×6=2(2)6☆5=6×4-5×3=9注意:a☆b表示a的4倍减去b的3倍,而b☆a表示b的4倍减去a的3倍,这里a≠b,所以a☆b≠b☆a。
因此,本例定义的新运算是不满足交换律的,计算中不能把前后两个数交换。
例3 对于两个数x、y,规定x#y表示3x+2y,试计算:(1)(5#7)#8 ;(2)5#(7#8)。
解:(1)根据x#y=3x+2y,得(5#7)#8=(3×5+2×7)#8=29#8=3×29+2×8=103(2)5#(7#8)=5#(3×7+2×8)=5#37=3×5+2×37=89注意:本例定义的运算是不满足结合律的。
定义新运算是指用一个符号和已知运算表达式表示一种新的运算。
解答定义新运算关键是要正确理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
例1 设b a,表示两个不同的数,规定b a b a 43.求6)78(.例2 规定:6* 2=6+66=72,2*3=2+22+222=246,1*4=1+11+111+1111=1234。
求7*5例3 设ab b a b a 5.024,求34)14(x 中的未知数x 。
专题:定义新运算1、定义运算?为a ?b =5×)(b a b a .则11?12=2、b a,表示两个数,记为:a ※b =2×b b a 41.则8※(4※16)= .3、设y x,为两个不同的数,规定x □y 4)(y x.求a □16=10中a = 4、有一个符号“?”,使下列算式成立:4?8=16,10?6=26,6?10=22,18?14=50.求7?3=5、如果a △b 表示(a-2)×b ,例如:3△4=(3-2)×4=4,那么当( a △2)△3=12时,a=6、对于数b a,规定运算“▽”为)5()3(b a ba .求)76(57、Q P,表示两个数,P ※Q =2Q P ,如3※4=243=3.5.求4※(6※8);如果x※(6※8)=6,那么x ?. 8、对任意的数a ,b ,定义:f (a )=a2+1, k (b )=2b(1)已知f (m )=26,求m 的值;(2)求f (k (3))+k (f (3))的值9、规定a ⊕)1()2()1(b a a a a b ,(b a,均为自然数,a b ).如果x ⊕10=65,那么x ?10、有A ,B ,C ,D 四种装置,将一个数输入一种装置后会输出另一个数。
装置A ∶将输入的数加上5;装置B ∶将输入的数除以2;装置C ∶将输入的数减去4;装置D ∶将输入的数乘以3。
小学五年级奥数全册讲义第1讲数字迷(一)第2讲数字谜(二)第3讲定义新运算(一)第4讲定义新运算(二)第5讲数的整除性(一)第6讲数的整除性(二)第7讲奇偶性(一)第8讲奇偶性(二)第9讲奇偶性(三)第10讲质数与合数第11讲分解质因数第12讲最大公约数与最小公倍数(一)第13讲最大公约数与最小公倍数(二)第14讲余数问题第15讲孙子问题与逐步约束法第16讲巧算24第17讲位置原则第18讲最大最小第19讲图形的分割与拼接第20讲多边形的面积第21讲用等量代换求面积第22 用割补法求面积第23讲列方程解应用题第24讲行程问题(一)第25讲行程问题(二)第26讲行程问题(三)第27讲逻辑问题(一)第28讲逻辑问题(二)第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。
例如用猜想、拼凑、排除、枚举等方法解题。
数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。
这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。
例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。
分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。
当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。
(5÷13-7)×(17+9)。
当“÷”在第二或第四个○内时,运算结果不可能是整数。
当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。
例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。
五年级奥数重难点:定义新运算知识点一:1、定义新运算是指用新的符号所定义的运算。
解题时需要按它所规定的“运算程序”进行运算,直接得出最后结果。
2、运算符号所表示的运算并不是一种固定的算法,而是因题而异,不同的题目有不同的规定,我们应当严格按照题中规定进行运算。
类型一:直接运算型解题方向:直接根据运算公式计算【例1】“★”表示一种新运算,规定A★B=5A+7B,求4★5。
边学边练:1、设a、b都表示数,规定:a○b=6×a-2×b。
试计算3○4。
2、“♀”表示一种新的运算,规定A♀B=2A+3B,求0.3♀1.4【例2】设a、b都表示数,规定:a*b=3×a+2×b。
试计算:(1)(5*6)*7 (2)5*(6*7)边学边练:1、a 、b 是自然数,规定a ※b=(a+b )÷2,求3※(4※6)2、令A ®B=3×A+4×B ,试计算:(1)(4®5)®6 (2)(1®5)+(2®4)类型二:反解未知数型解题方向:建立方程【例3】规定a &b=3a -2b ,如果x &4=7,求x 的值。
边学边练:1、如果规定c b d a d bc a ⨯-⨯=,已知2.74.2612=x ,求x 的值。
2、对任意正整数a,b ,规定a ※b=a ÷b ×2+3。
若256※a=19,求a 的值。
【例4】对于两个数a与b,规定a□b=a+(a+1)+(a+2)+…(a+b-1)。
已知x□6=27,求x。
边学边练:1、如果2□3=2+3+4=9,6□5=6+7+8+9+10=40。
已知x□3=5973,求x。
2、对于两个数a与b,规定a※b=a+(a+1)+(a+2)+…(a+b-1)。
已知x※4=122,求x。
类型三:观察规律型【例5】如果1※3=1+2+3=6,5※4=5+6+7+8=26,那么9※5=?边学边练:1、已知1∆3=1×2×3,6∆5=6×7×8×9×10,求2∆5.2、如果2※3=2+3+4=9,5※4=5+6+7+8=26,按此规则计算:(1)1※x=15 (2)x※3=12类型四:综合类型【例6】用{}a 表示a 的小数部分,[a]表示不超过a 的最大整数,例如{}4]5.4[,0]3.0[,3.03.0===。
五年级奥数竞赛班
已知A B AB A B
*=++,则
10
199999
****⋅⋅⋅⋅⋅⋅**=
共次运算
________。
(2006年希望杯六年级二试第16题)
国际统一书号ISBN由10个数字组成,前面9个数字分成3组,分别用来表示区域、出版社和书名,最后一个数字则作为核检之用。
核检码可以根据前9个数字按照一定的顺序算得。
如:某书的书号是7107175432
ISBN---,它的核检码的计算顺序是:7101908771675544332207
⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=
20711189
÷=
1192
-=
这里的2就是该书的核检码。
求书号730307618
ISBN---的核检码。
设x、y是两个非零的数,定义
x y
x y
y x
=+;
①计算(23)4与2(34);
②如果x是一个自然数,并且x○3=2,求x的值。
对于任意的两个自然数a和b,规定新运算* (1)(2)(1)
a b a a a a b
*=+++++++-
其中a,b表示自然数。
⑴求1*100的值;
⑵已知x*10=75,求x为多少?
定义新运算
⑶如果(x *3)*2=121,那么x 等于几?
定义新运算*,它的含义是()()111x y xy x y A *=
+++,已知 ()()11221212113
A *=+=⨯++; 求1998*1999。
对平面上两点M 和N ,定义M #N 表示线段MN 的中点。
已知ABCD 是边长为4的正方形,求:
①以A #B ,B #C ,C #D ,D #A 为顶点的四边形面积,
②以A #(A #B ),C #(C #B ),C #(C #D ),A #(A #D ),为顶点的四边形面积。
·地理常识小阴题。